Automated Ripeness Assessment of Oil Palm Fruit
Using RGB and Fuzzy Logic Technique

Z. May¹, M. H. Amaran²

Electrical and Electronic Engineering Department
Universiti Teknologi PETRONAS
Bandar Seri Iskandar, 31750, Tronoh, Perak
MALAYSIA
zazilah@petronas.com.my¹, anep88@gmail.com²

Abstract: - An objective and accurate ripeness assessment of oil palm fruit (Elaeis guineensis) is important in ensuring optimum yield of high quality oil. The ability to correctly identifying physiological maturity and harvest maturity of oil palm fruits will ensure timely harvest to avoid cutting of either under- and over-ripe fruits. This paper deals with the development of an automated ripeness assessment of oil palm fruit using RGB color model and fuzzy logic technique. The developed technique can overcome the subjectivity and inconsistency of the currently manual human grading technique based on experience. The three different classes of oil palm fruit considered are under ripe, ripe and overripe. The ripeness of the fruit is based on different color intensity. The grading system uses a computer, a CCD camera and MATLAB software to analyze and interpret images correspondent to human eye and mind. The computer program is developed for the image processing parts like the segmentation of colors, the calculation of the mean color intensity based on RGB color model and the decision making process using fuzzy logic where the data is trained and the classification is made for the oil palm fruit. The simulation results demonstrate the ability in distinguishing the three different classes of oil palm fruit automatically with overall efficiency of 88.74%. The ripeness assessment technique proposed in this paper proved a promising result and capable to be applied to improve and standardize the current oil palm fruit grading system.

Keyword- Ripeness, Automated Assessment, RGB Color Model, Fuzzy Logic, Intensity

1 Introduction

The technology has evolved from year to year where the manual work performed by human is replaced by the automated work performed by the machines to speed up the work. The technology not only limited to the automation and fabrication products but also has spread to the agriculture products. Automated grading of agriculture products has been getting special interest recently as the demand for higher quality food products produced within a shorter period of time has increased. Market grade of quality food products are determined based on their multiple features: flavor, texture and appearance. While flavor may be measured using chemical compounds to determine the sweetness or acidity, texture properties such as firmness and mouth feel are difficult to measure. In automated fruit grading, appearance (shape, color and size) is generally utilized to classify the fruit’s grade.

Color provides helpful information in predicting the maturity and examining the freshness of fruits. Color is one of the most significant criteria related to fruit identification and fruit quality and it is a good indicator for ripeness. Generally, the color of the fruits will change from one color to another color when the maturity or ripeness of the fruits changes from one stage to another stage. The color of an object is determined by wavelength of light reflected from its surface. In biological materials the light varies widely as a function of wavelength. These spectral variations provide a unique key to machine vision and image analysis.

In Malaysia, researches in automated grading system have becomes an interest for many researcher
since it has a high potential for a new approach in the future generation. For the oil palm fruit research, there were several reports that have been published in the past few years. The research has been done using several techniques and the most recent one are done by using RGB Digital Number[1] and by using Neuro-Fuzzy[2]. There are also other techniques used to evaluate the grading of oil palm fruit[3-5]. Besides the oil palm fruit research, there are also other fruit that has been studied and developed in classifying the degree of fruit ripeness automatically using image processing techniques. The automated grading techniques for apple[6-7], banana[8], orange[9] and other fruit[10-11] are some of the examples of other fruit. Even though RGB color model, fuzzy logic and neural network have been popularly employed for oil palm grading, none of the work has tries to do it based on the oil palm fruit while most of them were focused on oil palm fruit bunches. The fruit gave more precise information in terms of color since we can analyze it over the whole surface of the fruit compared to a bunch where we only analyzed it on the upper half surface of it.

2 Methodology
The grading system depends on the color extracted from the image. Therefore, color features extraction plays an important role in developing this grading system. The flow of each processing level as well as the components used are stated and briefly discussed in Fig. 1. The steps taken for latter approach includes image acquisition, color feature extraction and finally classification using fuzzy logic algorithm.

Fig. 1: The flowchart of grading process

2.1 Image Acquisition
The oil palm fruits are collected from a plantation. The oil palm fruits are graded manually by human grader as soon as he collects the fruits. A total of 75 images are taken in the laboratory under controlled lighting using an Olympus E-520 digital camera. They are converted into JPEG format and resized to 640x480 pixel dimensions. Even though the best lighting is using direct sunlight but we are using the controlled lighting condition because this system is planned to use in the building.

