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Abstract: - This contribution is focused on computation of stability regions for Proportional-Integral-Derivative (PID) 
controllers. The area of possible placement of the controller parameters which guarantee feedback stabilization of a 
controlled plant is obtained via plotting the stability boundary locus. This approach is subsequently combined with the 
desired model method which is used for final controller design. The applicability of the technique is demonstrated on 
an example where a third order electronic laboratory model is successfully controlled. 
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1   Introduction 
Over 95% of contemporary practical industrial 
applications use PID (or PI as a special case) control 
algorithms [1], [2] and thus the appropriate PI(D) control 
design is still very topical especially for systems under 
some nonlinearities, perturbations or time-variant 
behaviour. Without any doubts, the absolutely primary 
and essential requirement is the stability of closed 
control loop. 
     There is an array of techniques to computation of 
stabilizing PI(D) controllers in the literature such as 
calculations presented in [3], stability boundary 
approach from [4], [5] or Kronecker summation method 
published in [6]. However, all those tools solve “only” 
the problem of finding the area of all possible stabilizing 
variations of PI(D) controller parameters. For the control 
design itself, potentially with additional safety or 
performance specifications, another method has to be 
utilized. For the purpose of this paper, the desired model 
method, formerly known as inversion dynamics method, 
has been applied [7]. 
     This paper presents the PID controller design using 
the combination of preliminary stability regions 
computation via stability boundary locus approach and 
consequent suitable parameters tuning with the 
assistance of the desired model method. The efficiency 
of the studied technique has been verified through a 
simulation example where the third order electronic 
laboratory model has been successfully stabilized and 
controlled. 
     The work is organized as follows. In Section 2, the 
basic ideas and rules for computation of stabilizing 
regions for PID controllers are described. The Section 3 
than presents the stabilization of the electronic 

laboratory model. Further, the specific controller design 
along with its simulative verification is provided in 
Section 4. And finally, Section 5 offers some conclusion 
remarks. 
 
 
2   Computation of Stabilizing Regions 
The primary and essential step is to determine the 
parameters of the PID controller which guarantee 
stabilization of the feedback control loop containing the 
plant: 
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One of the possible approaches has been published in 
[4], [5]. It is based on plotting the stability boundary 
locus. First, the substitution s jω=  in the transfer 
function (1) and subsequent decomposition of the 
numerator and denominator into their even and odd parts 
lead to: 
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Then, the expression of closed-loop characteristic 
polynomial and equaling the real and imaginary parts to 
zero result in the relations for proportional and integral 
gains: 
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Simultaneous solution of equations (4) and plotting the 
obtained values into the ( ), ,P I Dk k k  space define the 
stability boundary locus. 
     As can be noticed, the last two terms and thus also the 
parameters kP and kI depend on derivative constant kD, 
which is practically considered to be chosen and fixed 
for one set of calculations. In other words, kD is preset 
and corresponding set of boundary parameters kP, kI is 
computed. The obtained curve splits the ( ),P Ik k  plane 
into the stable and unstable regions. The selection of the 
stabilizing/unstabilizing areas can be performed through 
a test point within each region. The final stability 
region(s) are consequently plotted via the “ ( ),P Ik k  
slices” into the ( ), ,P I Dk k k  space. 
     The computation process is going to be illustrated in 
the following example. 
 
 
3   Stabilization of an Electronic Model 
The laboratory plant in the form of electronic model has 
been considered as a controlled system. Its transfer 
function adopted from [8], [9] can be written as: 
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It means that the even and odd parts in (3) are: 
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     In the first instance, the derivative gain kD was fixed 
to 1 and then the relations (5) and (4) were computed for 
a range of nonnegative frequencies. The corresponding 
( ),P Ik k  pairs are plotted in fig. 1. The stabilizing area 

lies inside the depicted shape as can be easily verified 
using an arbitrary ( ),P Ik k  from this region and testing 
the closed-loop characteristic polynomial stability. 
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Fig. 1: Stability region for 1Dk =  

 
     Afterward, the stability regions were computed and 
visualized for 11 equally spaced kD from 0 to 10. The 
result is shown in fig. 2. 
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Fig. 2: Stability regions for 0,10Dk ∈  
 
     Thus, all the variations of PID controller parameters 
which are located inside the shape defined by stability 
regions from fig. 2 ensure the feedback stabilization of 
the plant (6). 
 
 
4   Control Experiment 
Now, the natural question follows. How to choose the 
controller with desired performance from the pre-
calculated stabilizing pool? In fact, the paper does not 
attempt to bring any novel control design method, but 
utilizes an existing one and combines it with the 
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previous stabilizing approach. From the number of 
available techniques, the desired model method 
(formerly known as inversion dynamics method) [7] was 
applied. 
     First of all, the appropriate mathematical model of the 
controlled plant is requested. For that reason, the third 
order transfer function (6) can be simply approximated 
by the second order one as: 
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which corresponds with the one of desired transfer 
function forms: 
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     The controller tuning is handled through the choice of 
closed control loop time constant Tw. Here, it was 
adjusted to: 

 [ ]20 secwT =  (11) 

The parameters of the controller: 
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can be calculated according to: 

 

2 22

0.3761

6.25
2

I

I
P

w

D

T T
TK

KT
TT

ξ

ξ

= =

= =

= =

 (13) 

Thus, the final parameters of the controller in the form 
(2) are: 
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Thanks to the fact that this variation of parameters lies 
inside the stability region from fig. 2, the obtained PID 

controller stabilizes the original plant (6). The actual 
control behaviour can be found in fig. 3. 
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Fig. 3: Control of plant (6) using PID controller (14) 

 
Such control result should be appropriate for most of 
common industrial applications. 
 
 
5   Conclusions 
The paper has dealt with computation of stability regions 
for ideal PID controllers. The combination of pre-
computing the stabilizing areas and designing the PID 
controller which lies inside it represents relatively easy 
but effective way of obtaining the stabilizing PID 
controller with acceptable performance. The future 
extension of this research should be focused on robust 
stabilization under parameter perturbations in controlled 
plant. 
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