
Mining of Frequent Itemsets with JoinFI-Mine Algorithm

SUPATRA SAHAPHONG1, GUMPON SRITANRATANA2
1Department of Computer Science, Faculty of Science,

Ramkhamhaeng University,
Ramkhamhaeng Road, Bangkapi District, Bangkok 10240,

THAILAND
supatra@ru.ac.th

2Department of Mathematics, Faculty of Science,
Mahidol University,

Rama VI Road, Ratchathewi District, Bangkok 10400,
 THAILAND

scgst@mahidol.ac.th

Abstract: - Association rule mining among frequent items has been widely studied in data mining field. Many
researches have improved the algorithm for generation of all the frequent itemsets. In this paper, we proposed a
new algorithm to mine all frequents itemsets from a transaction database. The main features of this paper are: (1)
the database is scanned only one time to mine frequent itemsets; (2) the new algorithm called the JoinFI-Mine
algorithm which use mathematics properties to reduces huge of subsequence mining; (3) the proposed algorithm
mines frequent itemsets without generation of candidate sets; and (4) when the minimum support threshold is
changed, the database is not require to scan. We have provided definitions, algorithms, examples, theorem, and
correctness proving of the algorithm.

Key-Words: - Algorithm, association rule mining, database, data mining, frequent itemsets mining, frequent
pattern mining, knowledge discovery

1 Introduction
Nowadays there are tremendous amounts of data
which have been collected and stored in large
databases, and which cannot be analyzed using
manual systems. For example, how can one find the
items which occur together from large amounts of
data?, how do the items in a massive data set relate to
the others?, what items in the data set frequently
appear?. Therefore, powerful data analysis is
necessary to solve these requirements. One solution is
to use frequent itemset mining. Frequent itemsets
mining is an essential step in association rule mining.
The association rule mining algorithm is to
decompose into two major subtasks:

• The generation of all the frequent itemsets
that satisfy the minimal support threshold.

• The extraction of all high confidence rules
from frequent itemsets found in previous step.

Our work focuses on the mining of frequent
itemsets. The first classic algorithm is Apriori which
is proposed in [1]. The Apriori principle is “If an
itemsets is frequent, then all of its subsets must also be
frequent” [2]. The Apriori algorithm uses a level-wise
and breadth-first search approach for generating

association rule. It uses the support-based pruning to
control the exponential growth of candidate itemsets.
However, the algorithms based on generated and
tested candidate itemsets have two major drawbacks:

• The database must be scanned multiple times
to generate candidate sets. Multiple scans will
increase the I/O load and is time-consuming.

• The generation of huge candidate sets and
calculation of their support will consume a lot
of CPU time.

The drawbacks which presented as above were
overcome by using the next generation of algorithm,
called the FP-growth algorithm [3]. The advantages of
mining of frequent itemsets by using the FP-growth
algorithm such as: First, the database is scanned only
two times. Next, the generating of candidate sets is not
required. The FP-growth algorithm performs depth-
first search approach in the search space. It encodes
the data set using a compact data structure called FP-
tree and extracts frequent pattern directly from this
prefix tree [4]. The following researches have
improved this idea. In reference [5], the H-mine
algorithm was introduced by using array-based and
trie-based data structure. The Patricia Mine algorithm
was proposed in [6] that compressed Patricia trie to

Recent Researches in Artificial Intelligence, Knowledge Engineering and Data Bases

ISBN: 978-960-474-273-8 73

store the data sets. The FPgrowt* algorithm reduced
the FP-tree traversal time by using array technique
[7]. In reference [8], the SFI-Mine algorithm which
constructs pattern-base by using a new method which
is different from pattern-base in FP-growth and mines
frequent itemsets with a new combination method
without recursive construction of conditional FP-tree.
However, most of the FP-tree algorithm base has the
following drawbacks:

• Mining of frequent itemset from the FP-tree,
it generates huge of conditional FP-tree and
takes a lot of time and space.

