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Abstract: - Although  few  systems  for  normalization  of  relations  are  already  in  place  to  support  schema
refinement, they are rarely used be it by database practitioners, or as a teaching aid at universities. Meanwhile,
the Semantic Web potential for novice implementations understood by both humans and machines Web-wide
has just recently urged the need to reinterpret systems that are yet in the mainstream of standalone or
traditional Web systems. That has motivated us to consider the design and implementation of a database
normalization system as integral part of the machine-understandable knowledge base on the Web, as
conceived by the Semantic Web. This paper presents the ontology layer of our normalization system, as well
as the initial findings in building the rule layer of this system using Semantic Web technologies.
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1   Introduction
In practice, a critical point in providing a robust
database solution is its level of optimization which
may in the first place be ensured through a well-
defined design. Our work considers refinement of
the database design given a set of relation schemas
and functional dependencies (FDs) holding over
them at the input. Few systems for normalization of
relations  are  already  in  place  [5;  6;  7;  8;  9]  to
support schema refinement, although rarely used be
it by database practitioners, or as a teaching aid at
universities.
     Meanwhile, the Semantic Web potential for
novice implementations understood by both humans
and machines Web-wide has just recently urged the
need to reinterpret systems that are yet in the
mainstream of standalone or traditional Web
systems. That has motivated us to investigate the
use of Semantic Web technologies in developing a
database normalization system, thus aligning-well
with the idea of Tim Berners-Lee [12] for
integrating as much data and algorithms as possible
into a machine-understandable knowledge base on
the Web.
     We present here the kernel of our normalization
system consisting of the ontology layer and some
enabling algorithms for normalizing relations, like
finding the attribute closure. Further, the initial
findings in using Semantic Web towards completing
the rule layer of our normalization system are listed.
     The  paper  is  organized  as  follows:  Section  2
outlines related work; the ontology layer of our

system and issues regarding the structuring of data
in lists and n-ary predicates are treated in Section 3;
Section 4 introduces the kernel of our rule layer, and
reveals the main challenges we are facing in
covering all algorithms of the normalization theory
in our system.

2   Related work
A number of systems for normalization of relations
in languages like Prolog [5] and Mathematica [6]
have  already  been  developed  in  order  to  ease  the
deployment of the theory of normalization.
NORMIT  [7]  is  a  Web-enabled  tutor  for  database
normalization. Few other works exist as well which
have addressed the same theory [8; 9; 13].
     Observing the development of Semantic Web
rule systems like the Semantic Web Rule Language
(SWRL) [14] which is a prototype rule language for
the future Web and build heavily upon the
Description  Logic  (DL),  and  moreover,  due  to  the
intersection of DL with Logic Programming (LP),
we have decided to examine the Prolog
normalization system developed by Ceri and Gottlob
[5] and draw mappings between rules in Prolog [5]
and SWRL when concerning the rule layer of our
Semantic Web normalization system.
     PrOWLog  [15]  and  SWORIER  [16]  are  two
hybrid approaches which laid Prolog on top of Web
Ontology Language (OWL) [17; 18], thus
addressing the issue of capturing open-world
semantics of OWL into Prolog. The SWORIER
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team translates rules of SWRL and RuleML [19; 20]
into Prolog prior to reasoning. If rules were found
by SWORIER not expressible in any of SWRL or
RuleML, they represented them straight in Prolog.
During the OWL-into-Prolog translation, solutions
were provided [16] to problems also encountered in
the work of Volz et al. in 2003 [21; 22] like:
negation, complementary classes, disjunctive heads,
open world assumption, enumerated classes, and
equivalent individuals. These issues are our concern
as well, but from another perspective, i.e. the
Prolog-into-SWRL translation.

