Mining of Frequent Itemsets with JoinFI-Mine Algorithm

SUPATRA SAHAPHONG ${ }^{1}$, GUMPON SRITANRATANA ${ }^{2}$
${ }^{1}$ Department of Computer Science, Faculty of Science, Ramkhamhaeng University, Ramkhamhaeng Road, Bangkapi District, Bangkok 10240,
THAILAND
supatra@ru.ac.th
${ }^{2}$ Department of Mathematics, Faculty of Science, Mahidol University, Rama VI Road, Ratchathewi District, Bangkok 10400, THAILAND
scgst@mahidol.ac.th

Abstract: - Association rule mining among frequent items has been widely studied in data mining field. Many researches have improved the algorithm for generation of all the frequent itemsets. In this paper, we proposed a new algorithm to mine all frequents itemsets from a transaction database. The main features of this paper are: (1) the database is scanned only one time to mine frequent itemsets; (2) the new algorithm called the JoinFI-Mine algorithm which use mathematics properties to reduces huge of subsequence mining; (3) the proposed algorithm mines frequent itemsets without generation of candidate sets; and (4) when the minimum support threshold is changed, the database is not require to scan. We have provided definitions, algorithms, examples, theorem, and correctness proving of the algorithm.

Key-Words: - Algorithm, association rule mining, database, data mining, frequent itemsets mining, frequent pattern mining, knowledge discovery

1 Introduction

Nowadays there are tremendous amounts of data which have been collected and stored in large databases, and which cannot be analyzed using manual systems. For example, how can one find the items which occur together from large amounts of data?, how do the items in a massive data set relate to the others?, what items in the data set frequently appear?. Therefore, powerful data analysis is necessary to solve these requirements. One solution is to use frequent itemset mining. Frequent itemsets mining is an essential step in association rule mining. The association rule mining algorithm is to decompose into two major subtasks:

- The generation of all the frequent itemsets that satisfy the minimal support threshold.
- The extraction of all high confidence rules from frequent itemsets found in previous step.
Our work focuses on the mining of frequent itemsets. The first classic algorithm is Apriori which is proposed in [1]. The Apriori principle is "If an itemsets is frequent, then all of its subsets must also be frequent" [2]. The Apriori algorithm uses a level-wise and breadth-first search approach for generating
association rule. It uses the support-based pruning to control the exponential growth of candidate itemsets. However, the algorithms based on generated and tested candidate itemsets have two major drawbacks:
- The database must be scanned multiple times to generate candidate sets. Multiple scans will increase the I/O load and is time-consuming.
- The generation of huge candidate sets and calculation of their support will consume a lot of CPU time.
The drawbacks which presented as above were overcome by using the next generation of algorithm, called the $F P$-growth algorithm [3]. The advantages of mining of frequent itemsets by using the $F P$-growth algorithm such as: First, the database is scanned only two times. Next, the generating of candidate sets is not required. The $F P$-growth algorithm performs depthfirst search approach in the search space. It encodes the data set using a compact data structure called $F P$ tree and extracts frequent pattern directly from this prefix tree [4]. The following researches have improved this idea. In reference [5], the H-mine algorithm was introduced by using array-based and trie-based data structure. The Patricia Mine algorithm was proposed in [6] that compressed Patricia trie to
store the data sets. The $\operatorname{FPgrowt*}$ algorithm reduced the $F P$-tree traversal time by using array technique [7]. In reference [8], the SFI-Mine algorithm which constructs pattern-base by using a new method which is different from pattern-base in $F P$-growth and mines frequent itemsets with a new combination method without recursive construction of conditional $F P$-tree. However, most of the $F P$-tree algorithm base has the following drawbacks:
- Mining of frequent itemset from the $F P$-tree, it generates huge of conditional FP-tree and takes a lot of time and space.
- When the changing of minimum support, this algorithm may restart and scan database twice.
Many researchers have proposed ways to scan database once. The Eclat algorithm was proposed by using the join step from the Apriori property to generate frequent pattern [9]. In Reference [10], the new data structure, called LIB-graph is proposed to contain data when database is scanned and discovery of frequent patterns by using recursive conditional $F P$-tree. The Sorted-List structure which created from the Vertical Index List was proposed to contained data from scanning database once and mining of frequent itemsets by using depth-first search [11].

In this paper, we proposed the algorithm, called JoinFI-Mine algorithm. The main advantages of our method are presented as follows:

- The database is scanned only one time to mine frequent itemsets.
- The JoinFI-Mine algorithm mines frequent itemsets without generation of candidate sets. The results of this method are still obtaining complete and correct frequent itemset.
- The rescanning of the database is not required, if decision maker want to change of the minimum support threshold.
This paper is organized as follows. The prior knowledge is presented in section 2, followed by the approach which is presented in section 3, the correctness proof is shown in section 4 and the finally, the conclusion is addressed in section 5 .