• When the changing of minimum support, this
algorithm may restart and scan database
twice.

Many researchers have proposed ways to scan
database once. The Eclat algorithm was proposed by
using the join step from the Apriori property to
generate frequent pattern [9]. In Reference [10], the
new data structure, called LIB-graph is proposed to
contain data when database is scanned and discovery
of frequent patterns by using recursive conditional
FP-tree. The Sorted-List structure which created from
the Vertical Index List was proposed to contained data
from scanning database once and mining of frequent
itemsets by using depth-first search [11].

In this paper, we proposed the algorithm, called
JoinFI-Mine algorithm. The main advantages of our
method are presented as follows:

• The database is scanned only one time to
mine frequent itemsets.

• The JoinFI-Mine algorithm mines frequent
itemsets without generation of candidate sets.
The results of this method are still obtaining
complete and correct frequent itemset.

• The rescanning of the database is not
required, if decision maker want to change of
the minimum support threshold.

This paper is organized as follows. The prior
knowledge is presented in section 2, followed by the
approach which is presented in section 3, the
correctness proof is shown in section 4 and the finally,
the conclusion is addressed in section 5.

2 Prior Knowledge

2.1 Basic Definition
This subsection introduces basic concepts for mining
of frequent itemsets. All definitions in this subsection
are proposed by J. Han et al in [4, 12], as follows.

Definition 2.1
Let I ={x1,x2,…, xm} be a set of items and a
transaction database DB={T1,T2,…,Tn}, where
Ti(i 1..n) is a transaction which contains items in I.
Definition 2.2
The support or supp (or occurrence frequency) of a
pattern A, where A is a set of items, is the number of
transactions containing A in DB. A pattern A is
frequent if A’s support is no less than a predefined
minimum support threshold, minsup.
Definition 2.3
An item x is called a frequent item if supp(x)≥minsup,
otherwise it is called an infrequent item.

 Given a transaction database DB and a minimum
support threshold minsup, the problem of finding the
complete set of frequent itemsets is called the frequent
itemset mining problem and any element of the
complete set is called a frequent itemset. For greater
understanding, we provide an example to describe the
above definitions.
Example 1. The Fig.1 is a DB. It consists of five
transactions T1, T2, T3, T4, and T5 labelled as
Transactions in the Fig.1, and seventeen items i1, i2, i3,
i4, i5, i6, i7, i8, i9, i10, i11, i12, i13, i14, i15, i16, and i17,
labelled as Items in the Fig.1. For example, the first
transaction is T1 containing i6, i1, i3, i4, i7, i9, i13, and
i16.

Transactions Items
T1 i6, i1, i3, i4, i7, i9, i13, i16
T2 i1, i2, i3, i6, i12, i13, i15
T3 i2, i6, i8, i10, i15
T4 i2, i3, i11, i17, i10
T5 i1, i6, i3, i5, i12, i16, i13, i14

Fig.1 A transaction database DB

2.2 Data Structure
In this subsection, we summarize background
knowledge of the designing and construction of the
Vertical Index List which introduced in [2, 9, 11].
Definition 2.4
Let Ti={x1,x2,x3,…,xm} be a transaction in DB, where
i=1,2,…,m and xj is an item for j=1,2,…,n. A Vertical
Index List (or VIL) is the structure constructed from a
scan of each Ti in DB only once. Each row in VIL
contains an item in I, support of item in I, and
transactions in DB which contain such an item. The
set of transaction will be written in order according to
the ascending of its identification number.