3   The Ontology Layer
We developed an ontology in OWL to encode the
theory of normalization of relations in Semantic
Web. Following we describe classes and object
properties defined in our ontology, as well as their
meaning in terms of the normalization theory.
     Class Relation models relations of a database
schema. A property has_schema assigns an instance
of class Schema to a relation. Thus, has_schema
has Relation as its domain and Schema as its range.
The Schema individuals are restricted to allow only
values of range Attribute through has_attr property.
The has_attr property lists all attributes which
constitute (1) the schema of a given relation schema
if its domain is the class Schema, or (2) the left-
hand side or right-hand side of a given FD if its
domain is one of the classes LHS or RHS
respectively. Classes LHS and RHS are subclasses of
class Side capturing both sides of a FD - LHS for the
left-hand side and RHS for the right-hand side. Since
has_attr has  as  its  domain  the Side class,  by
inference classes LHS and RHS are related with
Attribute class through this property. A class named
FD (cf. Fig.1) models functional dependencies that
hold over a given relation, which is captured
through an existential quantifier over holds_over
property to contain some values of the Relation
class. A property relating class FD (the domain
value) is has_side which has two subproperties:
has_lhs and has_rhs, which are functional, infer all
definitions given above for the has_side property.

Fig.1 A set of necessary restrictions for the FD class
defined in Protégé

     Classes in3nf and inbcnf are both subclasses of
the Relation class, and are meant to classify
relations which are in third normal form (3NF), or

in Boyce-Codd normal form (BCNF), respectively.
     To capture the semantics of computing a closure
of  a  given  set  of  FDs  for  a  given  relation  a  class
named AttrClosure is defined. Its individuals link a
set of attributes with its attribute closure (attribute
set) through properties clo_attr and closure
respectively. It is the responsibility of the rule layer
of our ontology to calculate the instances of this
property, as will be introduced in the next section.
     The running example we will use throughout this
paper  consists  of  a  relation  schema  and  a  set  F  of
FDs as follows:

rel(A, B, C, D, E, F)
F = {ABàC, CàA, DàE, DEàF, EàD, EàF}

     The same instance expressed in Prolog [5] looks
as follows:

schema(rel, [a, b, c, d, e, f]).
fd(rel,[a,b],[c]).  fd(rel,[c],[a]).  fd(rel,[d],[e]).
fd(rel,[d,e],[f]).  fd(rel,[e],[d]). fd(rel,[e],[f]).

whereas its representation in our normalization
ontology is depicted in Figure 2.

Fig.2 The running example represented in our
normalization system

3.1 N-ary Relations in our Ontology
In the Prolog normalization framework [5],
attributes represented through the Attribute set of
values of the LHS and Schema classes on the
has_attr property constitute an ordered sequence in
order to achieve efficiency in Prolog, but the order
of attributes within the Attribute sequence has
certainly no semantic meaning. The order of
attributes in our ontology within the Attribute
sequence be it for the LHS class or the Schema class,
does also not matter, which is fully in conformance
with the semantics of the relational database model.
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4   The Rule Layer
To reason over the ontology layer of our
normalization system described in the previous
section we have considered two approaches: hybrid
and a pure Semantic Web approach.
     For the ontology layer, following the pure
Semantic Web approach simply use the ontology
described above, while regarding the hybrid
approach it is required a translation into Prolog,
which  is  not  complex  since  both  OWL  and  Prolog
base on the same subset of logic (Horn Logic) [16].
     Regarding the rule layer of our normalization
system, the hybrid approach would simply require to
adopt Prolog rules available in [5]. According to the
second approach we have expressed Prolog rules
with SWRL, some of which will be introduced in
the next section.
     Although the hybrid approach promises to
require less efforts since there are already theories
defined for the OWL-into-Prolog translation in
general, we merely tend to introduce a rather
normalization system solely with Semantic Web
technologies at both layers. We will in the next
section  describe  a  set  of  SWRL  rules  which
constitute the core of our normalization rule layer, as
well as in Section 4.2 list some initial findings
towards building a complete normalization system
following always the pure Semantic Web approach.

