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Abstract: - Association rule mining among frequent items has been widely studied in data mining field. Many 
researches have improved the algorithm for generation of all the frequent itemsets. In this paper, we proposed a 
new algorithm to mine all frequents itemsets from a transaction database. The main features of this paper are: (1) 
the database is scanned only one time to mine frequent itemsets; (2) the new algorithm called the JoinFI-Mine 
algorithm which use mathematics properties to reduces huge of subsequence mining; (3) the proposed algorithm 
mines frequent itemsets without generation of candidate sets; and (4) when the minimum support threshold is 
changed, the database is not require to scan. We have provided definitions, algorithms, examples, theorem, and 
correctness proving of the algorithm. 
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1 Introduction 
Nowadays there are tremendous amounts of data 
which have been collected and stored in large 
databases, and which cannot be analyzed using 
manual systems. For example, how can one find the 
items which occur together from large amounts of 
data?, how do the items in a massive data set relate to 
the others?, what items in the data set frequently 
appear?. Therefore, powerful data analysis is 
necessary to solve these requirements. One solution is 
to use frequent itemset mining. Frequent itemsets 
mining is an essential step in association rule mining. 
The association rule mining algorithm is to 
decompose into two major subtasks: 

• The generation of all the frequent itemsets 
that satisfy the minimal support threshold. 

• The extraction of all high confidence rules 
from frequent itemsets found in previous step. 

Our work focuses on the mining of frequent 
itemsets. The first classic algorithm is Apriori which 
is proposed in [1]. The Apriori principle is “If an 
itemsets is frequent, then all of its subsets must also be 
frequent” [2]. The Apriori algorithm uses a level-wise 
and breadth-first search approach for generating  
 

 
association rule. It uses the support-based pruning to 
control the exponential growth of candidate itemsets.  
However, the algorithms based on generated and 
tested candidate itemsets have two major drawbacks: 

• The database must be scanned multiple times 
to generate candidate sets. Multiple scans will 
increase the I/O load and is time-consuming.  

• The generation of huge candidate sets and 
calculation of their support will consume a lot 
of CPU time. 

The drawbacks which presented as above were 
overcome by using the next generation of algorithm, 
called the FP-growth algorithm [3]. The advantages of 
mining of frequent itemsets by using the FP-growth 
algorithm such as: First, the database is scanned only 
two times. Next, the generating of candidate sets is not 
required. The FP-growth algorithm performs depth-
first search approach in the search space. It encodes 
the data set using a compact data structure called FP-
tree and extracts frequent pattern directly from this 
prefix tree [4]. The following researches have 
improved this idea. In reference [5], the H-mine 
algorithm was introduced by using array-based and 
trie-based data structure. The Patricia Mine algorithm 
was proposed in [6] that compressed Patricia trie to 
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store the data sets. The FPgrowt* algorithm reduced 
the FP-tree traversal time by using array technique 
[7]. In reference [8], the SFI-Mine algorithm which 
constructs pattern-base by using a new method which 
is different from pattern-base in FP-growth and mines 
frequent itemsets with a new combination method 
without recursive construction of conditional FP-tree. 
However, most of the FP-tree algorithm base has the 
following drawbacks:  

• Mining of frequent itemset from the FP-tree, 
it generates huge of conditional FP-tree and 
takes a lot of time and space. 

• When the changing of minimum support, this 
algorithm may restart and scan database 
twice. 

Many researchers have proposed ways to scan 
database once. The Eclat algorithm was proposed by 
using the join step from the Apriori property to 
generate frequent pattern [9]. In Reference [10], the 
new data structure, called LIB-graph is proposed to 
contain data when database is scanned and discovery 
of frequent patterns by using recursive conditional 
FP-tree. The Sorted-List structure which created from 
the Vertical Index List was proposed to contained data 
from scanning database once and mining of frequent 
itemsets by using depth-first search [11]. 

In this paper, we proposed the algorithm, called 
JoinFI-Mine algorithm. The main advantages of our 
method are presented as follows: 

• The database is scanned only one time to 
mine frequent itemsets.  

• The JoinFI-Mine algorithm mines frequent 
itemsets without generation of candidate sets. 
The results of this method are still obtaining 
complete and correct frequent itemset. 