Recent Researches in Artificial Intelligence, Knowledge Engineering and Data Bases

ISBN: 978-960-474-273-8 74

Example 2. We use an example DB in Fig.1. The DB
is scanned once to create the VIL. We first create all
the item set to the VIL and define all supports as zero.
 The first transaction is and consists of itemset
<i6, i1, i3, i4, i7, i9, i13, i16>. The T1 will be inserted into
corresponding item name ordering by sequential of
itemset. Therefore, the T1 will be the first inserted at
the transaction of item <i6> and increase support of
item <i6> with 1. The second examined item is <i1>,
we insert at item <i1> and increase support of item
<i1> with 1. Next, we examine item <i3>, we
subsequently insert at item <i3> and increase
support of item with 1, then, the remaining items (i4,
i7, i9, i13, i16) in can be done in the same way. The
remaining transactions (, , , and) in DB can
also be done in the same way. We present the
insertion of all transaction in Fig.2.

Items Support Transactions
i1 3 T1, T2, T5
i2 3 T2, T3, T4
i3 4 T1, T2, T4, T5
i4 1 T1
i5 1 T5
i6 4 T1, T2, T3, T5
i7 1 T1
i8 1 T3
i8 1 T1
i10 1 T3
i11 1 T4
i12 2 T2, T5
i13 3 T1, T2, T5
i14 1 T5
i15 2 T2, T3
i16 3 T1, T4, T5
i17 1 T4

Fig.2 The structure of VIL

 The construction of the VIL is presented in the Fig.3.
Algorithm 1 (Vertical-Index-List Construction)
Input: DB, minsup
Output: VIL
Method: The VIL is constructed as follows
Begin
 scan the transaction database DB once.
 create all items and define all supp(xi)= 0 to VIL.
 For each transaction Ti in DB
 For each xi in Ti do
 insert TID of xi to TID-set which
 corresponding with xi
 count supp(xi)
 End //For
 End //For
End //Begin

Fig.3 The construction of vertical index list algorithm

Definition 2.5
The sorted-list (or SL) is the structure consisting of
any item x and its support which selected from VIL if
supp(x) minsup.
Example 3. For this example, let the user defined
minsup be 3. The construction of the SL is started
from selection any item in the VIL which supp(item)

minsup and contain selected to the SL with
ascending sort of support , as seen in Fig.4. All items
in Fig.4 are frequent items.

Items Support
i1 3
i2 3
i13 3
i16 3
i3 4
i6 4

Fig.4 The structure of SL

The construction of the SL is presented in the Fig.5.

Algorithm 2 (Sorted-List Construction)
Input: VIL
Output: SL
Method: The SL is construction as follows.
Begin
 For each xi in the VIL
 select supp(xi) ≥ minsup to the SL with
 ascending sort of support
 End //For
End //Begin
Fig.5 The algorithm of the construction of the VIL.

3 The Approach
In this section, we present a new algorithm, called the
JoinFI-Mine algorithm. The main features of this
proposed algorithm are: (1) the frequent itemsets are
found without generation of candidate itemsets; (2)
the algorithm uses the efficiency of searching
technique and mathematic properties to reduce
subsequent of mining; and (3) the decision maker can
change minimum support threshold without
rescanning of database. From the above features, we
obtained all frequent itemsets very quickly. We give
the definitions, the examples and the algorithms for
illustrative of how to mine frequent itemsets. We
prove that the JoinFI-Mine algorithm can mine
frequent itemsets completely and correctly.
Definition 3.1
Let I be the set of all items in DB, S be the set of all
supports of items in I, <l the lexicographic order in I
and < the usual less than order in S. We define the

Recent Researches in Artificial Intelligence, Knowledge Engineering and Data Bases