4.1    SWRL  Rules  in  our  Normalization
System
In the theory of normalization of relations, the
algorithm of finding the closure of a set of attributes
presents the main building block of all other
algorithms, like that of finding all keys of a relation,
or of decomposing a relation into 3NF using
Bernstein’s algorithm.
     The attribute closure of a given set X of attributes
with  respect  of  a  set  of  FDs  is  implemented  in
Prolog with the following couple of rules:
 closure(REL,X,CLO_OF_X):- fd(REL,LHS,RHS),

 subset(LHS,X),
 not subset(RHS,X),
 union(W, X,RHS,REL),!,
 closure(REL,W,CLO_OF_X).

 closure(REL,X,CLO_OF_X) :- CLO_OF_X = X.
     Consider the relation instance rel and  a  set  of
FDs as provided in our example. If we pose a query
for finding the closure CLO_OF_X of the attribute set
[a,d,e] to the Prolog normalization system:

?- closure(rel,[a,d,e],CLO_OF_X).
the result returned will be:

CLO_OF_X = [a,d,e,f]. (1)

     In our normalization system, the algorithm for
finding the closure of a set of attributes is
implemented through two SWRL rules as given in
Fig.4.
1 AttrClosure(?clo)^clo_attr(?clo,?attrs) → closure(?clo,?attrs)

2 AttrClosure(?clo)^closure(?clo,?attrs)^sqwrl:makeBag(?sk,?attrs)^

3 has_lhs(?fd,?lhs) ^ has_attr(?lhs,?at) ^ sqwrl:makeBag(?sl,?at)^

4 has_rhs(?fd,?rhs) ^ has_attr(?rhs,?bt) sqwrl:makeBag(?sr,?bt) ^

5 sqwrl:groupBy(?sk,?clo,?fd) ^

6 sqwrl:groupBy(?sl,?clo,?fd) ^

7 sqwrl:groupBy(?sr,?clo,?fd) ˚

8 sqwrl:contains(?sk,?sl) ^ sqwrl:notContains(?sk,?sr) ^

9 sqwrl:union(?u,?sr,?sk) ^ sqwrl:element(?k,?u) →

10 closure(?clo,?k)

Fig.4 The SWRL implementation of the attribute
closure algorithm

     Both rules evaluate once for each instance ?clo of
the AttrClosure class which owns two properties:
· the clo_attr property which holds the set of input
attributes (see 1 in Fig.4), and
· the closure property which yields the set of
attributes constituting the closure (see CLO_OF_X in
Prolog rules) of attributes given in clo_attr.
     The first rule (line 1) initializes the closure set to
the set of input attributes for which the closure
should be computed. In the second rule, we use three
attribute sets: ?sk consists of the set of the currently
computed attribute closure (line 2) initially set equal
to the set of input attributes (first rule), ?sl collection
consists of LHS attributes of the current FD (line 3),
and ?sr consists of RHS attributes of the current FD
(line 4). Once we have constructed collections, we
apply the groupBy built-in  operator  of  the  SQWRL
library [23] which constitutes groups for each
(closure, FD) pair on each of the three collections
(lines 5-7). Groups created enable that we run solely
the  second  rule  once  per  each  closure  to  be
computed, but recursively (in a loop) over all
dependencies since each FD requires the currently
computed closure as its input. On each group (see
the '˚' operator for performing over a group) we test
whether the current dependencies’ LHS is a subset
of the currently computed attribute closure ?sk, and
whether  its  RHS  is  not  a  subset  of  that  same ?sk
collection (line 8). If these two built-in subgoals
contains and notContains of SQWRL succeed, we
then build the union ?u of the RHS attributes with
the actual attribute closure collection, and retrieve
all elements of that union's result collection ?u
through the built-in sqwrl:element clause (line 9).
     If we compute the attribute closure for the same
input data as in the running example, this time in our
normalization system, we will gain the same result
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set (cf. Fig.5) as (1).
     We have tested the correctness of the attribute
closure implementation in our normalization system
through a set of experiments summarized in the
following table:

Test
no.

Number of
attributes
within the

relation
schema

Number
of FDs

Number
of closure

inputs

Number of
OWL

axioms
exported

to Jess

Number of
axioms
inferred

(Jess Rule
engine)

Ceri and
Gottlob's

system vs.
our system

results
Test1 6 5 5 45 16 equal
Test2 5 5 5 45 21 equal
Test3 6 6 5 49 19 equal
Test4 7 8 6 64 24 equal
Test5 9 10 6 83 17 equal

     The chart of Fig.6 illustrates the complexity
distribution among five tests run in our system.