2 Prior Knowledge

2.1 Basic Definition

This subsection introduces basic concepts for mining of frequent itemsets. All definitions in this subsection are proposed by J. Han et al in [4, 12], as follows.

Definition 2.1

Let $I=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ be a set of items and a transaction database $D B=\left\{T_{1}, T_{2}, \ldots, T_{\mathrm{n}}\right\}$, where $T_{i}(i \in[1 . . n])$ is a transaction which contains items in I.
Definition 2.2
The support or supp (or occurrence frequency) of a pattern A, where A is a set of items, is the number of transactions containing A in $D B$. A pattern A is frequent if A 's support is no less than a predefined minimum support threshold, minsup.

Definition 2.3

An item x is called a frequent item if $\operatorname{supp}(x) \geq$ minsup, otherwise it is called an infrequent item.

Given a transaction database $D B$ and a minimum support threshold minsup, the problem of finding the complete set of frequent itemsets is called the frequent itemset mining problem and any element of the complete set is called a frequent itemset. For greater understanding, we provide an example to describe the above definitions.
Example 1. The Fig. 1 is a $D B$. It consists of five transactions $T_{1}, T_{2}, T_{3}, T_{4}$, and T_{5} labelled as Transactions in the Fig.1, and seventeen items i_{1}, i_{2}, i_{3}, $i_{4}, i_{5}, i_{6}, i_{7}, i_{8}, i_{9}, i_{10}, i_{11}, i_{12}, i_{13}, i_{14}, i_{15}, i_{16}$, and i_{17}, labelled as Items in the Fig.1. For example, the first transaction is T_{1} containing $i_{6}, i_{1}, i_{3}, i_{4}, i_{7}, i_{9}, i_{13}$, and i_{16}.

Transactions	Items
T_{1}	$i_{6}, i_{1}, i_{3}, i_{4}, i_{7}, i_{9}, i_{13}, i_{16}$
T_{2}	$i_{1}, i_{2}, i_{3}, i_{6}, i_{12}, i_{13}, i_{15}$
T_{3}	$i_{2}, i_{6}, i_{8}, i_{10}, i_{15}$
T_{4}	$i_{2}, i_{3}, i_{11}, i_{17}, i_{10}$
T_{5}	$i_{1}, i_{6}, i_{3}, i_{5}, i_{12}, i_{16}, i_{13}, i_{14}$

Fig. 1 A transaction database $D B$

2.2 Data Structure

In this subsection, we summarize background knowledge of the designing and construction of the Vertical Index List which introduced in [2, 9, 11].

Definition 2.4

Let $T_{i}=\left\{x_{1}, x_{2}, x_{3}, \ldots, x_{m}\right\}$ be a transaction in $D B$, where $i=1,2, \ldots, m$ and x_{j} is an item for $j=1,2, \ldots, n$. A Vertical Index List (or VIL) is the structure constructed from a scan of each T_{i} in $D B$ only once. Each row in VIL contains an item in I, support of item in I, and transactions in $D B$ which contain such an item. The set of transaction will be written in order according to the ascending of its identification number.

Example 2. We use an example $D B$ in Fig.1. The $D B$ is scanned once to create the $V I L$. We first create all the item set to the VIL and define all supports as zero.

The first transaction is T_{1} and consists of itemset $<i_{6}, i_{1}, i_{3}, i_{4}, i_{7}, i_{9}, i_{13}, i_{16}>$. The T_{1} will be inserted into corresponding item name ordering by sequential of itemset. Therefore, the T_{1} will be the first inserted at the transaction of item $\left\langle i_{6}\right\rangle$ and increase support of item $\left\langle i_{6}\right\rangle$ with 1 . The second examined item is $\left\langle i_{1}\right\rangle$, we insert T_{1} at item $\left.<i_{1}\right\rangle$ and increase support of item $\left.<i_{1}\right\rangle$ with 1 . Next, we examine item $\left\langle i_{3}\right\rangle$, we subsequently insert T_{1} at item $\left\langle i_{3}\right\rangle$ and increase support of item with 1 , then, the remaining items (i_{4}, $i_{7}, i_{9}, \mathrm{i}_{13}, i_{16}$) in T_{1} can be done in the same way. The remaining transactions (T_{2}, T_{3}, T_{4}, and T_{5}) in $D B$ can also be done in the same way. We present the insertion of all transaction in Fig.2.