The image acquisition setup is shown in Fig.2. It consists of the camera, the diffuser and the light source.

![Image Acquisition Setup](image)

Fig. 2: The image acquisition setup

The image is captured by using a CCD camera with the angle of 50.19°. This angle is chosen because it captures a wide surface area of the sample. The setup is also equipped with an additional lighting source and a diffuser to ensure that the lighting is consistent throughout the experiment.

2.2 Background Removal
The region of interest is the fruit itself without the background. The background is the noise to the image and it has to be removed. The background subtraction method is used to remove the white background. Fig. 3 shows the result of performing the background removal.
2.3 Color Feature Extraction

The color features of the oil palm fruit are analyzed based on the RGB color model. To classify the fruit into underripe, ripe and overripe categories, we need to obtain a range of mean value of red, green and blue layer for each fruit. These ranges values are used as a reference and a range input of fuzzy logic system. A total of 75 images (i.e 25 underripe, 25 ripe and 25 overripe) are used in determining the range value of red, green and blue of each category. The mean values of red, green and blue layers are calculated using the following equations:

\[
\text{Mean}_R = \frac{R}{\text{No. of pixels}} \quad (1) \\
\text{Mean}_G = \frac{G}{\text{No. of pixels}} \quad (2) \\
\text{Mean}_B = \frac{B}{\text{No of pixels}} \quad (3)
\]

Where:
- Mean\(_R\) = Mean value of Red layer
- Mean\(_G\) = Mean value of Green layer
- Mean\(_B\) = Mean value of Blue layer
- R = Red pixel
- G = Green pixel
- B = Blue pixel

This step was individually performed on each image of the oil palm fruit. The range value (minimum and maximum) of RGB value for each category (underripe, ripe and overripe) is obtained from the above calculation. This range value is used as a reference for the fuzzy logic system in order to classify the category of the oil palm fruit.

The color of oil palm fruit was classified as underripe, ripe and overripe. These samples are shown in the Fig. 4-6, respectively.
2.4 Grading

Fuzzy Logic is a chosen method for classifying the oil palm fruit into underripe, ripe and overripe categories. This technique is selected because it represents a good approach when we want to interpret the decision making process of human to the computer. Currently, the oil palm fruit grading is done based on the experience of the human grader. This method needs to be replaced with a new approach that is able to standardize the grading process.

Fig. 7 shows the complete process of developing a fuzzy inference system (FIS) for the grading process using MATLAB[12].

The process consists of 3 main steps: defining the input and output in Membership Function Editor, set the fuzzy rules in Rule Editor and obtaining the output for each rule in Rule and Surface Viewer.

The grading system has three inputs (Red, Green and Blue) and one output (Category). The membership functions are built using trapezoidal shapes since it gives the best result compared to other shapes. A total of 17 rules statements are created in order to classify the oil palm fruit categories.

Fig. 8: The Fuzzy Inference System consists of three inputs and one output.

Fig. 9: The Membership Function representation of red input.

Fig. 10: The Membership Function representation of green input.

Fig. 11: The Membership Function representation of blue input.
The fuzzy sets produce 17 rules statements in order to classify the oil palm fruit’s category. Examples of the rules are illustrated as follows:

Table 1: Fuzzy Sets Rules For Classification

<table>
<thead>
<tr>
<th>Rule 2</th>
<th>Rule 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Red is low</td>
<td>If Red is low</td>
</tr>
<tr>
<td>And Green is low</td>
<td>And Green is high</td>
</tr>
<tr>
<td>And Blue is medium</td>
<td>And Blue is medium</td>
</tr>
<tr>
<td>Then category is Underripe</td>
<td>Then category is Ripe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rule 12</th>
<th>Rule 16</th>
</tr>
</thead>
<tbody>
<tr>
<td>If Red is medium</td>
<td>If Red is high</td>
</tr>
<tr>
<td>And Green is high</td>
<td>And Green is high</td>
</tr>
<tr>
<td>And Blue is medium</td>
<td>And Blue is medium</td>
</tr>
<tr>
<td>Then category is Ripe</td>
<td>Then category is Overripe</td>
</tr>
</tbody>
</table>

The defuzzification result where category of oil palm fruit is obtained.