4.2   Challenges in Building the Rule Layer of
our Normalization System
Following are some of the challenges encountered
while building the rule layer of our system which
have also been identified by other researchers when
investigating the correspondences between DL and
LP  [21;  22],  or  are  due  to  Semantic  Web  rule
systems being yet under development [14]. We next
propose alternative approaches to addressing these
concerns which are evident in the Semantic Web.

Fig.5 The individual clo_5 holding the closure adef
of the ade attribute set

4.2.1   Open-World Assumption: Enumeration
SWRL together with OWL shares the open world
assumption, while Prolog embraces the closed world
assumption, thus returning false when failing to
satisfy  the  goal.  Because  of  the  OWA  rules  that
attempt to enumerate individuals or property values
in an ontology are possible only when OWL states
those numbers explicitly.
     When decomposing a relation into BCNF with
the Prolog system [5], if a subgoal X=[_,_] succeeds
the relation contains two attributes and it is
classified as a relation in BCNF. The same test is not
expressible  in  SWRL  [24],  but  to  perform  close
world enumeration we provided the following
alternative using the size operator to compute the
number of attributes in a given relation schema,

using the Jess rule engine [10] for reasoning:
Relation(?r)^has_schema(?r,?s)^has_attr(?s,?attr)°
sqwrl:makeSet(?ss,?attr)^sqwrl:groupBy(?ss,?r)°
sqwrl:size(?n,?ss)^swrlb:lessThan(?n,3)àinbcnf(?r)

Number of
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axioms
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engine)
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Fig.6 The chart view of the evaluation of the rule
closure

4.2.2   Unique Name Assumption
OWL's open world semantics does not allow one to
assume that two individuals are automatically
distinct if they have different names, i.e., OWL does
not have a unique name assumption (UNA).
Additionally, due to the normal rule pattern
matching, two variables can also match the same
individual in a rule. SWRL supports UNA, thus
extending OWL capabilities in this direction. SWRL
supports the sameAs, differentFrom and allDifferent
clauses to determine if individuals refer to the same
underlying individual or are distinct. In Prolog,
UNA is enabled with operators not and equal (=).
     If  we  wish  to  capture  the  semantics  that  two
attributes A and B of a relation are different to each
other, we can write not A=B in Prolog, whereas in
SWRL the same is expressed through A
owl:differentFrom B. In our system, we rather state
that all individuals of the Attribute class are distinct
to each other by using a single owl:allDifferent
annotation in OWL.

4.2.3   Nonmonotonicity: Fact Assertion,
Modification and Retraction
Like OWL, SWRL supports monotonic inference
only. Hence, SWRL rules cannot modify or retract
information in an ontology [24]. Asserting new facts
to OWL using SWRL is allowed as long as that
implies only adding new individuals, no way of
retracting any of existing ones.
     In the Prolog system [5] facts: fd/3, inbcnf/1,
in3nf/1, key/2, clo/3, etc. are asserted and retracted
from the database dynamically as needed. For
example, in the second step of the Bernstein’s
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algorithm for decomposing relations to a 3NF, when
partitioning the set of FDs into groups with identical
LHS, a new fact group(REL, LHS) is asserted in the
base of facts. In the third step, groups with
equivalent keys are merged, which implies that both
group facts are retracted from the base of facts and a
new group fact is asserted consisting of both keys.
This is not allowed in SWRL.
     The  SWORIER  team  [16]  has  developed  an
extension module to their system which is able to
assimilate dynamic changes that are provided at run
time, including adding new facts, or removing facts.
A similar workaround may be adopted for our
system to support the modification and retraction of
facts dynamically as needed.

