
Live Replication of Virtual Machines

VIOLETA MEDINA
Universidad Michoacana de

San Nicoĺas de Hidalgo
División de Estudios de Posgrado
Facultad de Ingenierı́a Eĺectrica

Francisco J. Ḿugica S/N,
Col. Felicitas del Ŕıo, 58030

Morelia, Mich.
MÉXICO

medinav@acm.org

JUAN MANUEL GARCÍA
Instituto Tecnoĺogico de Morelia

Computer System Department
1500 Tecnoĺogico Avenue,

Col. Lomas de Santiaguito, 58120
Morelia, Mich.

MÉXICO
jgarciagarcia@acm.org

Abstract:Replication has been identified as a useful mechanism in Virtual Machine(VM) management. Replica-
tion allows the network administrators to face some daily troubles like system faults, load balancing and sched-
uled/unscheduled maintenances. A desirable characteristic during this process is zero downtime, the replication
process should cause a minimal service interruption if a Virtual Machine becomes unavailable. Replication has
been identified as a tool to achieve high availability in a computational system. In this paper a live replication
protocol to reach high availability in services for virtual machines is proposed. It consists on replicating every
task that a virtual machine executes to other virtual machine. Each individual result that is obtained in a virtual
machine calledoriginal is also obtained in a Virtual Machine calledreplica. The protocol is based on TCP/IP. This
mechanism duplicates each command that the original virtual machine receives and sends it to the replica virtual
machine.

Key–Words:Virtual machine, replication, high availability, virtualization, TCP/IP, network.

1 Introduction

In this paper a replication protocol for virtual ma-
chines is presented.

High availability[1] has been one of the goals
of works developed for cluster environment and dis-
tributed systems[13]. The high availability systems
have proposed mechanisms, such as migration and
replication in order to achieve disponibility in com-
putational systems[9]. It is considered that the migra-
tion process in virtual machines copies the state of a
virtual machine of one physical machine to another
physical machine (state in memory, hard disk and net-
work connections), this process can completely stop
the services that a virtual machine provides. On the
other hand, the replication process can simultaneously
copy the virtual machine state to more than one place
and it is considered that the virtual machine can con-
tinue working without stopping services.

Both mechanisms have common objectives, such
as allowing load balance, fault-tolerance and hard-
ware upgrades. And both techniques along with the
above mentioned characteristics provide High Avail-
ability.

Some Virtual Machine Monitors(VMM)have cre-

ated their own migration technology and have incor-
porated it as part of their environment, such as Xen [5]
and VMWare [18]. In this kind of mechanism a run-
ning virtual machine changes its physical ubication
from one machine to another. This process should be
transparent for the virtualized environment. The origi-
nal VM should not stop its services while the machine
state is transfered to the destination virtual machine
and the downtime should be minimal when this pro-
cess is running. As a result of this process, a func-
tional virtual machine in a new location that keeps up
the original virtual machine state is expected.

Replication is a widely used technique in dis-
tributed systems, such as file systems [13] or data
bases [7], where the system is divided into different
fragments and these fragments can be copied in two
or more sites.

The protocol proposed in this paper is based on
replication, that is, the complete state of a virtual ma-
chine is replicated from one VM to another VM. For
this purpose, each operating system command that is
executed in the original virtual machine is replicated
to an image virtual machine. Virtual machines are
connected in an Ethernet local network and the data
transmission is realized via TCP/IP protocol [10, 22].

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 15

Every TCP/IP packet is captured and modified in or-
der to be transfered to an image VM. This prototype
was developed on base the replication of TCP/IP com-
mands because TCP/IP is a protocol that guarantee the
data reception through acknowlegments and delivery
package in the order in which packets were sent. Fil-
tering of TCP/IP traffic is made using thelibpcap[15]
functions. The packet injection was made by the use
of libnet[14] library.

This prototype protocol was developed and tested
using the facilities that Xen hypervisor provides in a
system composed by heterogeneous computers.

