
Prediction of Inventory Levels and Capacity Utilization with Artificial 
Neural Networks 

 
BERND SCHOLZ-REITER, FLORIAN HARJES, AMIR KAVIANI MEHR 

BIBA – Bremer Institut für Produktion und Logistik GmbH at the University of Bremen 
University of Bremen 

Hochschulring 20, 28359 Bremen 
GERMANY 

{bsr, haj}@biba.uni-bremen.de, amir.kavianimehr@uni-bremen.de  http://www.biba.uni-bremen.de/ 
 
 
Abstract: - Coping with increasingly complex production processes requires a continuous advancement of 
production control techniques. In this context, artificial neural networks have proven their potential in 
optimization, prediction, classification, control and other production related areas. This paper presents an 
approach for the workstation-specific prediction of inventory levels and capacity utilization within a shop floor 
environment. This includes the selection of the appropriate network architecture, the determination of suitable 
input variables as well as the training and validation of the applied neural networks. Further, an evaluation of 
the proposed networks takes place by means of a generic shop floor model. 
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1 Introduction 
Multi variant and customized products with short 

lifecycles are typical for today`s market [1]. The 
corresponding production processes and material 
flows are often complex and dynamic. 
Consequently, established production planning and 
control approaches need a continuous advancement 
[2].  

Particularly in the field of shop floor production, 
prototypes and small series as well as the special 
technical organization complicate the handling of 
control related tasks. At this point, artificial neural 
networks have proven their applicability as methods 
for classification, pattern recognition or production 
control [3], [4].  

This paper introduces an approach of a neural 
network based prediction of inventory levels and 
capacity utilization for workstations within a shop 
floor environment. The approach can be seen as a 
contribution to the development and implementation 
of innovative decentralized and/or predictive control 
strategies [5].  

The next section introduces neural networks in 
general, followed by a brief description of the newly 
developed neural predictors regarding their structure 
and training results in section 3. Section 4 presents 
the shop floor model for the evaluation of the new 
predictors and the obtained experimental results. 
Finally, the article closes with a summary and an 
outlook on future research in section 5. 

 
 
2 Artificial Neural Networks 

Artificial neural networks emulate the structure 
and functionality of neural systems in nature [6]. 
They typically consist of nodes, which are arranged 
in at least two or more layers and are interconnected 
via weighted links [7] (Fig. 1). At this point, the 
number of layers and the direction of the 
connections depend on the type of network [8].  

 

 
Fig. 1 Example of a neural network 

 
Neural networks offer a fast data processing, a 

comparatively small modelling effort and the ability 
to learn from experience [9]. Further, they are able 
to approximate complex mathematical coherences 
that are either unknown or not completely 
describable. At this point, neural networks act in a 
black box manner [10]. 
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Depending on the type of neural network, three 
general learning procedures can be distinguished. 
Supervised Learning denotes a procedure, where 
pairs of input and output data are presented to the 
neural network. During the learning process, the 
network adapts its connection weights, so that the 
input leads to the desired output [8]. Reinforcement 
Learning only comprises the presentation of input 
data. Instead of the corresponding output, the 
network receives a feedback, whether the output 
was correct [6]. Finally, Unsupervised or Self-
Organized Learning takes place without any default 
values for the output or the corresponding feedback. 
At this point, the neural network tries to recognize 
patterns within the input data autonomously [11]. 

Common for all approaches is the validation of 
the learning results with a second dataset. This 
ensures the generalization of the learning process 
and avoids a mere memorization of the training 
data, the so called Overfitting [6]. 
 

 
3 The Neural Predictors 
 
 
3.1 Elman Networks 

As mentioned above, the structure of a neuronal 
network strongly depends on the application area. 
For prediction purposes, recurrent or partly 
recurrent architectures are common [12]. The 
approach presented in this paper focuses on Elman 
networks, a partially recurrent network architecture 
[13]. Elman networks are feedback networks, 
containing a special layer of so called context cells 
(see Fig. 2). 

 

 
Fig. 2 Elman Network (following [14]) 

 
 These context cells save the neural activation of 

previous states and therefore ensure that the 
prediction takes past events into account. Thus, the 
connection weight between the hidden layer and the 
context cells determines how much past states 
influence the prediction. A connection weight near 
or equal to 1 stands for a strong influence of past 
states, a smaller value mitigates this effect. 

 
 

3.2 Structure of the Neural Predictors 
The proposed concept comprises the 

workstation-specific prediction of inventory level 
and capacity utilization. For this purpose, the neural 
networks consider the actual state of the regarded 
workstation as well as the conditions of the 
predecessors. Correspondingly, the predictor 
networks` topology depends on the position, the 
considered workstation has within the material flow. 

Fig. 3 Topology of the inventory predictor (screenshot) 
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 In the following, a workstation with two 
predecessors serves as an example. The neural 
predictor for the inventory level is a 5:10:10:1 
Elman Network (Fig.3). It processes 5 input values, 
these are: 

 
1. The actual inventory level of workstation n, 

manufacturing stage m at time t (Inventory 
(t)n,m), 

2. the machining time (ten,m) and 
3. the setup time (trn,m)of all orders waiting in 

front of the workstation, 
4. the actual inventory level of predecessor n, 

production stage m-1 at time t 
(Inventory(t)n,m-1), 

5. the actual inventory level of predecessor 
n+1, production stage m-1 at time t 
(Inventory (t)n.m-1. 

 
The output value of the network represents the 
predicted inventory level at time t+1. At this point, 
the prediction horizon amounts four hours, 
depending on the shift plan of the underlying shop 
floor model.  