• The rescanning of the database is not 
required, if decision maker want to change of 
the minimum support threshold. 

This paper is organized as follows. The prior 
knowledge is presented in section 2, followed by the 
approach which is presented in section 3, the 
correctness proof is shown in section 4 and the finally, 
the conclusion is addressed in section 5. 
 
 

2 Prior Knowledge 
 
 
2.1 Basic Definition 
This subsection introduces basic concepts for mining 
of frequent itemsets. All definitions in this subsection 
are proposed by J. Han et al in [4, 12], as follows. 
 

Definition 2.1  
Let I ={x1,x2,…, xm} be a set of items and a 
transaction database DB={T1,T2,…,Tn}, where 
Ti(i 1..n ) is a transaction which contains items in I.  
Definition 2.2  
The support or supp (or occurrence frequency) of a 
pattern A, where A is a set of items, is the number of 
transactions containing A in DB. A pattern A is 
frequent if A’s support is no less than a predefined 
minimum support threshold, minsup.  
Definition 2.3  
An item x is called a frequent item if supp(x)≥minsup, 
otherwise it is called an infrequent item.  
 
       Given a transaction database DB and a minimum 
support threshold minsup, the problem of finding the 
complete set of frequent itemsets is called the frequent 
itemset mining problem and any element of the 
complete set is called a frequent itemset. For greater 
understanding, we provide an example to describe the 
above definitions. 
Example 1. The Fig.1 is a DB. It consists of five 
transactions T1, T2, T3, T4, and T5 labelled as 
Transactions in the Fig.1, and seventeen items i1, i2, i3, 
i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14, i15, i16, and i17, 
labelled as Items in the Fig.1. For example, the first 
transaction is T1 containing i6, i1, i3, i4, i7, i9, i13, and 
i16.   
 

Transactions Items 
T1 i6, i1, i3, i4, i7, i9, i13, i16 
T2 i1, i2, i3, i6, i12, i13, i15 
T3 i2, i6, i8, i10, i15 
T4 i2, i3, i11, i17, i10 
T5 i1, i6, i3, i5, i12, i16, i13, i14 

Fig.1 A transaction database DB 
 
  
2.2 Data Structure 
In this subsection, we summarize background 
knowledge of the designing and construction of the 
Vertical Index List which introduced in [2, 9, 11]. 
Definition 2.4  
Let Ti={x1,x2,x3,…,xm} be a transaction in DB, where 
i=1,2,…,m and xj is an item for j=1,2,…,n. A Vertical 
Index List (or VIL) is the structure constructed from a 
scan of each Ti in DB only once. Each row in VIL 
contains an item in I, support of item in I, and 
transactions in DB which contain such an item. The 
set of transaction will be written in order according to 
the ascending of its identification number. 
 

Recent Researches in Artificial Intelligence, Knowledge Engineering and Data Bases

ISBN: 978-960-474-273-8 74



Example 2. We use an example DB in Fig.1. The DB 
is scanned once to create the VIL. We first create all 
the item set to the VIL and define all supports as zero.  
    The first transaction is   and consists of itemset 
<i6, i1, i3, i4, i7, i9, i13, i16>. The T1 will be inserted into 
corresponding item name ordering by sequential of 
itemset. Therefore, the T1 will be the first inserted at 
the transaction of item <i6> and increase support of 
item <i6> with 1. The second examined item is <i1>, 
we insert  at item <i1> and increase support of item 
<i1> with 1. Next, we examine item <i3>,  we 
subsequently  insert  at item <i3> and increase 
support of item with 1, then, the remaining items (i4, 
i7, i9, i13, i16) in  can be done in the same way. The 
remaining transactions ( , , ,  and ) in DB can 
also be done in the same way. We present the 
insertion of all transaction in Fig.2. 
 