2 Related Work

Several replication and migration methods to achieve
fault-tolerance and high availability have been pro-
posed. Some of them consider storage migration and
others assume that a SAN or NAS strategy is used
among VMs. In [4] a prototype hypervisor based
in instruction set architecture replication was built.
The hypervisor coordinates a primary VM with its
backup, both execute the same sequence of instruc-
tions and produce the same results. Xen[3], one of the
most well-known open source VMM integrates in [5]
a live migration mechanism, where the memory mi-
gration of a virtual machine is based inpre-copy[17]
approach. The memory pages are iteratively copied
from a source VM to a destination VM and during
this process the source VM continues running. It is
considered to migrate the open network connections
through an unsolicited ARP reply from the migrated
host, notifying that the IP has a new location. Storage
migration is not necessary because a shared storage
form, like NASis assumed.

VMWare developed a migration mechanism
called VMotion in [18], where a memory migration
similar to Xen is followed. Apre-copy memory
scheme is used. First, the physical memory from the
source VM is copied and marked as read-only, so any
modification can be detected by the VMM. When this
process is finished modified pages by the VM in exe-
cution may exist. These pages are copied to the new
VM. This step is repeated until the remaining number
of modified pages is small (16 megabytes) or there is
a reduction in changed pages of less than 1 megabyte.

VMWare provides a Virtual Ethernet Network
Card,VNIC, as part of its virtual platform, which has
a unique MAC address within the local network. A
VNIC can be associated to one or more physical net-
work cards. Due to the VNIC has a MAC address in-
dependent of the physical MAC address, the VMs can
be moved from one host to another without stopping
services and keeping the active network connections.

This is possible, only if the new VM is opened in the
same subnet as the original machine.

In storage, VMWare assumes that the computers
are connected to a server SAN o NAS.

Internet Suspend/Resume(ISR)[12, 19] presents
a project where the complete state of a VM can be mi-
grated. ISR is based on the idea of a VMM encapsu-
lates the volatile execution state of a VM and a VMM
transfers the state of their VMs to files in the local file
system within the host machine. When a VM is sus-
pended, the volatile state is transfered to files until a
suspension point. These files, including the operat-
ing system are copied to the remote machine, where
the VM can be reassumed. The downtime depends
directly of the file size to be transfered.

In [6] an enhancement to the migration mecha-
nism of Xen is presented. This mechanism, called Re-
mus, was incorporated to Xen as a software layer that
improves live migration of VMs. It reaches high avail-
ability by replicating frequent checkpoints of a whole
active VM to a physical backup. On the backup, the
VM image persist active in memory, as a receptacle
that can become executable if a failure happens. All
modifications in the VM are stored in a buffer in the
backup host until the complete state is received and
an acknowledgement is sent to the original VM when
the checkpoint is complete. Then, the image in the
backup is considered as consistent. This checkpoint
process frequently occurs, up to forty times per sec-
ond. The checkpoint includes the network and disk
state. It is considered that more than one backup can
be preserved at the same time. Even though, this
mechanism has reached a high degree of efficiency
in the migration process, this contribution proposes
a replication protocol that can be independent of the
installed VMM and does not requiere to modify the
platform where is executed.

In [2] a detailed live migration analysis of Xen in
an cluster environment is presented and a reduction in
the iterations number in pre-copy phase is proposed
in order to optimize a High Performance Computer
environment.

A synchronization approach for VMs based in
Xen is proposed in a project calledKemari [23]. In
this project, when Kemari detects an event from the
guest domain, this domain is paused, the dirty pages
created since the last synchronization are located and
sent to the image VM. When the synchronization is
completed, Kemari unpauses the guest domain and the
event is executed in domain 0.

In [16] a live and incremental migration of VMs
has been proposed, it includes memory, CPU and
disk state migration. It is used a Three-Phase Mi-
gration (TPM) algorithm (pre-copy, freeze-and-copy,
post-copy), which is an expansion of live migration of

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 16

Xen where an Incremental Migration(IM) is used for
storage. During the pre-copy phase, the storage data
are iteratively pre-copied. In the first iteration, all the
storage data should be copied to the destination VM.
After, modified data, just during last iteration is sent
to backup VM.

In the TCP packet transmission area, in [21] a per-
formance analysis of packet path diversity is shown.
The acknowledgements (ACKs) from client to server
are duplicated and sent through two different networks
paths. The comparison between the two arrival times
to the receiver gives the best path and the data packets
can switch to a better traffic route.