Items	Support	Transactions
i_{1}	3	T_{1}, T_{2}, T_{5}
i_{2}	3	T_{2}, T_{3}, T_{4}
i_{3}	4	$T_{1}, T_{2}, T_{4}, T_{5}$
i_{4}	1	T_{1}
i_{5}	1	T_{5}
i_{6}	4	$T_{1}, T_{2}, T_{3}, T_{5}$
i_{7}	1	T_{1}
i_{8}	1	T_{3}
i_{8}	1	T_{1}
i_{10}	1	T_{3}
i_{11}	1	T_{4}
i_{12}	2	T_{2}, T_{5}
i_{13}	3	T_{1}, T_{2}, T_{5}
i_{14}	1	T_{5}
i_{15}	2	T_{2}, T_{3}
i_{16}	3	T_{1}, T_{4}, T_{5}
i_{17}	1	T_{4}

Fig. 2 The structure of VIL
The construction of the VIL is presented in the Fig.3.
Algorithm 1 (Vertical-Index-List Construction) Input: $D B$, minsup
Output: VIL
Method: The VIL is constructed as follows Begin
scan the transaction database $D B$ once.
create all items and define all $\operatorname{supp}\left(x_{i}\right)=0$ to $V I L$.
For each transaction T_{i} in DB
For each x_{i} in T_{i} do
insert TID of x_{i} to TID-set which
corresponding with x_{i}
count supp $\left(x_{i}\right)$
End //For
End //For
End //Begin
Fig. 3 The construction of vertical index list algorithm

Definition 2.5

The sorted-list (or $S L$) is the structure consisting of any item x and its support which selected from VIL if $\operatorname{supp}(x) \geq$ minsup.
Example 3. For this example, let the user defined minsup be 3. The construction of the $S L$ is started from selection any item in the VIL which supp(item) \geq minsup and contain selected to the $S L$ with ascending sort of support, as seen in Fig.4. All items in Fig. 4 are frequent items.

Items	Support
i_{1}	3
i_{2}	3
i_{13}	3
i_{16}	3
i_{3}	4
i_{6}	4

Fig. 4 The structure of $S L$
The construction of the $S L$ is presented in the Fig.5.

```
Algorithm 2 (Sorted-List Construction)
Input: VIL
Output: \(S L\)
Method: The \(S L\) is construction as follows.
Begin
    For each \(x_{i}\) in the \(V I L\)
        select \(\operatorname{supp}\left(x_{i}\right) \geq\) minsup to the \(S L\) with
            ascending sort of support
    End //For
End //Begin
```

Fig. 5 The algorithm of the construction of the VIL.

3 The Approach

In this section, we present a new algorithm, called the JoinFI-Mine algorithm. The main features of this proposed algorithm are: (1) the frequent itemsets are found without generation of candidate itemsets; (2) the algorithm uses the efficiency of searching technique and mathematic properties to reduce subsequent of mining; and (3) the decision maker can change minimum support threshold without rescanning of database. From the above features, we obtained all frequent itemsets very quickly. We give the definitions, the examples and the algorithms for illustrative of how to mine frequent itemsets. We prove that the JoinFI-Mine algorithm can mine frequent itemsets completely and correctly.

Definition 3.1

Let I be the set of all items in $D B, S$ be the set of all supports of items in $I,<_{l}$ the lexicographic order in I and < the usual less than order in S. We define the
order relation $<$ in $I \times S$ by $(a, m)<(b, n)$ if $m=n$ and a $<_{l} b$ or if $m<n$, shortly we use $a<b$ for ($\left.a, m\right)<(b, n)$. It is to note that in the table of $S L$, each row is of the form $(a, s) \in I \times S$ and clearly if (a, m) and (b, n) are the $i^{\text {th }}$ row and $j^{\text {th }}$ row of $S L$ respectively, then (a, m) $<(b, n)$ iff $i<j$, that is $a<b$ iff $i<j$.
Example 3. In this example, we describe the $S L$'s property which is shown in Fig. 4 and definition 3.1. The set I consists of six items, and the set S consists of six corresponding supports. The relation of $I \times S$ are ordered by $<_{l}$ and $<$. Therefore, the order in the $S L$ are $\left(i_{1}, 3\right)<\left(i_{2}, 3\right)<\left(i_{13}, 3\right)<\left(i_{16}, 3\right)<\left(i_{3}, 4\right)<\left(i_{6}, 4\right)$. The i_{1} 's support is equal to i_{2} 's support but $i_{1}<i_{2}$, so i_{1} appears before i_{2}. The i_{3} 's support is greater than the support of $i_{1}, i_{2}, i_{13}, i_{16}$, so the order of i_{3} in the $S L$ appears after i_{1}, i_{2}, i_{13}, and i_{16}.