Items Support Transactions
i1 3 T1, T2, T5 
i2 3 T2, T3, T4 
i3 4 T1, T2, T4, T5 
i4 1 T1 
i5 1 T5 
i6 4 T1, T2, T3, T5 
i7 1 T1 
i8 1 T3 
i8 1 T1 
i10 1 T3 
i11 1 T4 
i12 2 T2, T5 
i13 3 T1, T2, T5 
i14 1 T5 
i15 2 T2, T3 
i16 3 T1, T4, T5 
i17 1 T4 

Fig.2 The structure of VIL 
 

   The construction of the VIL is presented in the Fig.3. 
Algorithm 1 (Vertical-Index-List Construction) 
Input: DB, minsup  
Output: VIL 
Method: The VIL is constructed as follows 
Begin 
  scan the transaction database DB once. 
  create all items and define all supp(xi)= 0 to VIL.            
  For each transaction Ti in DB 
     For each xi in Ti do 
         insert TID of xi to TID-set which  
                   corresponding with xi 
         count supp(xi) 
     End //For 
  End //For 
End //Begin 

Fig.3 The construction of vertical index list algorithm 

Definition 2.5 
The sorted-list (or SL) is the structure consisting of 
any item x and its support which selected from VIL if 
supp(x) minsup. 
Example 3. For this example, let the user defined 
minsup be 3. The construction of the SL is started 
from selection any item in the VIL which supp(item) 

minsup and contain selected to the SL with 
ascending sort of support , as seen in Fig.4. All items 
in Fig.4 are frequent items. 
 

Items Support 
i1 3 
i2 3 
i13 3 
i16 3 
i3 4 
i6 4 

Fig.4 The structure of SL 
 
The construction of the SL is presented in the Fig.5. 

Algorithm 2 (Sorted-List Construction) 
Input: VIL 
Output: SL 
Method: The SL is construction as follows. 
Begin 
    For each xi in the VIL  
       select supp(xi) ≥  minsup to the SL with  
                 ascending sort of support 
   End //For 
End //Begin 
Fig.5 The algorithm of the construction of the VIL. 

 
 

3 The Approach 
In this section, we present a new algorithm, called the 
JoinFI-Mine algorithm. The main features of this 
proposed algorithm are: (1) the frequent itemsets are 
found without generation of candidate itemsets; (2) 
the algorithm uses the efficiency of searching 
technique and mathematic properties to reduce 
subsequent of mining; and (3) the decision maker can 
change minimum support threshold without 
rescanning of database. From the above features, we 
obtained all frequent itemsets very quickly. We give 
the definitions, the examples and the algorithms for 
illustrative of how to mine frequent itemsets. We 
prove that the JoinFI-Mine algorithm can mine 
frequent itemsets completely and correctly.  
Definition 3.1 
Let I be the set of all items in DB, S be the set of all 
supports of items in I, <l the lexicographic order in I 
and < the usual less than order in S. We define the 
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order relation < in I S by (a, m) < (b, n) if m=n and a 
<l b or if m < n, shortly we use a < b for (a,m) < (b,n). 
It is to note that in the table of SL, each row is of the 
form (a,s)  I  S and clearly if (a, m) and (b, n) are 
the ith row and jth row of SL respecttively, then (a, m) 
< (b, n) iff i < j, that is a<b iff i < j. 
Example 3. In this example, we describe the SL’s 
property which is shown in Fig.4 and definition 3.1. 
The set I consists of six items, and the set S consists of 
six corresponding supports. The relation of I S are 
ordered by <l and <. Therefore, the order in the SL are 
(i1,3) < (i2,3) < (i13,3) < (i16,3) < (i3,4) < (i6,4). The i1’s 
support is equal to i2’s support but i1 <l i2, so i1 appears 
before i2. The i3’s support is greater than the support 
of i1, i2, i13, i16, so the order of i3 in the SL appears 
after i1, i2, i13, and i16.   
Definition 3.2 
Let a1 and a2 be two items in SL with a1<a2 and 
supp(a1a2) minsup. Then we define JF2(a1a2):={a1a2} 
and JFk(a1a2):={a1a2 ... ak|a3,…,ak are in SL where 
a1<…<ak with supp(a1… ak)  minsup} for k 3. 
Example 4. In Fig.4, i1, i13, i3, i6 are items in SL such 
that i1 < i13 < i3 < i6 and in Fig.2, supp(i1i13i3i6)=3 
therefore JF2(i1i13)={i1i13}, JF3={i1i13i3} and 
JF4={i1i13i3 i6}. 
Definition 3.3 
Let k 2 and a1,…,ak be items in SL. Then a1...ak is 
called the terminal frequent k-itemset generated by 
a1a2 (denoted by TIk(a1a2)) iff a1...ak  JFk(a1a2), 
supp(a1...akb)<minsup, supp(a1…aibai+1…ak)<minsup 
and supp(ba1...ak) < minsup if b is in SL with b ai for 
each i=1,…,k.  
Definition 3.4 
Let b1...bi be TIi(b1b2). Then b1...bi is repeated-itemset 
(denoted by RI) if there exists k > i such that 
{b1,...,bi}⊂{a1,...,ak} and a1...ak is TIk(a1a2).  
Definition 3.5 
Let a1 and a2 be items in SL with a1<a2. Let a1…ak be 
TIk(a1a2) with k 3. Then the set of all subsets A of 
{a1,…,ak} such that |A| 3 is called an extendable-
itemset generated by a1a2 and is denoted by EI(a1a2). 
Definition 3.6 
We define JF1 := {a I|a is an item in SL}, 
JF2:={a1a2|a1a2 is TI2(a1a2)}, JFk:={a1a2… ak|{a1,…, 
ak}⊂{b1,…,bi} where b1...bi is TIi(b1b2) for some i} for 
k 3.  
Definition 3.7. 
The whole frequent itemsets are given by 
WFI:= . 
 
