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Abstract: In the current paper we consider the task
of object classification in wireless sensor networks.
Assuming that each feature needed for classifica-
tion is acquired by a sensor, a new approach is
proposed that aims at minimizing the number of
features used for classification while maintaining a
given correct classification rate. In particular, we
address the case where a sensor may have a failure
before its battery is exhausted. In experiments with
data from the UCI repository, the feasibility of this
approach is demonstrated.
Key–Words: wireless sensor networks, feature
ranking, feature selection, system lifetime, sensor
failure

1 Introduction

The problems of feature subset selection and feature
ranking have been of paramount importance in the dis-
cipline of pattern recognition [1]. It is well known that
given features are often noisy, irrelevant, or redundant.
Hence, eliminating such features may lead to a better
performing pattern recognition system. For a detailed
discussion of feature selection we refer to the surveys
provided in [1, 5].

In most of the previous papers on feature subset
selection, the objective was to find a subset of features
that lead to a high performance of the resulting clas-
sifier. In the current paper we address the problem of
feature selection from a different perspective, namely
in the context of wireless sensor networks [6]. The
field of wireless sensor networks has become a focus
of intensive research in recent years and various the-
oretical and practical questions have been addressed.
One of the most critical issues faced in this domain is
the restricted lifetime of the individual sensors, caused
by limited battery capacity. Thus keeping the energy
consumption of the individual sensors low is a key is-

sue in wireless sensor networks. Assuming that the
individual features of a pattern recognition problem
to be solved in a wireless sensor network context are
provided by the network’s sensors, minimizing the en-
ergy consumption becomes equivalent to minimizing
the number of features to be used.

Various approaches to minimizing energy con-
sumption and maximizing the lifetime of sensors have
been proposed. Berman et al. [7] have investigated the
efficient energy management in a theoretical model.
Krause et al. [8] consider the problem of monitoring
spatial phenomena, such as road speed on a highway,
using wireless sensors with limited battery life. Wang
and Xiao [9] provide a survey on energy-efficient
scheduling mechanisms in sensor networks that have
different design requirements than those in traditional
wireless networks. Sun and Qi [10] present a concept
of dynamic target classification in wireless sensor net-
works. Chatterjea et al. [11] observed that in some
applications very large amounts of raw data need to
be transported through the wireless sensor network.
Tan and Georganas [12] propose a node-scheduling
scheme, which can reduce the overall energy con-
sumption of the underlying system, and therefore in-
crease system lifetime, by turning off some redundant
nodes. Duarte and Hu [13] classify the type of moving
vehicles in a distributed, wireless sensor network.

The current paper is based on the assumption that
sensors in a wireless network are only activated upon
request from the base station of the underlying system.
Each sensor measures one particular feature from the
environment and returns its value to the base station,
where the classification algorithm is executed.1

In this paper we reduce the number of features for
the purpose of minimizing energy consumption of the
sensors, and thus want to increase the lifetime of the

1We suppose that classifier training and validation are exe-
cuted on the base station as well.
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system, while maintaining a certain level of classifica-
tion accuracy. So we do not necessarily expect that we
get a higher recognition performance by reducing the
number of features, but aim at extending the lifetime
of the classifier.

The rest of this paper is organized as follows. In
Section 2, our general approach to feature selection
for pattern classification in wireless sensor networks is
outlined. Then, a series of experiments are described
in Section 3. Finally, in Section 4, we present a sum-
mary and discussion, and draw conclusions from this
work.

2 General Approach

We assume that a pattern x is represented by an N -
dimensional feature vector, i.e. x = (x1, . . . , xN ),
where xi is the value of the i-th feature; i = 1, . . . , N .
Let S = {s1, . . . , sN} be the set of available sen-
sors, where each sensor si measures exactly one par-
ticular feature f(si) = xi to be used by the classi-
fier. Hence, the maximal set of features possibly avail-
able to the classifier is {x1, . . . , xN}. Furthermore, let
φ : S → R be a function that assigns a utility value
φ(xi) to each feature f(si) = xi. Let us assume that
the utility of a feature xi is proportional to its ability
to discriminate between the different classes an un-
known object may belong to.