ISBN: 978-960-474-273-8 75

order relation < in I S by (a, m) < (b, n) if m=n and a
<l b or if m < n, shortly we use a < b for (a,m) < (b,n).
It is to note that in the table of SL, each row is of the
form (a,s) I S and clearly if (a, m) and (b, n) are
the ith row and jth row of SL respecttively, then (a, m)
< (b, n) iff i < j, that is a<b iff i < j.
Example 3. In this example, we describe the SL’s
property which is shown in Fig.4 and definition 3.1.
The set I consists of six items, and the set S consists of
six corresponding supports. The relation of I S are
ordered by <l and <. Therefore, the order in the SL are
(i1,3) < (i2,3) < (i13,3) < (i16,3) < (i3,4) < (i6,4). The i1’s
support is equal to i2’s support but i1 <l i2, so i1 appears
before i2. The i3’s support is greater than the support
of i1, i2, i13, i16, so the order of i3 in the SL appears
after i1, i2, i13, and i16.
Definition 3.2
Let a1 and a2 be two items in SL with a1<a2 and
supp(a1a2) minsup. Then we define JF2(a1a2):={a1a2}
and JFk(a1a2):={a1a2 ... ak|a3,…,ak are in SL where
a1<…<ak with supp(a1… ak) minsup} for k 3.
Example 4. In Fig.4, i1, i13, i3, i6 are items in SL such
that i1 < i13 < i3 < i6 and in Fig.2, supp(i1i13i3i6)=3
therefore JF2(i1i13)={i1i13}, JF3={i1i13i3} and
JF4={i1i13i3 i6}.
Definition 3.3
Let k 2 and a1,…,ak be items in SL. Then a1...ak is
called the terminal frequent k-itemset generated by
a1a2 (denoted by TIk(a1a2)) iff a1...ak JFk(a1a2),
supp(a1...akb)<minsup, supp(a1…aibai+1…ak)<minsup
and supp(ba1...ak) < minsup if b is in SL with b ai for
each i=1,…,k.
Definition 3.4
Let b1...bi be TIi(b1b2). Then b1...bi is repeated-itemset
(denoted by RI) if there exists k > i such that
{b1,...,bi}⊂{a1,...,ak} and a1...ak is TIk(a1a2).
Definition 3.5
Let a1 and a2 be items in SL with a1<a2. Let a1…ak be
TIk(a1a2) with k 3. Then the set of all subsets A of
{a1,…,ak} such that |A| 3 is called an extendable-
itemset generated by a1a2 and is denoted by EI(a1a2).
Definition 3.6
We define JF1 := {a I|a is an item in SL},
JF2:={a1a2|a1a2 is TI2(a1a2)}, JFk:={a1a2… ak|{a1,…,
ak}⊂{b1,…,bi} where b1...bi is TIi(b1b2) for some i} for
k 3.
Definition 3.7.
The whole frequent itemsets are given by
WFI:= .

 For the examples of definition 3.3 to 3.7, we can
see more details in example 5. Based on the above

definitions and examples, the JoinFI-Mine algorithm
consists of the following steps as shown in Fig.6.

Algorithm 3 (JoinFI-Mine: Mining of frequent
itemsets by using VIL with control order of the
frequent items in SL)
Input: VIL, SL, user define support: ms, number of
transaction: nt
Output: The Complete set of frequent itemsets
Procedure FindMinsup(ms, nt)
Begin
 minsup = ceil((ms/100)*nt)
End // Begin
Procedure JoinFI-Mine(SL,VIL, minsup, x)
Begin
 For i = 1 to n
 c = i+1, k = c
 While c <> n Do
 find JFk(xixc)
 If supp(JFk(xixc)) minsup Then
 call CkMostDepth
 call CkRI
 End // If
 c = c+1
 End // While
 End // For
 Result FI k 2JFk
End // Begin
Procedure CkMostDepth (JFk(xixc),i,n)
Begin
 , c = i+2, k=c, f = JFk(xixc)
 For c <= n
 While ((c n) and) Do
 c = c+1
 If = supp(f xc) minsup Then
 f = f xc
 End // If
 c = c+1
 End // While

 End // For

 TIk(f)=f
End// Begin
Procedure CkRI (f)
If TIk(f)∉ Then // insert new answer
 store TIk(f) to JFk //where k is the size of TIk
 call ExpandItemset(TIk(f))
End //If
Procedure ExpandItemset (TIk(f))
 If |TIk(f)|>2 then //Expand itemset
 find all subset of TIk(f) (or EI) except | | 2
 If ∉ then
 store EI to JFk // where k is the size of TIk
 End //If
End // If