Definition 3.2

Let a_{1} and a_{2} be two items in $S L$ with $a_{1}<a_{2}$ and $\operatorname{supp}\left(a_{1} a_{2}\right) \geq$ minsup. Then we define $J F_{2}\left(a_{1} a_{2}\right):=\left\{a_{1} a_{2}\right\}$ and $J F_{k}\left(a_{1} a_{2}\right):=\left\{\begin{array}{lll}a_{1} a_{2} & \ldots & a_{\mathrm{k}} \mid a_{3}, \ldots, a_{k}\end{array}\right.$ are in $S L$ where $a_{1}<\ldots<a_{k}$ with $\operatorname{supp}\left(a_{1} \ldots a_{k}\right) \geq$ minsup $\}$ for $k \geq 3$.
Example 4. In Fig.4, $i_{1}, i_{13}, i_{3}, i_{6}$ are items in $S L$ such that $i_{1}<i_{13}<i_{3}<i_{6}$ and in Fig.2, $\operatorname{supp}\left(i_{1} i_{13} i_{3} i_{6}\right)=3$ therefore $J F_{2}\left(i_{1} i_{13}\right)=\left\{i_{1} i_{13}\right\}, \quad J F_{3}=\left\{i_{1} i_{13} i_{3}\right\} \quad$ and $J F_{4}=\left\{i_{1} i_{13} i_{3} i_{6}\right\}$.

Definition 3.3

Let $k \geq 2$ and a_{1}, \ldots, a_{k} be items in $S L$. Then $a_{1} \ldots a_{\mathrm{k}}$ is called the terminal frequent k-itemset generated by $a_{1} a_{2}$ (denoted by $T I_{k}\left(a_{1} a_{2}\right)$) iff $a_{1} \ldots a_{\mathrm{k}} \in J F_{k}\left(a_{1} a_{2}\right)$, $\operatorname{supp}\left(a_{1} \ldots a_{k} b\right)<\operatorname{minsup}, \operatorname{supp}\left(a_{1} \ldots a_{i} b a_{i+1} \ldots a_{k}\right)<$ minsup and $\operatorname{supp}\left(b a_{1} \ldots a_{\mathrm{k}}\right)<\operatorname{minsup}$ if b is in $S L$ with $b \neq a_{i}$ for each $i=1, \ldots, k$.
Definition 3.4
Let $b_{1} \ldots b_{i}$ be $T I_{i}\left(b_{1} b_{2}\right)$. Then $b_{1} \ldots b_{i}$ is repeated-itemset (denoted by RI) if there exists $k>i$ such that $\left\{b_{1}, \ldots, b_{i}\right\} \subset\left\{a_{1}, \ldots, a_{k}\right\}$ and $a_{1} \ldots a_{k}$ is $T I_{k}\left(a_{1} a_{2}\right)$.

Definition 3.5

Let a_{1} and a_{2} be items in $S L$ with $a_{1}<a_{2}$. Let $a_{1} \ldots a_{k}$ be $T I_{k}\left(a_{1} a_{2}\right)$ with $k \geq 3$. Then the set of all subsets A of $\left\{a_{1}, \ldots, a_{k}\right\}$ such that $|A| \geq 3$ is called an extendableitemset generated by $a_{1} a_{2}$ and is denoted by $\operatorname{EI}\left(a_{1} a_{2}\right)$.

Definition 3.6

We define $J F_{1}:=\{a \in I \mid a$ is an item in $S L\}$, $J F_{2}:=\left\{a_{1} a_{2} \mid a_{1} a_{2}\right.$ is $\left.T I_{2}\left(a_{1} a_{2}\right)\right\}, J F_{k}:=\left\{a_{1} a_{2} \ldots a_{k} \mid\left\{a_{1}, \ldots\right.\right.$, $\left.a_{k}\right\} \subset\left\{b_{1}, \ldots, b_{i}\right\}$ where $b_{1} \ldots b_{i}$ is $T I_{i}\left(b_{1} b_{2}\right)$ for some $\left.i\right\}$ for $k \geq 3$.

Definition 3.7.

The whole frequent itemsets are given by $W F I:=\bigcup_{k \geq 1} J F_{k}$.

For the examples of definition 3.3 to 3.7 , we can see more details in example 5 . Based on the above
definitions and examples, the JoinFI-Mine algorithm consists of the following steps as shown in Fig.6.