The basic structure of the algorithm for object
classification proposed in this paper is given in Fig.
1. The system uses a base classifier. This base clas-
sifier can be a classifier of any type, in principle. For
the purpose of simplicity, however, we assume in this
paper that the base classifier is a k-nearest neighbor
(k-NN) classifier [15].

Having a base classifier at its disposition, the al-
gorithm starts with ranking the sensors in line 1. After
this step, the sensors s1, . . . , sN are ordered accord-
ing to the utility of their features x1, . . . , xN , such
that φ(x1) ≥ φ(x2) ≥ . . . ≥ φ(xN ). That is, the
first sensor yields the most discriminating feature, the
second sensor the second most, and so on. Then the
algorithm initializes the set F of features to be used
by the classifier to the empty set (line 2). Next it it-
eratively activates one sensor after the other, reads in
each sensor’s measurement, and adds it to feature set
F (lines 3 to 6). Once a new feature has been obtained,
statement classify(F ) is executed, which means that
the base classifier is applied, using feature set F (line
7). Note that a k-NN classifier is particularly suitable
for such an incremental mode of operation where new
features are iteratively added, because it needs only to
compute distances of the unknown object to the train-
ing instances, and the distance computations can be

1: rank sensors s1, . . . , sN according to the utility
of the their features such that φ(x1) ≥ φ(x2) ≥
. . . ≥ φ(xN )

2: F = ∅
3: for i = 1 to N do
4: if sensor si is available then
5: read feature f(si) = xi
6: F = F ∪ {xi}
7: classify(F )
8: if confidence(classify(F )) ≥ θ then
9: output result of classify(F ) and termi-

nate
10: end if
11: end if
12: end for
13: output result of classify(F )

Figure 1: Algorithm for object classification with lim-
ited number of sensor measurements.

performed in an incremental fashion, processing one
feature after the other and accumulating the individ-
ual features’ distances. In line 8, it is checked whether
the confidence of the classification result is equal to or
larger than a threshold θ. If this is the case the classi-
fication result is considered final. It is output and the
algorithm terminates (line 9). Otherwise, if the confi-
dence is below the given threshold θ, the next sensor
is activated.

Obviously, in order to classify an unknown ob-
ject, the base classifier uses nested subsets of features
{x1}, {x1, x2}, . . . , {x1, x2, . . . , xi} until its confi-
dence in a decision becomes equal to or larger than
threshold θ. While running through the for-loop from
line 3 to 12, it may happen that a sensor si becomes
unavailable due to battery exhaustion or some other
cause. In this case, sensor si will be simply skipped
and the algorithm continues with sensor si+1. In case
none of the considered feature subsets leads to a clas-
sification result with enough confidence, the classifier
outputs, in line 13, the result obtained with the set F
of features considered in the last iteration through the
for-loop, i.e. for i = N .

An important issue in the algorithm of Fig. 1 is
how one determines the confidence of the classifier.
Many solutions to this problem can be found in the
literature [16]. In the current paper, our base classifier
is of the k-NN type.

The algorithm of Fig. 1 takes into account that
one or several features may not be available. There are
several possible causes for such a case, for example,
that a sensor has exhausted its battery or has become
faulty for some reason. In this case, the corresponding
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feature xi is skipped, and the system continues with
sensor si+1.

In order to rank the features in line 1 of the al-
gorithm, three well-known methods have been used.
The first method is Relief [4], which directly yields
a ranking of the given features. Secondly, a wrap-
per approach (WA) in conjunction with k-NN clas-
sifiers is applied. The k-NN classifiers use only
a single feature each. The features are finally or-
dered according to their performance on an inde-
pendent validation set. Thirdly, sequential forward
search [3] in conjunction with a k-NN wrapper is
applied (WA-SFS). Here nested subsets of features
{xi1}, {xi1 , xi2},...,{xi1 , ..., xiN } are generated and
the ranking is given by the order xi1 , ..., xiN in which
the features are added. For more details of features
ranking, we refer to [17].