Fig.6 The proposed algorithm

Recent Researches in Artificial Intelligence, Knowledge Engineering and Data Bases

ISBN: 978-960-474-273-8 76

 An example 5 illustrates the details of the mining of
frequent itemsets process based on definitions and
algorithms in section 2 and section 3. The processing
of reducing subsequent mining process which can be
seen in this example and the result of all the answer
sets is shown in Table 1. All frequent itemsets which
separate by sequential of the k-level is presented in
Table 2.
Example 5. Let the user want to make the decision at
minimum support be 45% and according to Fig.2,
Fig.4, Fig.6 and all definitions. First, we compute
minsup = ceil((45/100)*5) = 3 when the number of
transaction in Fig.1 is 5. The processing steps of
mining are presented as follows:
Step (1) Examining the first frequent item: <i1>.
 Step (1.1) Starting the first item in Fig.4, it is an
item <i1> and the following item is item <i2>. Seeking
out at item <i1> and <i2> at Fig.2, we get
JF2(i1i2):={i1i2}. The checking of this step is
terminated because supp(JF2(i1i2)) < minsup.
 Step (1.2) Seeking item <i1> and <i13> in Fig.4.
Seeking out at item <i1> and <i13> at Fig.2, so
JF2(i1i13):={i1i13} which has support not less than
minsup. Therefore, we test next sublevel (k=3), as
seen in the following deep step of JF2(i1i2).
 Step (1.2.1) In this step, we do CkMostDepth by
seeking out at item <i16> at Fig.2. Therefore,
JF3(i1i13i16):={i1i13i16} which has support less than
minsup. Therefore, we terminate this step and examine
next step.
 Step (1.2.2) In this step, we do CkMostDepth by
seeking out at item <i3> at Fig.2. JF3(i1i13i3):={i1i13i3}
with support is 3, so we examine next deep step of
step (1.2.2).
 Step (1.2.2.1) We do CkMostDepth by seeking out
at item <i6> at Fig.2. JF4(i1i13i3i6):={i1i13i3i6} which
has support not less than minsup and the
CkMostDepth is terminated because we process until
meet the last item in SL. We get TI4(i1i13i3i6) which its
support not less than minsup. Next, we do CkRI and
we get TI4(i1i13i3i6) is the new answer, so we save
{i1i13i3i6} to JF4 or we can say JF4:={i1i13i3i6}. Next,
we do ExpandItemset by examining at |TI4(i1i13i3i6)|
 3, so we can use the extendable-itemset property to
obtain frequent itemsets. EI4(i1i13i3i6) := {<i1i13>,
<i1i3>, <i1i6>, <i13i3>, <i13i6>, <i3i6>, <i1i13i3>,
<i1i13i6>, <i1i3i6>}. We get JF2 := {<i1i13>, <i1i3>,
<i1i6>, <i13i3>, <i13i6>, <i3i6>}, JF3 := {<i1i13i3>,
<i1i13i6>, <i1i3i6>}. We then terminate this searching
path.
 Step (1.3) Seeking out at item <i16> at Fig.2.
JF2(i1i16) := {i1i16} which has support less than
minsup. Therefore, we terminate this step and examine
next step.