3 Migration vs. Replication
In this article, the migration and replication are treated
as different concepts. Some advantages and draw-
backs are cited in the following lines.

3.1 Migration
For migration mechanism some advantages can be
mentioned as:

◦ Memory migration has reached a high degree of
sophistication and efficiency, downtime can be re-
duced just to milliseconds [2, 5] so, this process
does not affect the final user.

◦ The use of technologies of network storage likeNAS
or SANor distributed file systems allow storage mi-
gration to be considered as not necessary, due to the
fact that storage can be accessible from any point in
the network.

Migration of virtual machines can show draw-
backs like:

◦ Usually, migration is explicitly activated. If a VM
undergoes modifications after a migration process,
these changes will not be in the backup VM.

◦ The total migration time can be very high if a storage
migration is considered. This time can be directly
proportional to the storage size.

3.2 Replication

In replication, some advantages can be mentioned:

◦ The changes made to the original VM can be trans-
fered almost immediately to the destination VM.
There is no need for a explicit suspension of the
VM; the replication process can be present during
the continue execution of a virtual machine. If there
is a failure in the system, there would not be loss of
data.

◦ The data replication can be simultaneously made to
more than one machine.

◦ The modifications in local storage of a virtual ma-
chine are considered as part of the replication pro-
cess.

◦ An exact copy of a virtual machine can be reas-
sumed if a failure occurs.

◦ This process does not require shared storage, then
replicas could be stored in remote networks.

It can be mentioned that the most important dif-
ference between a migration and a replication process
is that migration requires that the original VM remains
available during most of the process, while the repli-
cation process allows that any replica VM becomes
active and assumes the place of the original VM. So,
the replication process could be executed from the
new original VM due to all copies contain the same
state.

On the other hand, some disadvantages can be
listed:

◦ If the number of replicas grows up, this can cause
traffic network, due to sending/receiving of many
copies of the same data through the network.

◦ Complicated synchronization protocols must be im-
plemented to maintain the data consistency.

4 Protocol
In this section a description of the proposed replica-
tion protocol, the experimental environment and the
obtained results are presented.

4.1 Protocol description

This contribution proposes the design and implemen-
tation of a replication protocol of virtual machines. In
the first part of this section, a general ideal of the pro-
tocol is described and in the second part, the specific
implementation is explained.

4.1.1 Protocol idea

It is considered that a computerA exists, which is ex-
changing information with a computer calledB. The
machineA can modify the complete state of the ma-
chineB through remote commands. There is a third
machine called C, which initially has the same state
of B. The protocol will duplicate every action on B to
C. The process of replication is transparent forC and
it assumes that is working directly withA.

In a general way, the operation of the replication
protocol is illustrated in Figure 1.

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 17

Protocol
Program

B

A

(1)

(5)

(2)

C

(7)
(3)

(6)

(4)

Figure 1: Replication Protocol

The protocol operates as follows:

1. A remote command is launched from the com-
puterA, having as destination the computerB.

2. Package filtering is applied and if a package with
B’s destination is detected, this package is dupli-
cated and sent to a waiting queue, where it will
wait until can take its correct place within a com-
munication conversation betweenA andC.

3. The caught package is extracted from the queue.
Depending on the protocol package, the required
fields are changed. And the modified package is
sent to computerC.

4. ComputerB returns an answer toA. This package
does not suffer any changes.

5. The package continues its normal path and is re-
ceived byA.

6. ComputerC sends a response package.

7. The answer fromC is captured and dropped in
order to avoid that the conversation betweenA
anC could be reseted.

This prototype protocol will only capture Local
Area Network traffic, hence packets directed to B can
always be intercepted. Within the LAN can exist more
than one computer that assumes the role of computer
A. The error recovery philosophy of the proposed
protocol replication is based on TCP/IP mechanisms
to establish a reliable communication between hosts.
TCP[10] is able to recover corrupted data, data loss,
duplicated information or packets out of order. This
prototype as TCP assigns a unique sequence number
to each packet that will be transmitted to the replica
VM and requires an acknowledgement (ACK) from
the receiving VM. If the ACK is not received within
a timeout, the packet is retransmitted by TCP/IP pro-
tocol. On base to the sequence numbers, the receptor
can control the correct order in segments that may be
received out of order and eliminate duplicated pack-
ets. The proposed protocol implements a flow con-
trol mechanism through a “sliding window”[11]. The