Algorithm 3 (JoinFI-Mine: Mining of frequent itemsets by using VIL with control order of the frequent items in $S L$)
Input: $V I L, S L$, user define support: $m s$, number of transaction: $n t$
Output: The Complete set of frequent itemsets
Procedure FindMinsup ($m s, n t$)
Begin
minsup $=\operatorname{ceil((ms/100)*nt)~}$
End // Begin
Procedure JoinFI-Mine(SL,VIL, minsup, x)
Begin
For $i=1$ to n
$\mathrm{c}=i+1, k=c$
While $c<>n$ Do
find $J F_{k}\left(x_{i} x_{c}\right)$
If $\operatorname{supp}\left(J F_{k}\left(x_{i} x_{c}\right)\right) \geq \operatorname{minsup}$ Then call CkMostDepth call CkRI
End // If

$$
c=c+1
$$

End // While
End // For
Result $W F I:=U_{k \geq 2} J F_{k}$
End // Begin
Procedure CkMostDepth $\left(J F_{k}\left(x_{i} x_{c}\right), i, n\right)$
Begin
$\alpha=\operatorname{minsup}, c=i+2, k=c, f=J F_{k}\left(x_{i} x_{c}\right)$
For $c<=n$
While ($(c \leq n)$ and ($\alpha \geq$ minsup)) Do
$c=c+1$
If $\alpha=\operatorname{supp}\left(f x_{c}\right) \geq$ minsup Then
$f=f x_{c}$
End // If
$c=c+1$
End // While
$\alpha=$ minsup
End // For
$\alpha=$ minsup
$T I_{k}(f)=f$

End// Begin

Procedure CkRI (f)
If $T l_{k}(f) \notin J F_{k}$ Then // insert new answer store $T I_{k}(f)$ to $J F_{k} / /$ where k is the size of $T I_{k}$ call ExpandItemset $\left(T I_{k}(f)\right.$)
End //If
Procedure ExpandItemset ($T I_{k}(f)$)
If $\left|T I_{k}(f)\right|>2$ then //Expand itemset find all subset of $T I_{k}(f)$ (or EI) except $|E I| \leq 2$ If $E I \notin J F_{k}$ then store $E I$ to $J F_{k} / /$ where k is the size of $T I_{k}$ End //If
End // If
Fig. 6 The proposed algorithm

An example 5 illustrates the details of the mining of frequent itemsets process based on definitions and algorithms in section 2 and section 3 . The processing of reducing subsequent mining process which can be seen in this example and the result of all the answer sets is shown in Table 1. All frequent itemsets which separate by sequential of the k-level is presented in Table 2.
Example 5. Let the user want to make the decision at minimum support be 45% and according to Fig.2, Fig.4, Fig. 6 and all definitions. First, we compute minsup $=\operatorname{ceil}((45 / 100) * 5)=3$ when the number of transaction in Fig. 1 is 5. The processing steps of mining are presented as follows:
Step (1) Examining the first frequent item: $\left.<i_{1}\right\rangle$.
Step (1.1) Starting the first item in Fig.4, it is an item $\left\langle i_{1}\right\rangle$ and the following item is item $\left\langle i_{2}\right\rangle$. Seeking out at item $\left\langle i_{1}\right\rangle$ and $\left\langle i_{2}\right\rangle$ at Fig.2, we get $J F_{2}\left(i_{1} i_{2}\right):=\left\{i_{1} i_{2}\right\}$. The checking of this step is terminated because $\operatorname{supp}\left(J F_{2}\left(i_{1} i_{2}\right)\right)<$ minsup.

Step (1.2) Seeking item $\left\langle i_{1}\right\rangle$ and $\left.<i_{13}\right\rangle$ in Fig. 4. Seeking out at item $\left\langle i_{1}\right\rangle$ and $\left\langle i_{13}\right\rangle$ at Fig.2, so $J F_{2}\left(i_{1} i_{13}\right):=\left\{i_{1} i_{13}\right\}$ which has support not less than minsup. Therefore, we test next sublevel ($k=3$), as seen in the following deep step of $J F_{2}\left(i_{1} i_{2}\right)$.

Step (1.2.1) In this step, we do CkMostDepth by seeking out at item $\left\langle i_{16}\right\rangle$ at Fig.2. Therefore, $J F_{3}\left(i_{1} i_{13} i_{16}\right):=\left\{i_{1} i_{13} i_{16}\right\}$ which has support less than minsup. Therefore, we terminate this step and examine next step.

Step (1.2.2) In this step, we do CkMostDepth by seeking out at item $<i_{3}>$ at Fig.2. $J F_{3}\left(i_{1} i_{13} i_{3}\right):=\left\{i_{1} i_{13} i_{3}\right\}$ with support is 3 , so we examine next deep step of step (1.2.2).