 Step (1.4) Seeking out at item <i3> at Fig.2. When
we do similar above, we get TI3(i1i3i6). We find that it
is RI, so we terminate this step.
 Step (1.5) Comparing operation of JF2(i1i6) is not
required because an item <i6> is the last item of SL
and is member of JF2, so we terminate this step.
 Step (2.1) Examine at item <i2> at Fig.4. We do
similar with the above process. We get all steps of this
item having support less than minsup, so we terminate
this step.
 Step (3.1) Examine at item <i13> and the next item
is <i16> at Fig.4. Seeking out at item <i13> and < i16>
at Fig.2 and getting its support not less than minsup,
so we terminate this step.
 Step (3.2) Examine at item <i13> and the next item
is < i3> at Fig.4. Seeking out at item <i13> and < i3> at
Fig.2. When we do similar above, we get TI3(i13i3i6).
We find that it is RI, so we terminate this step.
 Step (3.3) Comparing operation of JF2(i13i6) is not
required because an item <i6> is the last item of SL
and is a member of JF2, so we terminate this step.
 Step (4.1) Examining the fourth item of SL: <i16>;
and the following item is <i3>. Seeking out at item
<i16> and <i3> at Fig.2, we get JF2(i16i3):={i16i3}.
When we do similar above, we get TI3(i16i3i6) which
has support less than minsup. Therefore, JF2(i16i3) is
TI2(i16i3), and is not RI. We save JF2(i16i3) to JF2.
 Step (4.2) Comparing operation of JF2(i16i6) is not
required because an item <i6> is the last item of SL
and is a member of JF2, so we terminate this step.
 Step (5.1) Examining the fifth item of SL: < i3>; and
the last item is < i6>. Comparing operation of JF2(i3i6)
is not required because an item <i6> is the last item of
SL and is a member of JF2, so we terminate this step.
 After all of items are done, we present all frequent
itemsets which separate by sequential of generation in
Table 1 and by sequential of the frequent k-itemsets in
Table 2.

Table 1
All frequent itemsets which separate by sequential of

processing
Items Frequent Itemsets

i1 <i1i3i6i13>,{<i1i3>,<i1i6>,<i1i13>,<i3i6>,
<i3i13>,<i6i13>,<i1i3i6>,<i1i3i13>,<i1i6i13>,
<i3i6i13>}

i2
i13
i16 <i3i16>
i3

 The Table 1 shows that the JoinFI-Mine algorithm
is able to expand frequent itemsets and reduce
subsequence of mining. The mining step of item <i1>

Recent Researches in Artificial Intelligence, Knowledge Engineering and Data Bases

ISBN: 978-960-474-273-8 77

can show the expansion of frequent itemsets which is
JF4:={i1i13i3i6} and the result of expansion are
{<i1i3>, <i1i6>, <i1i13>, <i3i6>, <i3i13>, <i6i13>, <i1i3i6>,
<i1i3i13>, <i1i6i13>, <i3i6i13>}. Moreover, the operation
of EI reduces the operation of the following items
such as <i13> and <i3>. Because we can get some
answer in previous operation so we do not operate for
some item in SL.

Table 2
All frequent itemsets which separate by k-level

k frequent k-itemsets
2 <i1i3>,<i1i6>,<i1i13>,<i3i6>,<i3i13>,<i3i16>,<i6i13>
3 <i1i3i6>,<i1i3i13>,<i1i6i13>,<i3i6i13>
4 <i1i3i6i13>

 The Table 2 shows all frequent itemsets which
separate by k-level such frequent 2-itemsets, frequent
3-itemsets, and frequent 4-itemsets or JF2 = {<i1i3>,
<i1i6>, <i1i13>, <i3i6>, <i3i13>, <i3i16>, <i6i13>}, JF3 =
{<i1i3i6>, <i1i3i13>, <i1i6i13>, <i3i6i13>}, and JF4 =
{<i1i3i6i13>}. Therefore, all frequent itemsets which
appears in Table 2 are WFI.