4.2.4   Nonmonotonicity: Negation as Failure
Obviously there is no support for negation as failure
(NAF) in Semantic Web. Translating Prolog’s NAF
into SWRL is among main issues addressed when
developing our system.
     A typical example of NAF in the Prolog system
[5] is the clause not susbset(RHS,X) of the attribute
closure rule mentioned in the previous section. To
“close the world” in SWRL we have arranged
members  of  both  sets RHS and X into SQWRL
collections makeSet or makeBag (cf. Fig.4).
     Another rationale would lead to deploying the
recently available OWL 2 construct for asserting
negative facts about an individual [4]. This is
usually costly since it involves asserting explicitly
all known negative facts to a database: in the above
example, the "not subset" relationship for each pair
of possible combination of attributes in sets.

4.2.5   Nonmonotonicity: Classical Negation
While SWRL does not support negated atoms or
NAF, classical negation is possible in OWL/SWRL
through the use of the owl:complementOf class
description in OWL or SWRL [24].
     An OWL complementOf axiom which states
that, if a key is not a member of the class KnownKey,
then it should be classified as a member of the class
NonKey, is asserted in our system:

NonKey owl:complementOf KnownKey
Of course, with OWL's (and SWRL's) open world
assumption, this conclusion can only be reached for
individuals for which it may definitely be concluded
that they cannot be members of the class KnownKey.
A SWRL rule which reasons over complementary
classes KnownKey and NonKey may be written as
follows:

KnownKey(?x)^tbox:isComplementOf(?y,?x)
-> NonKey(?y)

4.2.6   Recursion
Recursion is not directly supported in SWRL since
we cannot use results of rules when reasoning over a
set of rules. Since we use Jess to reason over SWRL
rules, the recursion is supported enabling thus the
use of rule results at any level of recursion.
     In  order  to  determine  a  closure  of  a  set  of
attributes we must consider every input FD. We
cannot find the closure through one rule which will
loop over all dependencies, since each FD requires
the currently computed closure as its input. Thus we
are  forced  to  compute  the  same  rule  once  per  each
FD  until  all  FDs  are  exhausted,  and  every  FD  will
eventually contribute its RHS if certain conditions
are fulfilled (cf. Fig. 4).

4.2.7   Disjunction and Alternatives
When translating Prolog rules for normalization of
relations into DL, we do not have the problem of
disjunction in the head, since every rule is Horn-
like.
     An example Prolog rule consisting of alternative
atoms is applied when finding a minimal cover for a
set  of  FDs  [5].  The  rule  named elimredundfds is
employed for eliminating redundant dependencies, if
their RHS is a subset of their LHS closure. The FD
is retracted from the base of facts depending on the
success of the given alternative clauses.
     Before  translating  this  rule  into  SWRL,  we
simply rewrite it into two rules with equivalent
heads [21; 3] elimredundfds, eliminating thus the
need for explicitly expressing alternatives in SWRL.

5   Conclusion and Future Work
In this research we have explored the ability of the
Semantic Web technologies to support the
development of a system for normalization of
relations.
     PrOWLog and SWORIER [16][15] have shown
that a hybrid approach is quite a natural and fruitful
step.  We rather introduced a novel approach in
building  a  pure  Semantic  Web  system  for
normalization of relations led in the first place by
the work conducted by Ceri and Gottlob [5] and the
Semantic Web vision for the future Web.
     A  translation  bridge  from LP  into  DL may  well
have been of use when developing our system
targeted to rely solely on the Semantic Web
technologies which have their foundations in DL.
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Our work lays some initial findings in mapping
between these two distinct logic languages, i.e., the
SWRL into Prolog mapping. There are companies
and researchers who have translated RDF and OWL
into Prolog as described in [21; 16; 15]. Thea [3] is
an example which supports translation of a rather
restricted form of Prolog (unary and binary) into
SWRL.
     We believe in the first place that the development
of our system will be useful for understanding
normalization algorithms, and their applicability in
solving day to day database design problems. In
addition, we hope this work will encourage further
integration of existing desktop and traditional Web
applications into Semantic Web, hence making the
data, like corporate data and hidden Web relational
databases, and the Semantic Web applications
understood by machines supplement each other.
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