Step (1.2.2.1) We do CkMostDepth by seeking out at item $\left\langle i_{6}>\right.$ at Fig.2. $J F_{4}\left(i_{1} i_{13} i_{3} i_{6}\right):=\left\{i_{1} i_{13} i_{3} i_{6}\right\}$ which has support not less than minsup and the CkMostDepth is terminated because we process until meet the last item in $S L$. We get $T I_{4}\left(i_{1} i_{13} i_{3} i_{6}\right)$ which its support not less than minsup. Next, we do CkRI and we get $T I_{4}\left(i_{1} i_{13} i_{3} i_{6}\right)$ is the new answer, so we save $\left\{i_{1} i_{13} i_{3} i_{6}\right\}$ to $J F_{4}$ or we can say $J F_{4}:=\left\{i_{1} i_{13} i_{3} i_{6}\right\}$. Next, we do ExpandItemset by examining at $\left|T I_{4}\left(i_{1} i_{13} i_{3} i_{6}\right)\right| \geq$ 3, so we can use the extendable-itemset property to obtain frequent itemsets. $E I_{4}\left(i_{1} i_{13} i_{3} i_{6}\right):=\left\{<i_{1} i_{13}>\right.$, $\left.\left.\left.\left.<i_{1} i_{3}\right\rangle, \quad\left\langle i_{1} i_{6}\right\rangle,<i_{13} i_{3}\right\rangle,<i_{13} i_{6}\right\rangle,<i_{3} i_{6}>,<i_{1} i_{13} i_{3}\right\rangle$, $\left.\left\langle i_{1} i_{13} i_{6}\right\rangle,\left\langle i_{1} i_{3} i_{6}\right\rangle\right\}$. We get $J F_{2}:=\left\{\left\langle i_{1} i_{13}\right\rangle,\left\langle i_{1} i_{3}\right\rangle\right.$, $\left.\left.\left\langle i_{1} i_{6}\right\rangle,<i_{13} i_{3}\right\rangle,\left\langle i_{13} i_{6}\right\rangle,\left\langle i_{3} i_{6}\right\rangle\right\}, J F_{3}:=\left\{<i_{1} i_{13} i_{3}\right\rangle$, $\left.\left\langle i_{1} i_{13} i_{6}\right\rangle,\left\langle i_{1} i_{3} i_{6}\right\rangle\right\}$. We then terminate this searching path.

Step (1.3) Seeking out at item $\left\langle i_{16}\right\rangle$ at Fig.2. $J F_{2}\left(i_{1} i_{16}\right):=\left\{i_{1} i_{16}\right\}$ which has support less than minsup. Therefore, we terminate this step and examine next step.

Step (1.4) Seeking out at item $\left\langle i_{3}\right\rangle$ at Fig.2. When we do similar above, we get $T I_{3}\left(i_{1} i_{3} i_{6}\right)$. We find that it is $R I$, so we terminate this step.

Step (1.5) Comparing operation of $J F_{2}\left(i_{1} i_{6}\right)$ is not required because an item $\left\langle i_{6}>\right.$ is the last item of $S L$ and is member of $J F_{2}$, so we terminate this step.

Step (2.1) Examine at item $\left\langle i_{2}\right\rangle$ at Fig.4. We do similar with the above process. We get all steps of this item having support less than minsup, so we terminate this step.

Step (3.1) Examine at item $\left\langle i_{13}\right\rangle$ and the next item is $\left\langle i_{16}\right\rangle$ at Fig.4. Seeking out at item $\left\langle i_{13}\right\rangle$ and $\left.<i_{16}\right\rangle$ at Fig. 2 and getting its support not less than minsup, so we terminate this step.

Step (3.2) Examine at item $<i_{13}>$ and the next item is $\left\langle i_{3}\right\rangle$ at Fig.4. Seeking out at item $\left\langle i_{13}\right\rangle$ and $\left.<i_{3}\right\rangle$ at Fig.2. When we do similar above, we get $T I_{3}\left(i_{13} i_{3} i_{6}\right)$. We find that it is $R I$, so we terminate this step.

Step (3.3) Comparing operation of $J F_{2}\left(i_{13} i_{6}\right)$ is not required because an item $<i_{6}>$ is the last item of $S L$ and is a member of $J F_{2}$, so we terminate this step.

Step (4.1) Examining the fourth item of $S L$: $<i_{16}>$; and the following item is $\left\langle i_{3}\right\rangle$. Seeking out at item $<i_{16}>$ and $<i_{3}>$ at Fig.2, we get $J F_{2}\left(i_{16} i_{3}\right):=\left\{i_{16} i_{3}\right\}$. When we do similar above, we get $T I_{3}\left(i_{16} i_{3} i_{6}\right)$ which has support less than minsup. Therefore, $J F_{2}\left(i_{16} i_{3}\right)$ is $T I_{2}\left(i_{16} i_{3}\right)$, and is not $R I$. We save $J F_{2}\left(i_{16} i_{3}\right)$ to $J F_{2}$.

