
Detection of objects in moving images and implementation of the

purification algorithm on Analog CNN and DSP processors

Emel Arslan
1
, Zeynep Orman

2
, Sabri Arik

2

1
 Research and Application Center for Computer Sciences,

2
 Department of Computer Engineering,

Istanbul University

Istanbul, TURKEY

{earslan, ormanz, ariks}@istanbul.edu.tr

Abstract: - CNN Universal Machines that contain two different processors working interactively with each

other, have an important impact for image processing applications with their advanced computing features.

These processors are named as ACE16k processor which is the hardware implementation of cellular neural

networks and Digital Signal Processor (DSP). Bi-i Cellular Vision System is a CNN Universal Machine that

also has these characteristics. In this study, certain objects in moving images are detected and their features are

extracted. By using these features, a purification algorithm is implemented on the Bi-i Cellular Vision System.

This algorithm is implemented with two different applications. In the first application, the algorithm is

implemented only on a Digital Signal Processor. In the second one, it is run in coordination with both an

ACE16k processor and a Digital Signal Processor. These applications are evaluated by comparing the obtained

results in terms of run-time.

Key-Words: - Image processing, Cellular Neural Networks, Digital Signal Processor, ACE16k, Bi-i Cellular

Vision System, CNN Universal Machine

1 Introduction
Image processing is one of the most important

research topics in recent years. It is widely used in

areas such as military, security, health, biology,

astronomy, archeology and industry [1, 2]. For an

image to be processed, it should be presented in a

format that a computer can understand, this means it

should be converted into its related digital form. In

the digital form, each of its pixel is expressed by

means of the corresponding element of a matrix.

Algorithms that are developed for digital image

processing require fast systems due to their

processing load. Although conventional computer

systems are in an increasing trend in terms of their

speed, they are insufficient when image dimensions

are getting larger, because they can process

transactions in a serial manner. These computers

cannot satisfy the need for speed, when we

especially consider the implementation of real-time

moving image processing algorithms that require at

least 15-25 frames to be processed in seconds.

Cellular Neural Network (CNN) theory that was

proposed by Chua and Yang in 1988, is an analog,

nonlinear and real-time processing neural network

model [1]. CNNs also have advanced features for

image processing applications. In 1993, Roska and

Chua have presented the CNN Universal Machine

[2]-[3]. This analogical array computer has cellular

processors (ACE4k, ACE16k, etc.) which are the

hardware implementation of CNNs and it is very

suitable for image processing applications with its

advanced computing capabilities. Bi-i Cellular

Vision System is a CNN Universal Machine that can

process high-speed and real time transactions and

can be defined as a compact, independent and

intelligent camera. This system has high-resolution

sensors and two different processors named as CNN

(ACE16k) and Digital Signal Processor (DSP) that

can communicate with each other [4].

In this study, we will first discuss how to detect

certain objects in a colored image and a purification

algorithm that is used to purify the remains of each

object. These remains are actually the parts of other

objects that stay in the frame. Then, we will present

an implementation of this algorithm on the Bi-i

Cellular Vision System and evaluate the results that

are obtained.

The remainder of this letter is organized as

follows. Section II introduces fundamental concepts

about CNN architecture, CNN Universal Machine,

ACE16k processor, Bi-i Vision System and Bi-i

Recent Researches in Neural Networks, Fuzzy Systems, Evolutionary Computing and Automation

978-960-474-292-9 60

programming, respectively. In Section III, an

algorithm that detects certain objects in moving

images and purifies each object from its remains is

proposed. In Section IV, a real implementation of

the purification algorithm is provided to compare

the obtained results and finally, Section V concludes

the paper.

2 CNN Architecture and Bi-i Cellular

Vision System
This section provides fundamental concepts about

CNN architecture and Bi-i Cellular Vision System.

2.1 Architecture of the Cellular Neural

Networks
Each cell of a 4x4 CNN is represented by a square

and shown in Figure 1.

Fig. 1. A 4x4 cell two-dimensional CNN.

In this CNN architecture, each cell is linked only

to its neighbors.

Let us assume a CNN with MxN cells arranged

in M rows and N columns, the cell in row i column j

is shown as C(i,j)[1]. r-neighborhood of a C(i,j)cell

is defined as follows provided that r is a positive

value:

{ }

≤−−
≤≤≤≤

= rj|i|,|l|k

NlM,k

C(k,l)(i,j)
r
N

11

max

(1)

2.2 CNN Universal Machine
The hardware implementation of CNN is easier

compared to the Artifical Neural Networks as there

is only connection between the neighbor cells and

the cell structure. Analogical Cellular Engines

(ACE4k, ACE16k etc. [5]) are based on CNN

Universal Machine architecture. CNN Universal

Machine architecture has been called by Roska and

Chua as analogical computation since it can perform

analog array operations and logical operations

together [2].