Table 2: Fuzzification Algorithms

<table>
<thead>
<tr>
<th>Defuzzification Output</th>
<th>Oil Palm Fruit Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cat <= 65)</td>
<td>Underripe</td>
</tr>
<tr>
<td>(cat >= 66) && (cat <= 155)</td>
<td>Ripe</td>
</tr>
<tr>
<td>(cat >= 156)</td>
<td>Overripe</td>
</tr>
</tbody>
</table>

Based on the Defuzzification result from the Rule Viewer from Fig. 13, the oil palm fruit fulfilled Rule 12 where red is medium, green is high and blue is medium. The value of the category is calculated by using the centroid method. Then the classification of oil palm fruit is determined based on the crisp logic given in Table 2.

The value of category is 100. Therefore, the oil palm used in this experiment is classified as ripe category.
3 Results And Discussions

The grading system developed is managed to classify the oil palm fruit into underripe, ripe and overripe categories. The mean value of red, green and blue layers of 5 training data from each category is calculated and tabulated in the Fig 14. below.

![Fig. 14: RGB values for underripe, ripe and overripe of training image.](image)

The RGB values are compared with each category in order to determine the suitable range of RGB value for each category. The range values are used in the fuzzy logic system as the reference. The range is shown in the Table 3.

<table>
<thead>
<tr>
<th>Category</th>
<th>Red Min</th>
<th>Red Max</th>
<th>Green Min</th>
<th>Green Max</th>
<th>Blue Min</th>
<th>Blue Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ripe</td>
<td>127.05</td>
<td>39.26</td>
<td>59.01</td>
<td>27.34</td>
<td>48.32</td>
<td></td>
</tr>
<tr>
<td>Underripe</td>
<td>52.53</td>
<td>81.95</td>
<td>19.85</td>
<td>33.22</td>
<td>15.26</td>
<td>26.88</td>
</tr>
<tr>
<td>Overripe</td>
<td>148.34</td>
<td>179.20</td>
<td>48.73</td>
<td>74.54</td>
<td>28.33</td>
<td>50.29</td>
</tr>
</tbody>
</table>

An example of misclassification of oil palm fruit is shown in Fig. 14. Based on human graders, the fruit is classified as underripe but the program classified it as ripe category. This problem occurs because of the color of the fruit lies in between underripe and ripe categories.

![Fig. 14: The misclassification of oil palm fruit](image)

The details result of oil palm fruit classification is shown in Fig. 15. For red and green pixels, the values are lies in between two sections where this situation can misclassify the fruit.

![Fig. 15: The misclassification result from Rule Viewer](image)

In order to improve the system performance, the better range for each color needs to be obtained. The fuzzy rules need to be improved especially for the fruit that lies closely between two different categories and an additional feature that incorporate differences between the categories such as texture need to be added.
The results of the fuzzy logic system are evaluated against the human graders to measure accuracy. It shows that the automated oil palm fruit grading system using fuzzy logic achieved 86.67% accuracy in overall categories. This shows that the grading system using fuzzy logic have a high potential of accuracy in grading the oil palm fruit.

4 Conclusion
The study has proven that by using fuzzy logic algorithm, the accuracy of oil palm fruit grading is quite high. A graphical user interface was developed for the user to use the program easily. This technique begins with loading the image to the program. The image is then processed by image processing, calculated the mean RGB value and graded using fuzzy logic. The oil palm is classified based on RGB color. The results are shown on the surface viewer from the Fuzzy Toolbox. The oil palm fruit grading system can be improved by adding more training image from various places and choose the best range of RGB.

5 Acknowledgement
We would like to thank Mr Shafie Shaari and Mr Faiz Shafie for providing the oil palm fruit sample and for their full cooperation and support throughout our research project. The oil palm fruit are taken from the oil palm plantation located at Batu 4, Jalan Bidor-Teluk Intan, Perak, Malaysia.

References:

BIOGRAPHIES

Zazilah May is a lecturer in the Department of Electrical and Electronic Engineering, Universiti Teknologi Petronas (UTP), Malaysia. She graduated with BSc.(Hons) in Mathematics (1998) from University of Leicester, UK. She holds a Master degree MSc. in Advanced Control (2000) from UMIST, UK. She is currently pursuing her PhD in Electrical and Engineering at UTP. Her research areas are image processing, video surveillance, computer vision and artificial intelligence system. She can be contacted at: zazilah@petronas.com.my

Muhammad Hanif Amaran was born in Terengganu, Malaysia in 1988. He obtained his Foundation at Negeri Sembilan Matriculation College. Presently he is a FYP student under the guidance of Ms. Zazilah May in University Teknologi PETRONAS, Tronoh, Perak. B Eng (Hons) in Electrical and Electronic Engineering. Majoring in Power System and minor in Electrical Machines.