4 The Correctness
In the following theorem, we present that the proposed
algorithm can mine all frequent itemsets completely
and correctly.
Theorem.
The WFI is the answer set.
Proof.
Let a1a2…ak be in WFI. Then a1a2 …ak JFk. If k=1,
then a1 is in SL and thus a1 is a frequent item. If k=2,
then a1a2 is TI2(a1a2) and therefore clearly from
definition 2 and definition 3, a1a2 is a frequent
itemset. For k 3, from definition 6 there exist i k and
b1,...,bi such that {a1,…,ak}⊂{b1,…,bi} and b1,…,bi is
TIi(b1b2), i.e., a1...ak EI(a1a2). Hence by definition 2
and definition 3, we see that a1… ak is a frequent k-
itemset.
 Conversely, let a1a2…ak be a frequent k-itemset. It
is easy to see that if k=1,2, then a1a2…ak WFI and
for k 3, if a1...ak is not TIk(a1a2), then it is in some
JFk(b1b2) and therefore a1a2...ak JFk. Hence a1...ak
WFI. The proof is complete.

5 Conclusion
We have presented a new algorithm to mine all
frequent itemsets, named JoinFI-Mine algorithm. This
algorithm reads transaction database by scanning only
one time and does not generate candidate sets. Our
method reduces huge of subsequence mining by using

mathematics properties so we can find all frequent
itemsets very quickly and also correctly. In case that
the decision maker wants to change the minimum
support threshold, our algorithm is performed without
rescanning of database. We presented our method by
giving definitions, algorithms, examples, and
concluded by proving correctness of the proposed
algorithm. The proof shows that our algorithm can
mine all frequent itemsets completely and correctly.

References:
[1] R. Agrawal and R. Srikant: Fast Algorithm for

Mining Association Rules, Proceedings of the 20th
International Conference on Very Large Data Bases,
Chile, September 1994, 487-499.

[2] P-N. Tan, M. Steinbach, & V. Kumar, Introduction to
Data Mining (Pearson Education Inc., 2006).

[3] J. Han, J. Pei, & Y. Yin: Mining Frequent Pattern
without Candidate Generation, Proceedings of the 2000
ACM SIGMOD international conference on
Management of Data, Texas, May 2000, 1-12.

[4] J. Han, J. Pei, Y. Yin, & R. Mao: Mining Frequent
Pattern without Candidate Generation: a Frequent
Pattern Tree, Springer, vol. 8, 2004, no 1, 53-87.

[5] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, & D. Yang:
Hmine: Hyper-Structure Mining of Frequent Patterns
in Large Databases, Proceedings of the 2001 IEEE
International Conference on Data Mining, USA,
November 2001, 441-448.

[6] A. Pietracaprina, & D.Zandolin: Mining Frequent
Itemsets Using Patricia Tries, Proceedings of the 3rd
IEEE International Conference on Data Mining,
Florida, USA, November 2003.

[7] G. Grahne, & J. Zhu: Efficiently Using Prefix-Trees in
Mining Frequent Itemsets,” Proceedings of the 3rd
IEEE International Conference on Data Mining,
Florida, USA, November 2003.

[8] S. Sahaphong, & V. Boonjing: The Combination
Approach to Frequent Itemsets Mining, Proceedings of
the 2008 International Conference on Convergence
and hybrid Information Technology, Korea, November
2008, 565-570.

[9] M.J. Zaki, Scalable Algorithms for Association Mining,
IEEE Transaction on Knowledge and Data
Engineering, vol. 12, no. 3, 2000, 372-390.

[10] D. J. Chai, L. Jin, B. Hwang, & K. H. Ryu: Frequent
Pattern Mining Using Bipartite Graph, Proceedings of
the 18th International Conference on Database and
Expert Systems Applications, Germany, August 2007,
182-186.

[11] S. Sahaphong, Frequent Itemsets Mining Using
Vertical Index List, Proceedings of the 2nd IEEE
International Conference on Computer Science and
Information Technology, China, August 2009, 480-484.

[12] J. Han, & M. Kamber, Data Mining: Concepts and
Techniques, Elsevier, Maryland Heights MO, 2006.

Recent Researches in Artificial Intelligence, Knowledge Engineering and Data Bases

ISBN: 978-960-474-273-8 78