2.3 ACE16k Processor
ACE16k, is a CNN based processor of CNN

Universal Machine which can perform analog

operations. ACE16k which is used to perform

various image processing operations contain low

resolution (128 x 128) CMOS gray level image

sensor and analog processor arrays. This processor

array is much faster (30000 frames per second) than

the conventional processors in image processing

applications since it can processes the whole image

in parallel.

2.4 Bi-i Cellular Vision System
The Bi-i Cellular Vision System which contains two

different processors, a CNN based ACE16k and a

DSP that can be defined as a compact, standalone

and intelligent camera capable of real time

operations at very high speed [4]. The images are

stored in local memories with the help of two

different sensors as a (1280x1024) color CMOS

sensor, and a (128x128) ACE16K sensor.

2.5 Bi-i Programming
CNN Universal Machine has two different

programming methods. One of them is AMC

(Analogical Macro Code) language which is a

conventional Bi-i programming method. The codes

written in AMC language are converted to binary

basis and run on Bi-i. Another method is the Bi-i

(Software Development Kit - SDK) which is used to

develop more complex applications. Bi-i SDK,

consists of the C++ programming library which is a

group used to develop applications. These libraries

can also used for the Digital Signal Processor (DSP)

with the development unit Code Composer Studio

and they contain many functions to control the

whole ACE16k circuit [6].

3 An Algorithm That Detects Objects

in Moving Images and Purifies the

Remains of Each Object
An algorithm that detects objects in moving images

and extracts their features is developed by using Bi-i

Cellular Vision System. We named this algorithm as

the purification algorithm because it is also used for

purifying the remains of certain objects that are

detected in moving images and saving each purified

Recent Researches in Neural Networks, Fuzzy Systems, Evolutionary Computing and Automation

978-960-474-292-9 61

object as a separate image file. These remains are

actually the parts of other objects that stay within

the frame of a certain object. This kind of remains

problem is inevitable in image processing

applications because each pixel of an object is

expressed as an element of a matrix. The algorithm

that we developed provides a solution to this

problem for colored and moving images. A block

diagram of this algorithm is shown in Figure 4.

Segmentation;
Thresho lding

Morphological operations

a
p
p
li
e
d
 t
o
 t
h
e
it
h
fr
a
m
e

Feature Extraction

j=0; j<Obje ctNumber;
j++

Sub-object number of

jth object > 1

NO

Purification of Object

YES

P

u
r
 i
f
 i
c

a
t
 i
o
n

Low Pass Filter

Feature Extraction

Matrix of jth Object

A
C
E
1
6
k

D
S
P

input moving

image

i=0; i<FrameNumber; i++

OUTPUT

gray level
transformatio nD

S
P

Fig.2. A block diagram of the purification algorithm

3.1 Preprocessing
Each frame of a moving object which is an input to

the algorithm, is processed as a separate image. The

first operation is to transform the frame to be

processed into its relevant gray level image that runs

on a DSP processor by using the RGB2ByteMatrix

function. This function is located in Utils.h library

under Instant Vision BaseData. The command line

that is used for this transformation is given below:

RGB2ByteMatrix(sourceGRAY,sourceRGB,CH_RGB);

The moving image matrix that is transformed to

a gray level image is then transferred to ACE16k

processor for morphological operations. Here, the

aim is to detect objects in a moving image as close

as possible. The morphological operations are Low

Pass Filtering [7], Thresholding, Negation, Point

Removing, Hole Filling and Opening, respectively.

For thresholding, we use the ConvLAMtoLLM

function that is located in TACE.h library. For other

operations we use the functions in TACE_IPL.h

library. These are all ACE16k libraries that are

under Instant Vision BaseData.

For morphological operations, the first step is to

pass the moving image through a linear Low Pass

Filter to remove the noise. This filter is used to get

rid of some little details and fill the holes in lines

before detecting the objects.

For filtering a moving image, we use the

following command lines in our implementation:

ace << C_LAM1 << sourceGRAY;

ace.LowPassFilter (C_LAM2, C_LAM1,1, 0.05);

ace.ReadLAM(sourceGRAYFiltered, C_LAM2);

A gray level image that is sourceGray, is loaded

to a local analogical memory (C_LAMI) that is on

the ACE16k processor to be processed by using the

first command line. The second command line

applies Low Pass Filtering to an image matrix that is

on C_LAM1 by using the LowPassFilter() function

and passes the resulting image to another local

analogical memory (C_LAM2). Finally, the last line

assigns the resulting image to a variable named

sourceGRAYFiltered.

