
Implementation and Application of a Simple Real-time OS for 8-bit

Microcontrollers

DOLINAY J., VAŠEK V., DOSTÁLEK P.
Department of Automation and Control Engineering

Tomas Bata University in Zlin, Faculty of Applied Informatics
Nad Stráněmi 4511, 760 05 Zlín

CZECH REPUBLIC
dolinay@fai.utb.cz http://www.fai.utb.cz

Abstract: - This paper presents small real-time operating system which has been developed at our institute and also an
application and practical verification of this system in a portable data acquisition unit. The system, named RTMON is
intended mainly as a teaching aid for lessons of microcontroller programming where it allows the students to simply
write applications in C language with several concurrently running processes. However, it can also be used in practical
applications, as is demonstrated by the data acquisition unit described in this paper. The system works on 8-bit
microcontrollers with the HC(S)08 core made by Freescale and also on Atmel AVR Mega8 microcontrollers.

Key-Words: - real-time, operating system, microcontroller, HC08, ATMega8, data acquisition.

1 Introduction
Real-time operating system (RTOS) can help to solve
the usual problems related to programming
microcontroller applications, such as need for executing
multiple tasks concurrently, quick response to high
priority events, managing hardware resources of the
MCU, etc. In our lessons we include also RTOS based
programming.
 On 16-bit or 32-bit MCUs, RTOS are used often; on
smaller 8-bit systems it is not so common because these
systems have limited memory and CPU power and it is
more efficient to write the required program without
RTOS. However, if the RTOS is small enough to fit into
such MCU, it can bring the same advantages as on
bigger MCUs. At our department in lessons of
Microcontroller programming we use 8-bit MCU from
the HCS08 family made by Freescale. As we wanted to
include a RTOS programming techniques into our
lessons we needed a RTOS capable of running on this
MCU. Such system would also be useful for our other
projects, where we use Freescale HCS08 MCUs. If we
look at the available real-time operating systems, there
are many of them. But most of them are focused on
bigger, 16 and 32-bit MCUs, although there are some
which support also small 8 bit MCUs, for example,
FreeRTOS [2] which is distributed under GPL license
and currently officially ported to 23 architectures.
Another example is MicroC/OS-II [1], [3] which is also
free for educational, non-commercial use. It is suitable
for use in safety critical embedded systems such as
aviation or medical systems and is ported to great
number of architectures including Freescale HC08 and
Atmel AVR. One disadvantage of using such system is

that it is often quite complex due to the wide options it
offers; typical RTOS for 32 bit MCU contains drivers for
USB, Ethernet etc. Despite the fact, that the systems are
configurable to work in simple arrangements, the user
can still have too many things to worry about. Moreover,
we already had an RTOS system developed at our
institute for PC based systems and also for HC11, and its
interface is known to the students. So, even if it would
be possible to choose from existing systems, we decided
to implement a light-weight clone of our RTMON
system to use on the HCS08 microcontroller. Once the
system was up and running for the HCS08 derivative
used in lessons (GB60) it became useful to port it to
other derivatives also. As a result, RTMON currently
supports not only several members of the HCS08 MCU
family but also Atmel AVR ATmega8. Adding new
derivative is quite simple, so the list of supported
derivatives will possibly grow in the future. Besides
using the system in the lessons RTMON was also
successfully used in design of portable data acquisition
unit – DAQ, which allows simple and cheap interface
between personal computer and a technological process.
In the following text we describe the properties and
usage of the RTMON operating system and also the
DAQ device which uses this system.

