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Abstract: - We study the problem of an electron confined in a semiconductor quantum dot shaped as a square-
base pyramid, assuming specular reflection of a particle from quantum dot boundaries. The application of boun-
dary condition equals the wave function in an arbitrary point inside the dot with its image formed in the walls, 
allowing to find wave the functions and energy spectra of the particle. The comparison of the resulting energies 
with published experimental data shows reasonable agreement between the theory and the experiment. 
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1   Introduction 
Quantum dots (QDs) take a central place in modern 
material science. Among these, pyramidal-shaped 
formations have a special importance as they appear 
in semiconductor devices of different kinds, such as 
lasers [1], photonic crystals [2], solar cells [3], etc. 

Naturally, formations with such a well-defined geo-
metry should significantly influence the energy 
spectrum of the electron. Even roughly-pyramidal 
shapes formed on CdSe annealed surfaces change 
considerably the optical spectra of the material [4], 
making it timely and important to study the problem 
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of an electron concealed in pyramid-shape quantum 
dots. 
     The solution of the Schrödinger equation for this 
geometry is complicated, because even in the two-
dimensional case Laplace’s equation becomes non-
analytical in the vicinity of certain corner angles [5], 
so that the system can be studied only numerically. 
Currently, there was a considerable progress in finite 
volume modeling of square-based pyramid with the 
Jacobi-Davidson method [6]. A similar simulation 
technique was applied in [7] to a truncated pyramid 
made of InP, covered with InAs quantum dots. 
However, it is extremely important and interesting to 
find analytical solutions of the problem, even if this 
would lack several states due to restrictions of non-
analyticity. 
     To tackle similar problems we proposed mirror-
reflection boundary conditions, which were useful for 
the solution of the Schrödinger equation for triangular 
and hexagonal dots [8]. The idea of the method con-
sists in a specular reflection of the particle wave-
function from the sides of the quantum dot, forming a 
standing wave pattern. It should be noted that the 
concept of particle reflection from the boundary of 
the nanostructure is evidently favorable for the 
effective mass approximation, because it increases 
the effective path of a particle in the semiconductor 
material. 
     According to Refs. [8, 9], the treatment of QD 
boundaries as mirrors allows to equalize the Ψ-func-
tions for a point inside the dot and its image by the 
absolute value, because the physical meaning of the 
wave function is associated with Ψ*Ψ. Thus, we can 
introduce even and odd mirror boundary conditions 
depending if the wave function sign is allowed to 
change or not. The case of odd boundary condition is 
equivalent to impenetrable walls, making the Ψ-func-
tion vanish at the boundary. Evidently, this situation 
corresponds to the case of strong quantum confine-
ment. The even mirror boundary conditions describe 
the milder case of weak confinement, when a particle 
can penetrate into the barrier (with non-vanishing Ψ 
at the boundary) and return into the confined volume 
afterwards. In this paper, we will focus on even mir-
ror boundary conditions. 
 

 

2   Theoretical Model 
Let us consider a pyramid with a square base a×a and 
a height a/2, Fig. 1. The figure also shows the central 
cross-section of the pyramid with an arbitrary point 
within it and reflections thereof in the sides of the 
pyramid. To solve the Schrödinger equation, we will 
consider a set of successive reflections of a plane 

wave propagating perpendicularly to the planes 
delimiting the quantum dot. 

 
Fig. 1. Pyramidal quantum dot with square base; the 
right panel shows its central cross-section (including 
z-axis) with original (filled) and reflected (hollow) 
points marked. 
 
The conditions applied to the wave function vary 
with reflection plane. For the base plane z=0 they are 
 

),,(),,( zyxzyx −Ψ=Ψ .  (1) 