By applying low pass filtering, we now have a

smooth image. Afterwards, this image is converted

to a binary image by thresholding. The command

lines that are used for this conversion is given

below:

ace.ConvLAMtoLLM(C_LLM2,C_LAM2,50);

ace.ReadLLM(sourceBit, C_LLM2);

In the first line, the image matrix that is on

C_LAM2, is converted into a binary image and

transferred to another local analogical memory

Recent Researches in Neural Networks, Fuzzy Systems, Evolutionary Computing and Automation

978-960-474-292-9 62

(C_LLM2) by using ConvLAMtoLLM() function.

The second line assigns the resulting matrix to a

variable named sourceBit.

To perform thresholding by using

ByteMatrix2BitMatrix() function that runs on a

DSP, we use the following command line:

ByteMatrix2BitMatrix(sourceBit, sourceGRAY,50);

After thresholding, the objects are represented as

black and other parts are represented as white in the
resulting image matrix. However, our algorithm
detects groups of white pixels as objects and carries
out its operations in this manner. To solve this
problem, we need to negate the resulting image.
This means, we should replace 0s with 1s and 1s
with 0s in the image matrix by applying a negation
process. This binary negation process is performed
by the following command line:

ace.Not(sourceBitNegation,C_LAM2);

The same process can be run on a DSP processor

with a Negation() function that is written in C++

programming language. This function is used with

the following command line:

Negation(sourceBitOut, sourceBit);

After the negation process, the morphological

operations that are given with the following

command lines, are applied to the resulting image,

respectively.

ace.SetIPLMode(IPL_MORPH);

ace.Calibrate();

ace.PointRemove();

ace.Calibrate();

ace.HoleFiller(1);

ace.Calibrate();

ace.Opening8(1);

ace.Calibrate();

ace.Dilate8(1);

Before going on with other morphological

operations, the SetIPLMode() function should be

used to set up ACE16k processor to carry out these

procedures. Then, before each morphological

operation, the Calibrate() function is used to

calibrate ACE16k processor for morphological

operations. It is very important to use this function

and repeat it in every 10-20 milliseconds if the

processor works in an IPL mode constantly because

the ACE16k processor can forget this calibration

process. This process is not important for gray level

images.

After the calibration process, the PointRemove()

function that cleans the minor pixels from the

image, the HoleFiller() function that fills the holes

of the image, the Opening8() function that performs

the opening process and finally the Dilate8()

function is applied to the image, respectively [8].

The command lines that perform these

morphological operations on a DSP processor are as

follows:

PointRemove(sourceBitOut,sourceBitOut);

HoleFiller(sourceBitOut, sourceBitOut, 1);

Opening8(sourceBitOut, sourceBitOut, 1);

Dilate8(sourceBitOut, sourceBitOut, 1);

After all these morphological operations, sample

output images are shown in Figure 3 for different

frames that belong to a specific moving image.

 (a)

Original image

(b)

Filtering

(c)

Thresholding

(d)

Negation

1
0

th
 f

ra
m

e

1
4
4

th
 f

ra
m

e

2
4
0

th
 f

ra
m

e

Fig.3. Sample output images after preprocessing

3.2 Extracting the Objects and their

Features
The binary image that is preprocessed depending

on the input moving image is now available for

object detection and is an input parameter to the

CalcFeatures() function. This function is used as

follows:

CalcFeatures(ObjNum, Features, sourceBitOut, FEAT_ALL);

After this process, the objects in a moving image

are detected and their features are extracted. These

features are given as follows:

Recent Researches in Neural Networks, Fuzzy Systems, Evolutionary Computing and Automation

978-960-474-292-9 63

• Bounding Box: It draws a minimal rectangle

around the object by using its upper-left and lower-

right coordinates.

• Extremes: These are the extreme points on the

bounding box of the object. These points are:

Upper-Left, Upper-Right, Right-Upper, Right-

Lower, Lower-Right, Lower-Left, Left-Lower and

Left-Upper.

• Eccentricity: It is the proportion between the

focus distance and the length of the longest axis of

the current ellipse of the object. The eccentricity of

a circle is 0 whereas the eccentricity of a line is 1.

• Diameter: It is the diameter of the circle which

has the same area with the object.

• Orientation: It is the angle of the largest axis

value of the current ellipse as the object to the

positive direction of the horizontal axis.

• Extent: It is the proportion between the area of

the object and the area of the bounding box.

• Center: It denotes the coordinates of the

geometric coordinates of the object according to the

upper left corner of the image.

After the objects and their features are extracted,

the resulting image is saved to be purified from its

remains.