number of bytes sent and received by the client and
server of the replica conversation are counted and ac-
cording to this byte account some pointers within the
structure of the sliding window are modified, these
pointers save information about bytes sent and ac-
knowledged, or bytes sent but not yet acknowledged
for both the sender and the receiver. The sliding win-
dow indicates the next sequence number that should
be sent and the next sequence number that should be
received.

Damaged data is detected by adding a checksum
to each segment transmitted. The checksum is verified
by the receiver, and discarded if a error in this field is
found.

4.1.2 Protocol Implementation

The protocol performs a copy of each remote com-
mand executed on the original virtual machine and
replicates these operations on a virtual machine called
replica.

The final objective of this protocol is to maintain
a state of complete equality of a VM, including mem-
ory, local storage disk and network connections in
other VM. TCP/IP based commands can be replicated
with this protocol from aoriginal VM to a replica
VM.

In the implementation of this protocol two open
source libraries were used,Libnet[14] and Libp-
cap[15]. Libnet includes functions and procedures of
network that provide access to several protocols. It al-
lows the injection and modification to network pack-
ages in protocols like IP, TCP, UDP, IGMP, etc. Libp-
cap is an open source library written in C language,
it offers an interface able to capture packages in the
network layer and package filtering in a similar way
to the system operating command, as tcpdump does.

Figure 2 shows the actual prototype and the im-
plementation of this protocol can be described with
the following steps. The replication protocol pro-
gram was installed in a real machine from where re-
mote commands were launched. These instructions
had as destination the virtual machine calledoriginal.
The packages sent by the real machine to theorigi-
nal virtual machine were captured and some fields in
IP header and others that belong to TCP header were
modified in order to change the final destination of the
package (replicaVM). In the IP header, the original
destination address of the packet was replaced by the
IP address of thereplicavirtual machine.

The TCP header undergoes modifications in the
fields sequence number and acknowledgement num-
ber, which were calculated with RFC 793[10]. The
connection is established according to TCP the three-
way handshake and the replica conversation follows

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 18

Real Machine
192.168.1.1

Original Virtual Machine
192.168.1.2

Replica Virtual Machine
192.168.1.3

A remote command is
launched from a real

machine and executed on
the original virtual machine

The replication program duplicates the
remote command sent to the original VM
and as a result, the remote command is

executed on the replica VM too.

Replication
Program

Figure 2: Replication scheme

the following steps:

1. A SYN package is sent from the real machine
to the original VM. So, the replicated package
has the same sequence number as the commu-
nication conversation between the real machine
and the original machine. The acknowledgement
number is initialized to zero.

2. As second step, the server(replica VM) replies
with a SYN+ACK. The sequence number in
the original and replica conversation are random
numbers, which are different between them. The
acknowledgement number in both conversations
is set to one more than the sequence number in
step 1.

3. In the third step, an ACK is sent by the client
(real machine). In both conversations, the se-
quence number is equal to acknowledgement
number of the package in step 2 and the ACK
number is set to the sequence number of step 2
plus 1.

During the replica conversation, the order in
which the data is sent in the original information trans-
fer is not modified, but taking as reference the origi-
nal conversation, some ACK packages can be inserted
or deleted in the replica conversation according to the
data that must be acknowledged by the replica VM.

Due to the modifications in other fields, the
checksum was recalculated with a TCP pseudoheader
as is indicated in RFC 793. In TCP options field, the
values, timestamp value(TSval)and timestamp echo
replay (TSecr)were modified to be recognized as a
valid package.

In the real machine, a rule for dropping packages
from replica VM is added withiptables, in order to
avoid that packages from replica could be reseted dur-
ing the replication process.

A package filtering is applied to the traffic net-
work and just the packages that belong to the TCP

protocol and a conversation between the real machine
and theoriginal VM or between the real machine and
thereplicaVM are caught.