2 The RTMON system
RTMON is pre-emptive multitasking OS which is highly
simplified for easy use by the students. It is written in C
language except for a small, platform-specific part
written in assembler. The system supports execution of
two different types of tasks (processes): normal

Recent Researches in Communications, Automation, Signal Processing, Nanotechnology, Astronomy and Nuclear Physics

ISBN: 978-960-474-276-9 23

processes which execute only once (such processes
typically contain infinite loop) and periodical processes
which are started automatically by the OS at certain
period. These periodical processes are useful for many
applications, typically in discrete controllers which need
to periodically sample the input signal and update the
outputs.
 RTMON is used as a precompiled library
accompanied by a header file. This simplifies the
organization of the project and the build process. User
enables RTMON usage in his program by including the
header file (rtmon.h) in his source and adding the library
to his project. Currently the library and sample projects
are available two development tools: Freescale
CodeWarrior and Atmel AVR Studio with WinAVR
suite.
 If needed, user can also rebuild the RTMON library.
Typically this is useful to change the configuration such
as maximum number of tasks, length of the OS time
period (tick), etc. There is documentation which
describes the procedure and also projects for the two
supported IDEs, which can be simply opened and
rebuild.
 To make both the implementation of the system itself
and its usage as simple as possible, several restrictions
are applied. First, the RAM memory for processes and
their stacks is statically allocated for the maximal
number of processes as defined in configuration file. In
the user program, it is not possible to use this memory
even if there are fewer processes defined. In case more
RAM is needed for the user program, the maximum
number of tasks and/or stack-pool size can be changed in
configuration file and the RTMON library must be
rebuild.
 The priority of each task must be unique, so that in
each moment one task (the one with highest priority) can
be selected and executed on the CPU. Processes can be
created on the fly, but it is not possible to free and reuse
memory of a process. No more than the maximal number
of processes can be created, even if some processes were
previously deleted.
 However, these restrictions do not present any
problem for most applications and allow for small kernel
code size and ease of use.

2.1 Kernel objects
There are only two objects which RTMON contains: a
process and a queue. The queues are buffers for
transferring data between processes. Several queues can
be created, each containing a “message” (data buffer) of
certain size. The size can be specified when creating the
queue and is limited by the total size of RAM reserved
for all buffers of all the queues (queue pool size).
Processes can read and write data to the queue and wait

for the queue to become empty or to become full. This
allows using a queue also for process synchronization.

2.2 Implementation of the system
The OS uses timer interrupt which occurs at certain
period (e.g. 10 ms) to periodically execute the scheduler,
which decides which process will run in next time slice.
The timer interrupt routine is implemented in assembler
for HCS08 MCUs and in C for AVR MCUs. It first
stores CPU registers onto the stack and then calls
RTMON kernel, which is a C function. The kernel then
finds the process with highest priority which is in ready-
to-run state and switches the context, so that the code of
this process is executed after return from the interrupt
service routine. If no process is ready to run, then a
special dummy process is executed. This dummy process
is contained within RTMON code and does nothing.
 Task descriptor in RTMON is a C-language structure
(IDPROC) which occupies 18 bytes of memory (given
that char is 8-bit and int is 16-bit). The size of RAM
required, for example, for 10 user-defined processes is
then 12 x 18 = 216 bytes - there are two extra structures
reserved for the init and dummy processes. The memory
consumption may be reduced if we limit some of the
values (e.g. stack size and time intervals) to 8 bits. This
is enabled by RTMON_SMALL directive and it reduces
the size of RAM required for one process to 14 bytes.
There is an array of these structures with the number of
items defined by RTMON_MAXPROCESSES constant
in RTMON configuration file.
 The structure for a queue (IDQUEUE) requires 10
bytes of RAM and similarly as for processes, RTMON
allocates array of IDQUEUE structures with the number
of items defined by RTMON_MAXQUEUES constant.

2.3 Services provided by the system
The OS provides set of services to user applications to
manipulate processes and queues. Each service
corresponds to a function in the RTMON library which
user program can call. There are services for processes
which allow to:

• Create a process
• Start a process
• Stop a process
• Delay (sleep) a process
• Continue (wake up) a process
• Abort (delete) a process

And for the queues there are the following services:
• Create a queue (specify size)
• Write to a queue with or without waiting
• Read from a queue with or without waiting

Recent Researches in Communications, Automation, Signal Processing, Nanotechnology, Astronomy and Nuclear Physics

ISBN: 978-960-474-276-9 24

2.4 Usage of the system
To create an application which takes advantage of
RTMON the user needs to perform just several simple
steps:
Step 1:
Define variables for process identificators, e.g.:

IDPROC* init, *p1;