      For the examples of definition 3.3 to 3.7, we can 
see more details in example 5. Based on the above 

definitions and examples, the JoinFI-Mine algorithm 
consists of the following steps as shown in Fig.6.  

Algorithm 3 (JoinFI-Mine: Mining of frequent 
itemsets by using VIL with control order of the 
frequent items in SL) 
Input: VIL, SL, user define support: ms, number of 
transaction: nt  
Output: The Complete set of frequent itemsets 
Procedure FindMinsup(ms, nt) 
Begin 
   minsup =  ceil((ms/100)*nt) 
End // Begin    
Procedure JoinFI-Mine(SL,VIL, minsup, x) 
Begin 
   For i = 1 to n 
     c = i+1, k = c 
     While c <> n Do 
        find JFk(xixc)  
        If supp(JFk(xixc))   minsup Then 
           call CkMostDepth 
           call CkRI 
        End // If 
            c = c+1 
     End // While 
  End // For 
  Result FI  k 2JFk 
End // Begin  
Procedure CkMostDepth (JFk(xixc),i,n) 
Begin 
   ,  c = i+2,  k=c,  f = JFk(xixc) 
   For c <= n 
     While ((c n) and ) Do 
        c = c+1 
         If  = supp( f xc)  minsup Then 
           f = f xc        
         End // If 
         c = c+1 
        End // While 
         
   End // For 
    
   TIk(f)=f 
End// Begin 
Procedure CkRI (f) 
If TIk(f)∉  Then // insert new answer 
   store TIk(f) to JFk   //where k is the size of TIk 
   call ExpandItemset(TIk(f)) 
End //If 
Procedure ExpandItemset (TIk(f)) 
 If |TIk(f)|>2 then //Expand itemset  
     find all subset of TIk(f) (or EI) except | | 2 
     If ∉  then 
         store EI to JFk // where k is the size of TIk 
     End //If 
End // If 