In Figure 3 a flowchart of the general operation of
the replication protocol program is shown.

5 Evaluation
In next section, the experimental environment is de-
scribed and test cases of the proposed protocol are
presented.

5.1 Experimental environment

Two machines were used for the tests to be reported
next. A server with two Xeon quad-core 2.0 GHz, 3
GB RAM and a hard disk of 72GB was used. The base
system operating was Debian 4.0, and the hypervisor
Xen 3.1.3. The other computer was a laptop with Pen-
tium M processor, 2 GB RAM, a hard disk of 80 GB,
and base system operating Debian 4.0. Two virtual
machines with the same characteristics were config-
ured. Both have as guest system operating to Ubuntu
8.04, 512 MB of RAM memory and 2 GB in storage.
Besides, the software environment in both VMs was
identical.

5.2 Test Case 1. Consistency

The first test case was focused on verifying the replica
consistency. For this purpose, the following test was
made. In a Local Area Network, a real machine with
IP address192.168.1.1 launched remote com-
mands, the final destination of these commands was a
virtual machine with IP address192.168.1.2 and
the replication program caught and reproduced them,
in a virtual machine with IP address192.168.1.3.
Remote commands were executed withrsh (Remote
Shell). As requirement, the virtual machine to where
the command is directed must have the rshd demon
running. This demon uses the TCP port 514.

The real machine can execute remote commands
like copy of files, change the access mode of a file,
change the owner of a file, create or delete a file, etc.

For this case, an installation of the Web Server
Apache [8] using remote commands on the original
VM machine and its replication to the replica VM was
realized.

The installation of Apache was achieved by a se-
quence of commands shown in Table 1.

Before the execution of this test, in each VM the
open source applicationTripwire[20] was installed.
This tool is useful for monitoring integrity and data
security, because it alerts about the changes in specific

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 19

Package filtering

TCP package?

IP source ==
real machine's IP

AND
IP destination ==
original VM's IP

Duplicate package

Save package in a waiting
queue

Pending data bytes
by receive == 0

AND
NO pending ACK

Extract a package from
waiting queue

Modify necessary fields in
IP and TCP headers

Send package into the wire
with IP destination ==

replica VM 's IP

Modify pointers in the TCP
sliding window data
transfer of replica

conversation

IP source ==
original VM's IP

AND
IP destination ==
real machine's IP

Increment number of pending
data bytes by receive OR
pending ACK according to

TCP flags

IP source ==
replica VM's IP

AND
IP destination ==
real machine's IP

Decrement number of
pending data bytes by receive
OR pending ACK according to

TCP flags

IP source ==
real machine's IP

AND
IP destination ==
replica VM's IP

Modify pointers in the TCP
sliding window data transfer of

replica conversation

Pending data bytes
by receive == 0

AND
NO pending ACK

Extract a package from
waiting queue

Modify necessary fields in
IP and TCP headers

Send package into the wire
with IP destination ==

replica VM 's IP

Data bytes
received number >=

Data bytes number of actual
package

Pending data bytes
by receive == 0

AND
NO pending ACK

Extract a package from
waiting queue

Modify necessary fields in
IP and TCP headers

Send package into the wire
with IP destination ==

replica VM 's IP

Start

NoNo NoNo

YesYes

Yes Yes

Yes

No

No

Yes

No

Yes Yes

Yes

Ignore package

No

No

Figure 3: Replication protocol flowchart program

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 20

Table 1: rsh commands
Remote commands

rsh 192.168.1.2 /root/configure
rsh 192.168.1.2 make -C /root

rsh 192.168.1.2 make install -C /root
rsh 192.168.1.2 /usr/local/apache2/bin/apachectl start

files inside the system.Tripwire works as a intrusion
detection system, but instead of detecting intrusions in
level of network layer,tripwire detects changes in the
objects of the file system.

When tripwire initialize its database, the appli-
cation scans the complete file system and stores in-
formation in the database about each file. After the
database has been created, the registered files will be
reviewed and the result obtained will be compared
against the values saved in the database. If there
are changes, it is reported to the user. Cryptographic
hashes are used to detect modifications in a file with-
out saving the whole content of a file in the database.