 
For the side planes ± x + z = a/2 they are 
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for the planes y + z = a/2 and –y + z = 0 they are 
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Let us consider a Ψ-function describing a wave pro-
pagating along the z-axis with wave vector k = –k ez. 
This wave will get reflected from the base of the 
pyramid in the direction of +ez. The two waves 
further reflect from the planes ± x + z = a/2 and ± y + 
z = a/2 along the directions ±ex and ±ey, respectively. 
     The resulting Ψ-function can be found as a linear 
combination of the aforementioned waves: 
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From Eq. (1) it follows that F = E; similarly, by 
applying boundary conditions (2) one will obtain E = 
B exp (–ika/2) = A exp (–ika/2) and F = A exp(ika/2) 
= B exp(ika/2). The conditions (3) imply that E = D 
exp(–ika/2) = C exp(–ika/2) and F = C exp(ika/2) = D 
exp(ika/2). The coefficients can then be expressed as 
A = B = C = D = N exp(±ika/2)/2 and E = F = N/2 for 
any arbitrary amplitude N. The quantization condition 
exp(ika/2) = exp (–ika/2) is equivalent to exp(ika) = 
1, yielding the wave number k = 2πn/a. The solution 
is therefore given by 
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with the corresponding energy 
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For the sake of presentation simplicity, we denote the 
effective mass of the particle as m in (6) and the 
further expressions for the energy. 
     Alternatively, one considers a wave propagating 
normal to the plane x + z = a/2 with wave vector k = 
(ex + ez)/√2. The reflected wave undergoes another 
reflection from the pyramid’s base z = 0, resulting in 
k = ±(–ex + ez)/√2, normal to the plane – x + z = a/2. 
These four waves reflect from the planes ± y + z = 
a/2, yielding the wave vectors ± (ey + ez)/√2, ± (– ey + 
ez)/√2, ± (ex + ey)/√2 and ± (– ex + ey)/√2. 
     The final Ψ-function describing the system can be 
found as linear combination of those participating 
waves: 
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where k is the absolute value of the wave vector. 
     Proceeding as before, we use Eq. (1) to obtain A–1 
= A1, A–2 = A2, B–1 = B1, B–2 = B2. From boundary 
conditions (2) it follows that: 

B–2 = B1exp(ika/√2), C1 = A–1exp(–ika/√8),  
C2 = A–2exp(–ika/√8), C3 = A1exp(ika/√8),  
C4 = A2exp(–ika/√8), 

and  
B2 = B–1exp(–ika/√2), C1 = A1exp(ika/√8),  
C2 = A2exp(ika/√8), C3 = A–1exp(–ika/√8),  
C4 = A–2exp(–ika/√8).  

Finally, from Equations (3) one will obtain  
A–2 = A1exp(ika/√2), C1 = B–1exp(ika/√8),  
C2 = B1exp(ika/√8), C3 = B–2exp(–ika/√8),  
C4 = B2exp(–ika/√8),  

and  
A–1 = A2exp(ika/√2), C1 = B1exp(ika/√8), 
C2 = B–1exp(–ika/√8), C3 = B2exp(ika/√8), 
C4 = B–2exp(–ika/√8). 

     The coefficients in Eq. (7) express as A–1 = A1 =  
A–2 = A2 = B–1 = B1 = B–2 = B2 = N exp(±ika/√8)/2  
and C1 = C2 = C3 = C4 = N/4, for any arbitrary value 

of N. The quantization condition is exp(ika/√8) = 
exp(–ika/√8), equivalent to exp(ika/√2) = 1, leading 
to k/√2 = 2πn/a. 
     Therefore, the solution for the wave propagating 
normal to a side of the pyramid is: 
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with the energy of the particle 
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     It should be noted that in the two-dimensional 
analog of the studied QD (quantum well shaped as a 
bilateral rectangular triangle) the energy is described 
by the same expression (9) and the wave function re-
presents a particular solution mentioned above; Ref. 
[12] shows good correlation of calculated energy 
spectra with the experimental data. The largest length 
of de Broglie wave (for the smallest wave vector, n = 
1) is  λmax = a/√2, which corresponds to a standing 
wave normal to the sides and reflected at 45° from 
the bottom of the triangle. 
 
 

3   Discussion 
It is convenient to compare the current results with 
those published in Ref. [9], which uses the similar 
methodology to solve the Schrödinger equation for 
quantum dots shaped as rectangular prism and a 
sphere. In the case of a prism with sides a, b and c, 
the energy spectrum is the same as that obtained in 
the classic approach of impenetrable walls (although 
the form of the wave function is different): 
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For a spherical QD with diameter a, the energy spect-
rum obtained with mirror boundary conditions is 
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In the classical solution for a sphere with impenet-
rable surface the coefficient h2/8ma