Step (4.2) Comparing operation of $J F_{2}\left(i_{16} i_{6}\right)$ is not required because an item $\left\langle i_{6}\right\rangle$ is the last item of $S L$ and is a member of $J F_{2}$, so we terminate this step.

Step (5.1) Examining the fifth item of $S L:<i_{3}>$; and the last item is $\left\langle i_{6}\right\rangle$. Comparing operation of $J F_{2}\left(i_{3} i_{6}\right)$ is not required because an item $\left\langle i_{6}\right\rangle$ is the last item of $S L$ and is a member of $J F_{2}$, so we terminate this step.

After all of items are done, we present all frequent itemsets which separate by sequential of generation in Table 1 and by sequential of the frequent k-itemsets in Table 2.

Table 1

All frequent itemsets which separate by sequential of processing

Items	Frequent Itemsets
i_{1}	$<i_{1} i_{3} i_{6} i_{13}>,\left\{<i_{1} i_{3}>,<i_{1} i_{6}>,<i_{1} i_{13}>,<i_{3} i_{6}>\right.$, $<i_{3} i_{13}>,<i_{6} i_{13}>,<i_{1} i_{3} i_{6}>,<i_{1} i_{3} i_{13}>,<i_{1} i_{6} i_{13}>$, $\left.<i_{3} i_{6} i_{13}>\right\}$
i_{2}	\emptyset
i_{13}	\emptyset
i_{16}	$<i_{3} i_{16}>$
i_{3}	\emptyset

The Table 1 shows that the JoinFI-Mine algorithm is able to expand frequent itemsets and reduce subsequence of mining. The mining step of item $\left\langle i_{1}\right\rangle$
can show the expansion of frequent itemsets which is $J F_{4}:=\left\{i_{1} i_{13} i_{3} i_{6}\right\}$ and the result of expansion are $\left\{\left\langle i_{1} i_{3}\right\rangle,\left\langle i_{1} i_{6}\right\rangle,\left\langle i_{1} i_{13}\right\rangle,\left\langle i_{3} i_{6}\right\rangle,\left\langle i_{3} i_{13}\right\rangle,\left\langle i_{6} i_{13}\right\rangle,\left\langle i_{1} i_{3} i_{6}\right\rangle\right.$, $\left.\left\langle i_{1} i_{3} i_{13}\right\rangle,\left\langle i_{1} i_{6} i_{13}\right\rangle,\left\langle i_{3} i_{6} i_{13}\right\rangle\right\}$. Moreover, the operation of $E I$ reduces the operation of the following items such as $\left\langle i_{13}\right\rangle$ and $\left\langle i_{3}\right\rangle$. Because we can get some answer in previous operation so we do not operate for some item in $S L$.

Table 2
All frequent itemsets which separate by k-level

k	frequent k-itemsets
2	$<i_{1} i_{3}>,<i_{1} i_{6}>,<i_{1} i_{13}>,<i_{3} i_{6}>,<i_{3} i_{13}>,<i_{3} i_{16}>,<i_{6} i_{13}>$
3	$<i_{1} i_{3} i_{6}>,<i_{1} i_{3} i_{13}>,<i_{1} i_{6} i_{13}>,<i_{3} i_{6} i_{13}>$
4	$<i_{1} i_{3} i_{6} i_{13}>$

The Table 2 shows all frequent itemsets which separate by k-level such frequent 2-itemsets, frequent 3-itemsets, and frequent 4-itemsets or $J F_{2}=\left\{<i_{1} i_{3}\right\rangle$, $\left.\left\langle i_{1} i_{6}\right\rangle,\left\langle i_{1} i_{13}\right\rangle,\left\langle i_{3} i_{6}\right\rangle,\left\langle i_{3} i_{13}\right\rangle,\left\langle i_{3} i_{16}\right\rangle,\left\langle i_{6} i_{13}\right\rangle\right\}, J F_{3}=$ $\left\{\left\langle i_{1} i_{3} i_{6}\right\rangle,\left\langle i_{1} i_{3} i_{13}\right\rangle,\left\langle i_{1} i_{6} i_{13}\right\rangle,\left\langle i_{3} i_{6} i_{13}\right\rangle\right\}$, and $J F_{4}=$ $\left\{<i_{1} i_{3} i_{6} i_{13}>\right\}$. Therefore, all frequent itemsets which appears in Table 2 are WFI.

4 The Correctness

In the following theorem, we present that the proposed algorithm can mine all frequent itemsets completely and correctly.

Theorem.

The $W F I$ is the answer set.

Proof.