Thus, before the execution of the remote com-
mands, the file system state was registered in thetrip-
wire database of both VMs (original and replica). This
first register was considered as a consistent state in
both machines, that is the reason because the registers
were initialized to zero. After the remote commands
execution, the integrity was reviewed again withtrip-
wire.

Since the replication program was running, the re-
mote command was executed in the image VM too.

Two registers from tripwire in the original and
replica VMs were obtained. From the comparison of
both, it can be observed that after the execution of the
remote commands on theoriginal VM, there were re-
ported changes in the Root configuration. There was
detected the addition and modification of files due to
the installation of Apache. These modifications were
also shown in thereplica VM. Table 2 presents some
lines taken from the integrity check report oftripwire
in the replica VM.

Table 2: Changes in configuration files of the replica
VM according totripwire reports
Rule name Added Removed Modified
Root config files(initial) 0 0 2
Root config files(final) 779 0 213

These rows reveal some changes detected accord-
ing to the tripwire policy rule for root configuration
(*Root config files). It can be observed that thereplica
VM suffered several changes in comparison with the
initial report, however these changes were also re-

ported in the original virtual machine. Therefore, the
states of both VMs are consistent. The changes that
took place in theoriginal VM were reflected in the
replicavirtual machine.

5.3 Test Case 2. Performance

The same installation of Apache has been replied to
more than one VM. In Table 3 the average time that
every command that is part of the installation is illus-
tred.

Table 3: Average times in Apache installation with
several replicas (sec.)
#Rep configure make make install apachectl

0 41.68 122.26 10.79 0.03
1 42.38 122.80 11.48 0.07
2 43.59 123.80 12.22 0.12
3 44.93 124.46 12.14 0.17
4 53.33 126.92 17.23 0.47

In Table 4 the latency in relation to the results
without replicas is shown. It can be observed that in
the most critical case the latency can increase until
97.11% in relation to the spent time in the installa-
tion without replicas, but this command is executed in
hundredths of a second without replicas and the time
increases to almost a half of a second, which can be
considered acceptable.

Table 4: Latency
#Rep configure make make install apachectl

1 1.65% 0.44% 6.00% 56.82%
2 4.37% 1.25% 11.72% 74.59%
3 7.23% 1.77% 11.14% 81.91%
4 21.85% 3.68% 37.38% 93.40%

6 Conclusion and future work
A prototype of a replication protocol able to duplicate
commands based on TCP/IP protocol has been imple-
mented. The protocol replicates commands under the
rsh (Remote Shell)protocol in a backup VM with-
out interrupting the services in the active VMs. The
protocol synchronizes sending/receiving of packages
in both TCP/IP conversations and the communication
can be done without loss of information. Modifica-
tion in local storage in VMs can be replicated with
this protocol eliminating the necessity of a kind of
network storage. This prototype can be applied to
produce more than one replica VM, where network

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 21

latency by queuing and processing delays can be ob-
served, but in the best case can be noticed that latency
increases just 3.68% with 4 replicas.

As future work, tests in a Wide Area Network
are considered and because the latency is expected
to grow, the use of techniques of parallel program-
ming, like multithreading to reduce latency are con-
templated. The addition of encrypted protocols, such
as ssh (Secure shell) is considered as an immediate
improvement. As a future work the construction of a
ssh tunnel between virtual machines, in order to per-
form secure transfers, will be incorporated.

References:

[1] T. Adelstein, F. Timme, and B. Lubanovic.Linux
System Administration. O’Reilly Media, Inc.,
2007.

[2] M. Atif and P. Strazdins. Optimizing live migra-
tion of virtual machines in smp clusters for hpc
applications. Network and Parallel Computing
Workshops, IFIP International Conference on,
0:51–58, 2009.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization.
In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems prin-
ciples, pages 164–177, New York, NY, USA,
2003. ACM.

[4] T. C. Bressoud and F. B. Schneider. Hypervisor-
based fault tolerance. ACM Trans. Comput.
Syst., 14(1):80–107, 1996.