The capacity predictor has a quite similar 
4:10:10:1 topology. While the number of hidden 
neurons and context cells is identical, the network 
needs only four input neurons. These neurons 
process the following values: 

 
1. The capacity of workstation n, production 

stage m at time t (Capacity (t)n,m), 
2. the occupancy of workstation n, production 

stage m at time t (Occupancy (t)n,m), 
3. the current inventory level of workstation n, 

production stage m at time t (Inventory (t)n,m) 
and 

4. the waiting time of workstation n, production 
stage m at time t (Waiting (t)n,m). 

 
At this point, capacity defines the maximum number 
of workpieces that can be produced within the 
prediction horizon of 4 hours (half a work shift). 
The determination of the corresponding period 
length is described in section 4. Finally, the waiting 
time denotes the amount of time, the workstation 
pauses due to disturbances, breaks, etc. 
 
 
3.3 Training and Validation 

The initial training and validation process of both 
network types bases on the supervised learning 
method using the Resilient Propagation algorithm. 
Experiments with Quick Propagation and 

Backpropagation with Momentum term show 
inadequate results. 

The necessary datasets result from test runs of 
the shop floor model that is also used for evaluation 
purposes in the next section. The test runs take 
approximately 30 days with an average of 1770 
orders. At this point, the recording of input/output 
pairs takes place every four hours. Fig. 4 depicts the 
learning curve of the network for capacity 
prediction. The lower line represents the results 
(summed square error) of the training dataset, while 
the upper line denotes the same for the validation 
data. The training process converges after 
approximately 700 cycles, when both curves reach 
their minimum. A further training would lead to an 
increasing error for the validation data and a slight 
improvement for the initial training set. This is a 
typical indication for an overfitting of the neural 
network [15].  

 

 
Fig.4 Learning process of the capacity predictor 

   
The minimal error during the training process is less 
than 0,1 (1≈100%). Transferred to the original 
prediction task, this implies an average prediction 
error of approximately 5%. 

The learning process of the inventory predictor 
converges after approximately 400 cycles (Fig. 5). 

 

 
Fig. 5 Learning process of the inventory predictor 
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At this point, the minimal error is again less than 
0,1, but slightly higher than the capacity predictor`s 
result.  
  
 

4 Experiments 
 
 
4.1 Settings 

The evaluation of the neural predictors takes 
place by means of a generic shop floor model. The 
model comprises eight workstations on four 
production stages (Fig 6). Every workstation has an 
input buffer in front of it. At this point, the 
workpieces pass the buffer following the FIFO 
principle (First-In-First-Out). The shop floor 
operates in three shifts of eight hours each. To 
enable a quick reaction to changing production 
situations, the prediction horizon is set to the half of 
a shift (four hours). 

During the simulated period of 30 days, six 
different workpiece types run through the shop 
floor. The order release takes place piecewise the 
setup and processing times differ for every type of 
workpiece, depending on the technical properties of 
the workstations. Hence the processing and setup 
times are in the range of one up to 40 minutes. 

 

 
Fig. 6 Layout of the shop floor model 

 
The processing order is sequential, so that every 

workpiece passes all four production stages. The 
distribution of workpieces between the production 
stages follows an inventory based control approach. 
A finished workpiece is always transferred to the 

successor at the following production stage with the 
comparatively lowest inventory level. 

 
 

4.2 Results 
In the following, the prediction results of 
workstation13 serve as an example for the whole 
shop floor. Fig. 7 depicts the comparison between 
the actual and the predicted capacity utilization for 
this workstation over a period of 20 hours. This 
timeframe contains five predictions with a horizon 
of four hours each. At this point, the curve for the 
actual values represents continuously recorded data. 
The prediction curve depicts an approximation 
between the performed five predictions. This results 
in a relatively uneven curve shape.  
 

 
Fig. 7 Actual and predicted capacity utilization for 

WS13 

The evaluation shows an average workload scarcely 
above 34%. The time of inactivity is attributable to 
disturbances, breaks, setup times and maintenance. 
The predicted capacity utilization is close to the 
actual data, with a deviation of 3,2% 
maximum(Fig.8). 

 
Fig. 8 Deviation of the prediction error for the 

inventory levels 

The course of the inventory prediction is quite 
similar, with an error between nearly zero and a 
maximum of approximately 6% (Fig. 9). As it is for 
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the capacity prediction, the actual values represent 
continuous and event-oriented data. In contrast, the 
predicted values depict an approximation of the 
inventory development.  

 

Fig. 9 Actual and predicted inventory level for WS13 

 
The predicted values differ from the real inventories 
averagely 2.5% (Fig. 10). Nevertheless, the 
prediction deviates up to 40 minutes from the 
recorded inventory level. Due to the setup and 
processing times, deviation can correspond to 1-4 
workpieces. 

 

Fig. 10 Deviation of the prediction error for the 

capacity utilization 

 
 

5 Summary and Outlook 
 
This paper introduces an approach for the 
workstation-specific prediction of capacity 
utilization and inventory levels using Elman 
networks. The experimental results render a low 
monadic prediction error with a maximum of 6% for 
a prediction horizon of four hours. This is sufficient 
in the case of capacity utilization. For the inventory 
levels, an even more precise prediction is desirable. 
At this point, the deviation between the real and 

predicted values can correspond to multiple 
workpieces.  

Therefore, future research should focus on the 
reduction of prediction errors in coordination with 
an increase of the prediction horizon. Another point 
of interest should be the integration of the 
introduced prediction approach into modern 
production control strategies, e.g. Model Predictive 
Control (MPC).  
In the field of neural network research there is a 
fundamental interest in making continuous 
adaptations to changing shop floor situations, 
such as shifting setup- and processing times and 
the varying number of workpiece types. 
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