Fig.6 The proposed algorithm 
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    An example 5 illustrates the details of the mining of 
frequent itemsets process based on definitions and 
algorithms in section 2 and section 3. The processing 
of reducing subsequent mining process which can be 
seen in this example and the result of all the answer 
sets is shown in Table 1. All frequent itemsets which 
separate by sequential of the k-level is presented in 
Table 2. 
Example 5. Let the user want to make the decision at 
minimum support be 45% and according to Fig.2, 
Fig.4, Fig.6 and all definitions. First, we compute 
minsup = ceil((45/100)*5) = 3 when the number of 
transaction in Fig.1 is 5. The processing steps of 
mining are presented as follows:  
Step (1) Examining the first frequent item: <i1>. 
     Step (1.1) Starting the first item in Fig.4, it is an 
item <i1> and the following item is item <i2>. Seeking 
out at item <i1> and <i2> at Fig.2, we get 
JF2(i1i2):={i1i2}. The checking of this step is 
terminated because supp(JF2(i1i2)) < minsup. 
     Step (1.2) Seeking item <i1> and <i13> in Fig.4. 
Seeking out at item <i1> and <i13> at Fig.2, so 
JF2(i1i13):={i1i13} which has support not less than 
minsup. Therefore, we test next sublevel (k=3), as 
seen in the following deep step of JF2(i1i2). 
     Step (1.2.1) In this step, we do CkMostDepth by 
seeking out at item <i16> at Fig.2. Therefore, 
JF3(i1i13i16):={i1i13i16} which has support less than 
minsup. Therefore, we terminate this step and examine 
next step. 
     Step (1.2.2) In this step, we do CkMostDepth by 
seeking out at item <i3> at Fig.2. JF3(i1i13i3):={i1i13i3} 
with support is 3, so we examine next deep step of 
step (1.2.2).  
     Step (1.2.2.1) We do CkMostDepth by seeking out 
at item <i6> at Fig.2. JF4(i1i13i3i6):={i1i13i3i6} which 
has support not less than minsup and the 
CkMostDepth is terminated because we process until 
meet the last item in SL. We get TI4(i1i13i3i6) which its 
support not less than minsup. Next, we do CkRI and 
we get TI4(i1i13i3i6) is the new answer, so we save 
{i1i13i3i6} to JF4 or we can say JF4:={i1i13i3i6}. Next, 
we do ExpandItemset by examining at |TI4(i1i13i3i6)| 
 3, so we can use the extendable-itemset property to 
obtain frequent itemsets. EI4(i1i13i3i6) := {<i1i13>, 
<i1i3>, <i1i6>, <i13i3>, <i13i6>, <i3i6>, <i1i13i3>, 
<i1i13i6>, <i1i3i6>}. We get JF2 := {<i1i13>, <i1i3>, 
<i1i6>, <i13i3>, <i13i6>, <i3i6>}, JF3 := {<i1i13i3>, 
<i1i13i6>, <i1i3i6>}. We then terminate this searching 
path.  
     Step (1.3) Seeking out at item <i16> at Fig.2. 
JF2(i1i16) := {i1i16} which has support less than 
minsup. Therefore, we terminate this step and examine 
next step. 

     Step (1.4) Seeking out at item <i3> at Fig.2. When 
we do similar above, we get TI3(i1i3i6). We find that it 
is RI, so we terminate this step. 
     Step (1.5) Comparing operation of JF2(i1i6) is not 
required because an item <i6> is the last item of SL 
and is member of JF2, so we terminate this step. 
    Step (2.1) Examine at item <i2> at Fig.4. We do 
similar with the above process. We get all steps of this 
item having support less than minsup, so we terminate 
this step. 
    Step (3.1) Examine at item <i13> and the next item 
is <i16> at Fig.4. Seeking out at item <i13> and < i16> 
at Fig.2 and getting its support not less than minsup, 
so we terminate this step. 
    Step (3.2) Examine at item <i13> and the next item 
is < i3> at Fig.4. Seeking out at item <i13> and < i3> at 
Fig.2. When we do similar above, we get TI3(i13i3i6). 
We find that it is RI, so we terminate this step.  
       Step (3.3) Comparing operation of JF2(i13i6) is not 
required because an item <i6> is the last item of SL 
and is a member of JF2, so we terminate this step. 
    Step (4.1) Examining the fourth item of SL: <i16>; 
and the following item is <i3>. Seeking out at item 
<i16> and <i3> at Fig.2, we get JF2(i16i3):={i16i3}. 
When we do similar above, we get TI3(i16i3i6) which 
has support less than minsup. Therefore, JF2(i16i3) is 
TI2(i16i3), and is not RI. We save JF2(i16i3) to JF2.  
    Step (4.2) Comparing operation of JF2(i16i6) is not 
required because an item <i6> is the last item of SL 
and is a member of JF2, so we terminate this step. 
    Step (5.1) Examining the fifth item of SL: < i3>; and 
the last item is < i6>. Comparing operation of JF2(i3i6) 
is not required because an item <i6> is the last item of 
SL and is a member of JF2, so we terminate this step. 
    After all of items are done, we present all frequent 
itemsets which separate by sequential of generation in 
Table 1 and by sequential of the frequent k-itemsets in 
Table 2.  