2 is multiplied by 
squares of even integers, whereas in (10) these are 
odd integers. 
     Besides, in Ref. [12] we obtained an expression 
similar to (9) for the energy of a particle confined in a 
pyramid with the base representing an equilateral tri-
angle with side a and height a√6 (the pyramid formed 
by the planes x = 0, y = 0, z = 0, and x + y + z = a/√2 
in Cartesian coordinates): 
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     In all cases studied the energy spectrum of a par-
ticle is proportional to the square of quantum num-
bers and inversely proportional to the square of the 
QD size; the wave functions are considerably diffe-
rent for each particular geometry. It appears that the 
position of the lowest level and the separation 
between the levels is larger for the case of a 
pyramidal QD in comparison with other geometries. 
To verify this, we consider a rectangular prism with a 
square base (a = c) and the height b = a/2. From 
Equation (9) it follows that 
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which corresponds to a higher energy scale, similar to 
the effect observed for the particle energy of a pyra-
midal dot. Comparing the energy expressions for 
different QDs, we see that the smaller volume of the 
dot leads to higher particle energy. 
     Since the formula for the energy spectra obtained 
with mirror boundary conditions is not different from 
that obtained with traditional solution methodology, 
one can use the classification scheme developed for 
quantum confinements types [13, 14]. The case of 
strong confinement is defined by the criterion a/2 << 
aB, the Bohr radius for an exciton: 
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    Here me,h are the effective masses for electron/hole 
and ε is a dielectric constant of the material. Follo-
wing Refs. [13, 14], one can introduce the effective 
mass of the carriers m directly into the expressions 
for the energy spectra. We also considered the ap-
parent “increase” of QD size due to multiple reflec-
tions from its walls. The separation between quantum 
levels is about ħ

2
/ma

2, which makes the Coulomb 
interaction energy e

2/εa negligible. Therefore, the 

energy spectrum of a particle will be defined only by 
the quantum confinement effect. 
      Among the experimental investigations of pyra-
midal QDs, many publications are dedicated to InAs 
dots with strong confinement (as it follows from their 
energy spectra [11, 15-21]). In particular, the 
influence of QD aspect ratio (relation between 
pyramid’s height and base length) upon the energy 
levels was reported in [15] for InAs dots grown on 
GaAs substrate by MBE technique. The obtained 
structures were characterized with base a = 12 ± 1nm 
in width. The height taken from cross-section TEM 
images is about 5 nm for the sample that we 
designate QD1 and 10 nm for the samples QD3. 
These data were used for numerical estimations with 
Formula (9) for QD1-type samples. For the sample 
QD3 one should expect smaller level separation due 
to the larger height of the quantum dot. The material 
parameters used in our calculations [22] are as 
follows: me/m0 = 0.023, mh/m0 = 0.42, ε = 12, Eg = 
0.36 eV. The calculated Bohr radius for an exciton is 
29 nm (exceeding QD dimensions), validating the 
strong confinement criterion. In the effective mass 
approximation, one should use the expression for the 
shift of optical absorption relative to band gap  
 

∆E = ħω01 − Eg = h
2
/µa

2,  (15) 
 
rendering ∆E = 0.952 eV for the sample QD1. The 
corresponding experimental results reported in Ref. 
[15] are 0.865 eV for QD1 and 0.71 eV for QD3. 
Taking into account possible errors in estimation of 
the pyramids’ height from the TEM data, one obtains 
a reasonable agreement between the experiment and 
theoretical predictions. It is worth noting that the con-
finement effect is pronounced (the difference bet-
ween the exciton energy and the band gap is two – 
three times larger than the band gap itself), but yields 
smaller values than those reported in the literature. 
     The series of experimental data refers to inverted 
pyramids made of GaAs [1, 23-24] showing intercon-
nected quantum structures (QDs, wires and wells), 
including a pyramid. The exact dimensions of these 
formations are not specified, but the pattern of 
inverted pyramids has a pitch of 300 to 500 nm. The 
pyramids have triangular base, so that the expression 
(12) can be used. The emission line corresponding to 
the ground state of an exciton at 10K has the energy 
of 1.553eV, confirming week confinement effect. 
Using the parameters of GaAs (Eg(10K) = 1.52eV 
and effective mass of the exciton 0.056 m0) with 
formula (12), one can calculate the length of 
pyramid’s base as a = 52 nm, which correlates well 
with the scale of the whole structure. 
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4   Conclusion 
The mirror-type boundary conditions proved to be a 
simple and reliable approach in the solution of the 
Schrödinger equation for electrons confined in 
quantum dots of pyramidal shape. Our theoretical 
predictions were compared to experimental data, 
showing a reasonable agreement of the data. 
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