Step 2:
Initialize RTMON (typically in the main function):

rtm_init(&init);

Step 3:
Create user processes:

rtm_create_p("proc1", 10, proc1, 64, &p1);

This call creates process with priority 10 and stack size
of 64 bytes. The body of the process is in function proc1
which should have the following prototype: void
proc1(void). The variable p1 receives the ID of the
newly created process and is used in all further calls to
RTMON services to manipulate this process.
Step 4:
Start one or more processes:

rtm_start_p(p1,0,5);

This call starts process p1. The number 0 means that the
process is started immediately (with delay of 0 ticks) and
the number 5 means the process is started with period 5
ticks (it will be automatically started by RTMON each 5
ticks).
Step 5:
Delay the init function (the main process):

rtm_delay_p(init,0);

By this call the init process (main function) puts itself
into infinite sleep and thus allows other processes to run.
At this line the execution of main stops and it moves to
the process with highest priority.
Code of each user process is contained in a C function.
Example of a simple process could be:

void proc1(void)

{

 rtm_stop_p(p1);

}

This process does nothing, it just calls rtm_stop_p(p1)
informing the system that it stopped execution.

3 Data acquisition device with RTMON
As already mentioned, RTMON is used in our lessons of
microcontroller programming. But besides this usage the
operation of the system was also verified by using it in
one of our devices – a multi-channel portable data
acquisition device DAQ. This device was developed in
our department mainly for controlling and monitoring of
educational laboratory models. It offers cheap alternative
to professional I/O cards and modules when a
technological process needs to be controlled or
monitored from a computer.

3.1 Hardware of the DAQ
Hardware design of the DAQ device offers 16 analog
inputs with 12-bit resolution, 8 digital inputs and outputs
and one analog output with 12-bit resolution. The design
focuses on low power consumption which allows long
operation when battery supply is used. The core of the
DAQ device is 8-bit general purpose Motorola
microcontroller 68HC908GP32 with Von-Neumann
architecture which is fully up-ward compatible with the
68HC05 family. On the chip are integrated many useful
peripherals including: timer interface with input capture
and output compare functions, 8-channel analog-to-
digital converter with 8-bit resolution, up to 33 general-
purpose I/O pins, clock generator module with PLL,
serial communication interface and serial peripheral
interface. The MCU has implemented several protective
and security functions such as low-voltage inhibit which
monitors power supply voltage, computer operates
properly (COP) counter and FLASH memory protection
mechanism preventing unauthorized reading of the
user’s program. Internal RAM memory has capacity of
512B and FLASH memory 32 KB. Internal clock
frequency can be 8 MHz at 5 V operating voltage or 4
MHz at 3 V operating voltage. The MCU also supports
wait and stop low-power modes [4].
 Analog-to-digital conversion is performed by Linear
Technology A/D converter LTC1298. It is micro power,
2-channel, 12-bit switched-capacitor successive
approximation sampling A/D converter which can
operate on 5 V to 9 V power supplies. Communication
with microcontrollers is handled by 3-wire synchronous
serial interface. It typically draws only 250µA of supply
current during conversion and only 1nA in power down
mode in which enters after each conversion [6].
 Digital-to-analog circuit uses 12-bit D/A converter
Burr-Brown DAC7611 with internal reference and high
speed rail-to-rail amplifier. It requires a single 5 V
supply. Power consumption is only 2.5 mW at 5 V.
Build-in synchronous serial interface is compatible with
variety of digital signal processors and microcontrollers
[5].

3.2 Software of the DAQ
The software in the DAQ device is based on the
RTMON operating system described above. The
software is formed of RTMON core and individual
processes which perform all necessary tasks. Each
process activity is controlled by operating system core
on the basis of process priority and other information
stored in the task descriptor. Structure of the DAQ
device firmware is depicted in the Fig. 1. As can be seen
in the figure, there are 4 main processes and 1 interrupt
handling routine.