3.3 Purifying Certain Objects from its

remains

Each pixel of an image is expressed by means of the

corresponding element of a matrix, so even no

remains of other objects are detected, a part of the

background will be still within the boundaries of the

certain object that is detected in the image. That is

why we should purify the detected objects from its

remains. The input moving images that we are

working on are colored and this makes the

purification process easier. In our implementation,

we will consider the moving image given in Figure

3 and try to purify the most distinct object in that

certain image - which is the weapon.

For this implementation, we first obtain a matrix

that represents the object by using the extreme

points. This object is then saved as a separate image

file with the help of the related matrix and purified

from its remains that belong to other objects and

from the background image by using the color

codes. This function that performs this process is

coded in C++ programming language.

 (a)

Original image

(b)

Output image
(c)

Purified image

3
1

th

fr

am
e

1
5
8

th

fr
am

e

3
3
0

th

fr
am

e

Fig. 4. Output images after the purification process

Because the image to be processed is colored, we

can get the Red-Green-Blue values of each pixel of

the weapon object and with these values, we call the

ForMask() function. This function gets three input

parameters. These are the matrix that represents the

colored image, the [x,y] coordinate values of the

pixel that is to be processed and the upper and lower

values of the image that is to be purified. ForMask()

function examines each element of the input matrix

in accordance with the constraint generated by the

color values. After the completion of this process,

the extracted object is free from all colors that do

not belong to it. Finally, the last step of this

purification process is to resave the detected object

with a pre-determined plain color background.

Some example results for different frames from our

implementation are shown in Figure 4.

4 Experimental Results
In this algorithm, the filtering and the segmentation

processes that are applied to the image in the

preprocessing phase, can be run on a ACE16k

processor. For this implementation, we write two

different program codes that one of them is just run

on a DSP and the other one is run both on an

ACE16k and a DSP interactively. The results

obtained from the implementation are evaluated as

run-time of the purification algorithm and shown in

Table1.

Recent Researches in Neural Networks, Fuzzy Systems, Evolutionary Computing and Automation

978-960-474-292-9 64

Process DSP DSP+ACE16k

Filtering and

Segmentation
65312 µs 28190 µs (ACE16k)

Feature Extraction 327703 µs 327703 µs (DSP)

Purification of object 42654 µs 42654 µs (DSP)

TOTAL 435669 µs 398547 µs

Table 1. Serial Run-Time Of Purification Algorithm

When we compare these results, one can easily

notice that processing the algorithm on both

processors is 37122 µs faster than processing it only

on a DSP.

5 Conclusion
In this paper, we have studied on the detection of

certain objects in moving images and the extraction

of their features by using the Bi-i Cellular Vision

System. We have also implemented an algorithm

that purifies the remains of each object that we have

detected by using the extracted features. The

filtering and the segmentation processes of the

algorithm are implemented on an ACE16k

processor. The other processes like gray level

transformation, feature extraction and purification of

objects are implemented on a Digital Signal

Processor (DSP). After the implementation of this

algorithm, each purified object that is detected in a

moving image, is saved as a separate image file.

 The results given in Table 1 have shown that

when the algorithm runs on both DSP and ACE16k

processors, the run-time is faster than when it just

runs on a DSP processor.

References:

[1] L. O. Chua ve L. Yang, ” Cellular neural

networks: Theory and applications”, IEEE

Trans. on CAS, cilt 35 no. 10, 1988, s.1257–

1290

[2] T. Roska ve L. O. Chua, “The CNN universal

machine: an analogic array computer”, IEEE

Trans. on CAS-I, cilt. 40 no.3, 1993, s. 163–

173

[3] T. Roska ve A. Rodriguez-Vazquez, “Towards

visual microprocessors”, Proceedings of the

IEEE, cilt 90 no.7, 2002, s. 1244–1257

[4] A. Zarandy ve C. Rekeczky, “Bi-i: a standalone

ultra high speed cellular vision system.”, IEEE

Circuit and Systems Magazine, cilt 5, no.2,

2005, s. 36–45

[5] C. Gonzales ve R.E. Woods, “Digital Image

Processing”, Prentice Hall, New Jersey, 2002

[6] http://www.analogic-computers.com /Support

[7] T. Acharya ve A.K. Ray, “Image Processing:

Principles and Applications”, Wiley and Sons,

2005

[8] A.R. Vazquez, G. L. Cembrano, L. Carranza,

E.R.Moreno, R.C. Galan, F.J. Garrido , R.D.

Castro ve S. E. Meana, “ACE16k: the third

generation of mixed-signal SIMDCNN ACE

chips toward VSoCs”, IEEE Trans. CAS-I,

cilt 51,no.5, 2004, s. 851– 863

Recent Researches in Neural Networks, Fuzzy Systems, Evolutionary Computing and Automation

978-960-474-292-9 65