[5] C. Clark, K. Fraser, S. Hand, J. G. Hansen,
E. Jul, C. Limpach, I. Pratt, and A. Warfield.
Live migration of virtual machines. InNSDI’05:
Proceedings of the 2nd conference on Sympo-
sium on Networked Systems Design & Imple-
mentation, pages 273–286, Berkeley, CA, USA,
2005. USENIX Association.

[6] B. Cully, G. Lefebvre, D. Meyer, M. Fee-
ley, N. Hutchinson, and A. Warfield. Remus:
high availability via asynchronous virtual ma-
chine replication. InNSDI’08: Proceedings of
the 5th USENIX Symposium on Networked Sys-
tems Design and Implementation, pages 161–
174, Berkeley, CA, USA, 2008. USENIX Asso-
ciation.

[7] A. Downing, I. Greenberg, and T. Lunt. Issues
in distributed database security. InComputer Se-

curity Applications Conference, 1989., Fifth An-
nual, pages 196–203, Dec 1989.

[8] T. A. S. Foundation. The apache software foun-
dation. http://www.apache.org/, 2010.

[9] R. Hurley and S. A. Yeap. File migration and file
replication: a symbiotic relationship.Parallel
and Distributed Systems, IEEE Transactions on,
7(6):578–586, Jun 1996.

[10] I. S. Institute. RFC 793, sep 1981. Edited
by Jon Postel. Available at http://www.rfc-
es.org/rfc/rfc0793-es.txt.

[11] V. Jacobson, R. Braden, and D. Borman. Tcp
extensions for high performance, 1992.

[12] M. Kozuch and M. Satyanarayanan. Internet sus-
pend/resume. InWMCSA ’02: Proceedings of
the Fourth IEEE Workshop on Mobile Comput-
ing Systems and Applications, page 40, Wash-
ington, DC, USA, 2002. IEEE Computer Soci-
ety.

[13] E. Levy and A. Silberschatz. Distributed file sys-
tems: concepts and examples.ACM Comput.
Surv., 22(4):321–374, 1990.

[14] Libnet. Libnet home page.
http://libnet.sourceforge.net/libnet.html, 1999.

[15] Libpcap. Tcpdump libpcap public repository.
http://www.tcpdump.org/, 2009.

[16] Y. Luo, B. Zhang, X. Wang, Z. Wang, Y. Sun,
and H. Chen. Live and incremental whole-
system migration of virtual machines using
block-bitmap. Cluster Computing, 2008 IEEE
International Conference on, pages 99 –106, 29
2008-Oct. 1 2008.

[17] D. S. Milojičić, F. Douglis, Y. Paindaveine,
R. Wheeler, and S. Zhou. Process migration.
ACM Comput. Surv., 32(3):241–299, 2000.

[18] M. Nelson, B.-H. Lim, and G. Hutchins. Fast
transparent migration for virtual machines. In
ATEC ’05: Proceedings of the annual con-
ference on USENIX Annual Technical Confer-
ence, pages 25–25, Berkeley, CA, USA, 2005.
USENIX Association.

[19] M. Satyanarayanan, B. Gilbert, M. Toups, N. To-
lia, D. O’Hallaron, A. Surie, A. Wolbach,
J. Harkes, A. Perrig, D. Farber, M. Kozuch,
C. Helfrich, P. Nath, and H. Lagar-Cavilla. Per-
vasive personal computing in an internet sus-
pend/resume system.Internet Computing, IEEE,
11(2):16–25, March-April 2007.

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 22

[20] SourceForge. Open source tripwire.
http://sourceforge.net/projects/tripwire/, 2010.

[21] E. G. Steinbach, Y. J. Liang, and B. Girod. A
simulation study of packet path diversity for tcp
file transfer and media transport on the internet.
In in Tyrrhenian International Workshop on Dig-
ital Communication (IWDC, pages 67–70, 2002.

[22] W. R. Stevens.TCP/IP illustrated (vol. 1): the
protocols. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1993.

[23] Y. Tamura. Kemari: Virtual machine synchro-
nization for fault tolerance using domt.Xen
Summit, June 2008.

Recent Researches in Software Engineering, Parallel and Distributed Systems

ISBN: 978-960-474-277-6 23