Recent Researches in Communications, Automation, Signal Processing, Nanotechnology, Astronomy and Nuclear Physics

ISBN: 978-960-474-276-9 25

Fig.1. Internal software structure of the DAQ

 Process 1 is highest priority process which performs
DAQ device initialization after power up or reset. It sets
all digital outputs to low state (logic 0), setups serial
communications interface to communication speed of
57600 Bd, 8-bit data frame, 1 start bit and 1 stop bit, sets
analog output to 0 V and finally initializes all necessary
data structures. Because of its highest priority no other
processes can be switched by OS core into the “run”
state. After all initializations process suspends itself.
 Process 2 performs all tasks related to command
interpretation and execution. It waits for complete
command string in the receiver buffer which is handled
by serial communication interface (SCI) interrupt
routine. This interrupt routine is automatically called
when SCI receive one character from the higher-level
control system. When command is completely received
in the buffer, process will decode it and executes
required action.
 Process 3 is periodically activated process performing
pulse-width modulation (PWM) on all 8 digital output
channels when it is demanded. Its priority is set to higher
level than process 2 and process 4 because the PWM is
time critical function sensitive to accurate timing. Its 8-
bit resolution allows setting of 256 different duty cycles
at output. Period of the PWM signal is set to 1000 ms
which is optimal value for many controlled systems with
higher time constants.
 Process 4 provides communication via RS232 serial
interface with supervisory system. It generates responses
to all commands regarding to defined communication
protocol include error processing. It has the lowest
priority from all the processes.

4 Conclusion
This paper presented our simple real-time operating
system for Freescale HCS08 microcontrollers and an
application of this system in portable data acquisition
unit. The system is also used as a teaching aid for
lessons of microcontroller programming. The interface is

based on older version of RTMON operating system for
PC and HC11 microcontroller (predecessor of HCS08).
However, the internals of the system were written
completely from the scratch to allow it to work with
limited data and code memory of small 8-bit
microcontrollers. RTMON is pre-emptive multitasking
system which allows defining processes up to certain
number (default is 10) and running these processes either
in infinite loops or periodically with a given period.
 The system services are very simple due to the
limited memory of the target microcontrollers and
intended use of the system, but still the system provides
the advantage of easy implementation of embedded
system as a set of independent, concurrently running
tasks.
 For the future it would be useful to port it to different
MCUs, but also to extend the functionality by some I/O
drivers, such us driver for GPIO, serial line etc.
 RTMON proved to be functional during the lessons at
our department, where it is used to demonstrate to
students the basics of programming applications with
operating systems, and it was also used in design of
portable data acquisition unit DAQ. This device was also
developed at our department and is used for control and
monitoring related tasks. It is designed with respect to
possible battery operation enabling measurement in
areas where power source is not available. It provides
sixteen analog inputs with 12-bit resolution, eight TTL
compatible digital inputs and outputs protected against
electrostatic discharge and overloading and one analog
output channel equipped with 12-bit D/A converter.
Communication with supervision system is realized with
RS232 serial interface. It uses universal ASCII-based
communication protocol which can be easily
implemented in many software environments.
 This work was supported by research project MSM
7088352102. This support is gratefully acknowledged.

References:

[1] Morton, T. D., Embedded Microcontrollers, Prentice
Hall, 2001.

[2] FreeRTOS, The FreeRTOS Project, Available from:
< http://www.freertos.org/>

[3] Micrium, Micrium RTOS and Tools, Available from:
<http://micrium.com/page/products/rtos/os-ii>.

[4] Freescale, M68HC08 Microcontrollers:

MC68HC908GP32 Data Sheet. Available from:
<http://www.freescale.com/>.

[5] Burr-Brown, DAC7611 : 12-Bit Serial Input Digital-

to-Analog Converter. Available from WWW: <http://
www.burr-brown.com/>.

[6] Linear Technology, LTC1286/LTC1298 Micropower

Sampling 12-Bit A/D Converters, 1994. Available
from WWW: <www.linear.com>

RTMON core

Process 2
Command processing

Process 1
System initialization

Process 3
PWM modulation

Process 4
Communication

SCI interrupt

Read received character
from SCI and write it to
buffer.

Return

Recent Researches in Communications, Automation, Signal Processing, Nanotechnology, Astronomy and Nuclear Physics

ISBN: 978-960-474-276-9 26