3 Experiments

The algorithm described in Section 2 was imple-
mented and experimentally evaluated. In the field of
wireless sensor networks, there are not many data sets
publicly available, especially not for pattern recogni-
tion problems. Exceptions are [18], [19]. However,
the authors of these papers do not mention any use
of the data sets for pattern classification problems.
Moreover, no classification benchmarks have been de-
fined for any of these data sets. For this reason, it was
decided to use datasets from the UCI Machine Learn-
ing Repository [20]. The sensors were simulated by
assuming that each feature in any of these datasets is
delivered by a sensor. The experiments reported in
this paper were conducted on dataset Isolet and Mul-
tiple Features (see Table 1). Experiments on other
datasets from the UCI repository with similar charac-
teristics gave similar results but are not reported here
because of lack of space.

Data #Inst #Feature #Class Training Test
Isolet 7797 617 26 6237 1560
MF 2000 649 10 1500 500

Table 1: Datasets and some of their characteristic
properties

3.1 First Experiment

The purpose of the first experiment was to study how
the value of threshold θ (see line 9 of the algorithm in
Fig. 1) influences the classification accuracy and the
total number of sensor measurements (i.e. features)
used for classification. Instead of computing the total
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Figure 2: ROC curve of accuracy and lifetime on Iso-
let
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Figure 3: ROC curve of accuracy and lifetime on Mul-
tiple Features

number of sensor readings we measure the life-time
of the considered system, i.e. the number of classi-
fications a system is able to perform before the sen-
sors become unavailable, because of battery exhaus-
tion. Hence the aim of the experiment is to measure
the lifetime of the system and analyze the trade-off
between lifetime and accuracy depending on thresh-
old θ.

We assume that the test set consists of M patterns
and each feature xi can be used exactly M times be-
fore the battery of its sensor is exhausted. This means
that with a conventional pattern recognition system,
which uses the full set of features for each pattern to
be classified, the test set can be classified exactly once
before all sensors become unavailable. By contrast,
with the system proposed in this paper, not all features
will be used in each classification step, which allows
one to classify the test set multiple times.

In this experiment, we classify the test set
multiple times until all sensors become unavail-
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able. Let M ′ ≥ M be the number of pattern in-
stances actually classified, where we count an ele-
ment of the test set as often as it has been classified.
Now we define lifetime extension factor =
M ′/M . Clearly, the lifetime extension factor
is bounded by 1 from below. According to our
assumption that each feature can be used exactly
M times before it becomes unavailable, the case
lifetime extension factor = 1 occurs if the un-
derlying system always uses all features in each clas-
sification step. However, if less than N features are
used, the value of the lifetime extension factor
will be greater than 1.

In this and the following experiments, we set
k = 10. We measure the accuracy and the
lifetime extension factor both as a function of
threshold θ. A representation of the results in terms
of ROC curves appears in Figs. 2 and 3. Obvi-
ously, we observe a trade-off between accuracy and
lifetime extension factor. Clearly, in neither of
the two datasets the proposed system reaches the accu-
racy obtained with the full set of features, but for large
values of θ (at the left end of the curve) it gets quite
close. Without loosing much recognition accuracy,
the lifetime of the system can be extended by a factor
of more than 3 on Isolet and more than 10 on Mul-
tiple Features. For lower values of θ a much higher
lifetime extension factor can be achieved, thought at
a price of a more pronounced loss of recognition ac-
curacy. Comparing the different ranking strategies we
note on Isolet that WA-SFS performs best and Relief
worst, while on Multiple Features WA is best and Re-
lief worst. However, the differences are rather small,
and one may conclude that the choice of a proper fea-
ture ranking strategy is not a critical issue.

3.2 Second Experiment

In real applications, there exist various reasons why
a sensor may fail to deliver a measurement upon re-
quest from the base station. A failure may be a per-
manent one, for example, if the battery of the sensor
is exhausted, or it may be temporary, for example, if
there is some transient distortion in the communica-
tion channel between the base station and the sensor.
Failures of the first type will be simulated in Experi-
ment 3, while failures of the second type are addressed
next.