Table 1 
All frequent itemsets which separate by sequential of 

processing 
Items Frequent Itemsets 

i1 <i1i3i6i13>,{<i1i3>,<i1i6>,<i1i13>,<i3i6>, 
<i3i13>,<i6i13>,<i1i3i6>,<i1i3i13>,<i1i6i13>, 
<i3i6i13>} 

i2  
i13  
i16 <i3i16> 
i3  

     
     The Table 1 shows that the JoinFI-Mine algorithm 
is able to expand frequent itemsets and reduce 
subsequence of mining. The mining step of item <i1> 
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can show the expansion of frequent itemsets which is 
JF4:={i1i13i3i6}   and the result of expansion are 
{<i1i3>, <i1i6>, <i1i13>, <i3i6>, <i3i13>, <i6i13>, <i1i3i6>, 
<i1i3i13>, <i1i6i13>, <i3i6i13>}. Moreover, the operation 
of EI reduces the operation of the following items 
such as <i13> and <i3>. Because we can get some 
answer in previous operation so we do not operate for 
some item in SL. 

Table 2 
All frequent itemsets which separate by k-level 

k frequent k-itemsets 
2 <i1i3>,<i1i6>,<i1i13>,<i3i6>,<i3i13>,<i3i16>,<i6i13>
3 <i1i3i6>,<i1i3i13>,<i1i6i13>,<i3i6i13> 
4 <i1i3i6i13> 

 
     The Table 2 shows all frequent itemsets which 
separate by k-level such frequent 2-itemsets, frequent 
3-itemsets, and frequent 4-itemsets or JF2 = {<i1i3>, 
<i1i6>, <i1i13>, <i3i6>, <i3i13>, <i3i16>, <i6i13>}, JF3 = 
{<i1i3i6>, <i1i3i13>, <i1i6i13>, <i3i6i13>}, and JF4 = 
{<i1i3i6i13>}. Therefore, all frequent itemsets which 
appears in Table 2 are WFI. 
 
 

4 The Correctness 
In the following theorem, we present that the proposed 
algorithm can mine all frequent itemsets completely 
and correctly. 
Theorem. 
The WFI is the answer set. 
Proof.  
Let a1a2…ak be in WFI. Then a1a2 …ak  JFk. If k=1, 
then a1 is in SL and thus a1 is a frequent item. If k=2, 
then a1a2 is TI2(a1a2) and therefore clearly from 
definition 2 and definition 3, a1a2 is a frequent 
itemset. For k 3, from definition 6 there exist i k and 
b1,...,bi such that {a1,…,ak}⊂{b1,…,bi} and b1,…,bi is 
TIi(b1b2), i.e., a1...ak  EI(a1a2). Hence by definition 2 
and definition 3, we see that a1… ak is a frequent k-
itemset.  
 Conversely, let a1a2…ak be a frequent k-itemset. It 
is easy to see that if k=1,2, then a1a2…ak  WFI and 
for k 3, if a1...ak is not TIk(a1a2), then it is in some 
JFk(b1b2) and therefore a1a2...ak  JFk.  Hence a1...ak  
WFI. The proof is complete.                                   
 
 

5 Conclusion 
We have presented a new algorithm to mine all 
frequent itemsets, named JoinFI-Mine algorithm. This 
algorithm reads transaction database by scanning only 
one time and does not generate candidate sets. Our 
method reduces huge of subsequence mining by using 

mathematics properties so we can find all frequent 
itemsets very quickly and also correctly. In case that 
the decision maker wants to change the minimum 
support threshold, our algorithm is performed without 
rescanning of database. We presented our method by 
giving definitions, algorithms, examples, and 
concluded by proving correctness of the proposed 
algorithm. The proof shows that our algorithm can 
mine all frequent itemsets completely and correctly.  
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