Let $a_{1} a_{2} \ldots a_{k}$ be in $W F I$. Then $a_{1} a_{2} \ldots a_{k} \in J F_{k}$. If $k=1$, then a_{1} is in $S L$ and thus a_{1} is a frequent item. If $k=2$, then $a_{1} a_{2}$ is $T I_{2}\left(a_{1} a_{2}\right)$ and therefore clearly from definition 2 and definition $3, a_{1} a_{2}$ is a frequent itemset. For $k \geq 3$, from definition 6 there exist $i \geq k$ and b_{1}, \ldots, b_{i} such that $\left\{a_{1}, \ldots, a_{k}\right\} \subset\left\{b_{1}, \ldots, b_{i}\right\}$ and b_{1}, \ldots, b_{i} is $T I_{i}\left(b_{1} b_{2}\right)$, i.e., $a_{1} \ldots a_{\mathrm{k}} \in E I\left(a_{1} a_{2}\right)$. Hence by definition 2 and definition 3 , we see that $a_{1} \ldots a_{k}$ is a frequent k itemset.

Conversely, let $a_{1} a_{2} \ldots a_{k}$ be a frequent k-itemset. It is easy to see that if $k=1,2$, then $a_{1} a_{2} \ldots a_{k} \in W F I$ and for $k \geq 3$, if $a_{1} \ldots a_{\mathrm{k}}$ is not $T I_{\mathrm{k}}\left(a_{1} a_{2}\right)$, then it is in some $J F_{k}\left(b_{1} b_{2}\right)$ and therefore $a_{1} a_{2} \ldots a_{\mathrm{k}} \in J F_{k}$. Hence $a_{1} \ldots a_{\mathrm{k}} \in$ $W F I$. The proof is complete.

5 Conclusion

We have presented a new algorithm to mine all frequent itemsets, named JoinFI-Mine algorithm. This algorithm reads transaction database by scanning only one time and does not generate candidate sets. Our method reduces huge of subsequence mining by using
mathematics properties so we can find all frequent itemsets very quickly and also correctly. In case that the decision maker wants to change the minimum support threshold, our algorithm is performed without rescanning of database. We presented our method by giving definitions, algorithms, examples, and concluded by proving correctness of the proposed algorithm. The proof shows that our algorithm can mine all frequent itemsets completely and correctly.

References:

[1] R. Agrawal and R. Srikant: Fast Algorithm for Mining Association Rules, Proceedings of the $20^{\text {th }}$ International Conference on Very Large Data Bases, Chile, September 1994, 487-499.
[2] P-N. Tan, M. Steinbach, \& V. Kumar, Introduction to Data Mining (Pearson Education Inc., 2006).
[3] J. Han, J. Pei, \& Y. Yin: Mining Frequent Pattern without Candidate Generation, Proceedings of the 2000 ACM SIGMOD international conference on Management of Data, Texas, May 2000, 1-12.
[4] J. Han, J. Pei, Y. Yin, \& R. Mao: Mining Frequent Pattern without Candidate Generation: a Frequent Pattern Tree, Springer, vol. 8, 2004, no 1, 53-87.
[5] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, \& D. Yang: Hmine: Hyper-Structure Mining of Frequent Patterns in Large Databases, Proceedings of the 2001 IEEE International Conference on Data Mining, USA, November 2001, 441-448.
[6] A. Pietracaprina, \& D.Zandolin: Mining Frequent Itemsets Using Patricia Tries, Proceedings of the $3^{\text {rd }}$ IEEE International Conference on Data Mining, Florida, USA, November 2003.
[7] G. Grahne, \& J. Zhu: Efficiently Using Prefix-Trees in Mining Frequent Itemsets," Proceedings of the $3^{\text {rd }}$ IEEE International Conference on Data Mining, Florida, USA, November 2003.
[8] S. Sahaphong, \& V. Boonjing: The Combination Approach to Frequent Itemsets Mining, Proceedings of the 2008 International Conference on Convergence and hybrid Information Technology, Korea, November 2008, 565-570.
[9] M.J. Zaki, Scalable Algorithms for Association Mining, IEEE Transaction on Knowledge and Data Engineering, vol. 12, no. 3, 2000, 372-390.
[10] D. J. Chai, L. Jin, B. Hwang, \& K. H. Ryu: Frequent Pattern Mining Using Bipartite Graph, Proceedings of the $18^{\text {th }}$ International Conference on Database and Expert Systems Applications, Germany, August 2007, 182-186.
[11] S. Sahaphong, Frequent Itemsets Mining Using Vertical Index List, Proceedings of the $2^{\text {nd }}$ IEEE International Conference on Computer Science and Information Technology, China, August 2009, 480-484.
[12] J. Han, \& M. Kamber, Data Mining: Concepts and Techniques, Elsevier, Maryland Heights MO, 2006.