In the second experiment it was assumed that in
line 2 of the basic algorithm, sensor si will not be
available with a certain probability p. Five differ-
ent values of parameter p = 0; 0, 01; 0, 05; 0, 10; 0, 50
were selected. For each of these values, a plot like
Figs. 2 and 3 was created. Note that for p = 0 plots
identical to Figs. 2 and 3 are obtained. In order to
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Figure 4: ROC curve of accuracy and lifetime with
sensor failure, Isolet

make the figures less cluttered, only feature ranking
strategy Relief is shown.
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Figure 5: ROC curve of accuracy and lifetime with
sensor failure, Multiple Features

The results of this experiment are given in Figs. 4
and 5. Obviously, there is little impact on the bevav-
ior of the system for all tested values of p. From this
observation one can conclude that the system is quite
stable with respect to occasional sensor faults.

3.3 Third Experiment

From the first experiment one can conclude that the
lifetime of a system can be increased at the cost
of decreased accuracy. However, no quantitative
statement can be made about how the decrease in
accuracy takes place over time. In the third experi-
ment we proceed similarly to Experiment 1 and clas-
sify the test set several times. Yet we do not report the
accuracy in the global sense, i.e. in one number for
all runs together, but want to see how it changes as the
systems evolves over time and more sensors become
unavailable.
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Figure 6: Performance of Relief over Time on Isolet

In Experiment 3 the test set was divided into
smaller portions of size one tenth of the original test
set size. Then the algorithm of Fig. 1 was applied un-
til all sensors became unavailable. For each portion
of the test data the recognition rate and the number of
sensors used were recorded. For the sake of brevity,
we show only results for threshold θ = 8 and the fea-
ture ranking strategy Relief.
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Figure 7: Performance of Relief over Time on Multi-
ple Features

In Figs. 6 and 7, the results of the third exper-
iment are shown. The x-axis depicts the number of
rounds through the partitions of the test set, while on
the left and right y-axis the accuracy and the num-
ber of sensors actually used is given, respectively. On
both datasets we observe a similar behavior. On data
set Isolet, the accuracy does not decrease much until
about round 65. Afterwards it decays very rapidly.
The number of features fluctuates remarkably, but
shows an upward trend until round 70. Then it quickly
declines. The second phase of this decline, when only
very few sensors are left, is paralleled by a steep de-

cline of the accuracy. From the qualitative point of
view, a similar behavior can be observed on data set
Multiple Features.

4 Summary, Discussion and Conclu-
sions

In this paper, a sequential multiple classifier system
is proposed for reducing the number of features used
by a classifier. It is motivated by applications in wire-
less sensor networks. The procedure can be applied in
conjunction with any known method for feature rank-
ing. In the current paper three well known methods,
viz. Relief, a wrapper approach based on evaluating
each feature individually with a k-nearest neighbor
classifier, and a wrapper approach in conjunction with
sequential forward search are applied. The underlying
base classifier is a k-nearest neighbor classifier.

The proposed procedure was implemented and
experimentally tested. As test data, two datasets from
the UCI Machine Learning repository were used. A
wireless sensor network scenario was simulated by as-
suming that the individual features are delivered by in-
dependent sensors. The results of the experiments re-
vealed that the system behaves very well. Its lifetime
can be noticeably increased without loosing much
recognition accuracy. During most of its lifetime, the
system behaves quite stable. That is, the recognition
rate only slightly decreases over the system’s lifetime,
and a drastic drop happens only towards the very end
when almost all sensors are no longer available.

The proposed system can be applied to pattern
classification tasks in real wireless sensor networks
provided that the objects or events to be classified be-
have in some stationary way. Because features are
acquired in a sequential fashion and the decision of
the classifier about the class label of an unknown ob-
ject or event is only available after the first i features
(1 ≤ i ≤ N ) have been processed, it is required that
the object or event to be recognized does not change
until sensor si has delivered feature f(si) = xi. This
may be a problem when quickly moving objects or
rapidly changing events are to be classified. However,
there are many potential applications of wireless sen-
sor networks, where this stationary assumption is typ-
ically satisfied. Examples include environment moni-
toring and surveillance.

There are many ways in which the work described
in this paper can be extended. First of all one can think
of investigating classifiers other than the k-nearest
neighbor classifier. Similarly, in addition to the three
feature ranking strategies considered in this paper,
there are many alternative methods known from the
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literature [1]. Moreover, an extension of the experi-
ments to more datasets would be desirable, in partic-
ular datasets obtained from real wireless sensor net-
works.
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