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Abstract:- In this work an algorithm to adjust parameters of time series forecasting in function of energy 

associated of series using a feed-forward NN-based nonlinear autoregressive model is presented. The criterion 

for fitting comprises to yield value time series from forecasted time series area. These values are 

approximated by the NN to generate a primitive calculated as an area by the predictor filter. The NN output 

will tend to approximate the current value available from the series which has the same Hurst Parameter as the 

real time series. The approach is tested over a time series obtained from samples of the Mackey-Glass delay 

differential equations (MG) and serve to be applied for meteorological variables measurements such as soil 

moisture series, daily rainfall and monthly cumulative rainfall time series forecasting.  
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1 Introduction 

Natural phenomena prediction is a challenging topic, 

useful for control problems from agricultural activities 

and decision-making that helps the producer to decide. 

There are several approaches based on NN that face the 

rainfall forecast problem for energy demand purposes 

[5], for water availability [18] and seedling growth  [21] 

by taking an ensemble of measurement points [12], [14]. 

Here, the proposed approach is based on the classical 

NAR filter using time lagged feed-forward neural 

networks, where the data from the MG benchmark 

equation whose forecast is simulated by a Monte Carlo 

[4] approach. The number of filter parameters is put 

function of the roughness of the time series, in such a 

way that the error between the smoothness of the time 

series data and the forecasted data modifies the number 

of the filter parameters. 

1.1 MG and fBm Overview  

The MG equation serves to model natural phenomena 

and has been used by different authors to perform 

comparisons between different techniques for foretelling 

and regression models [7] [19]. Here we propose an 

algorithm to predict values of time series taken from the 

solution of the MG equation [9]. The MG equation is 

explained by the time delay differential equation defined 

as, 

),(
)(1

)(
)( ty

ty

ty
ty

c














                   (1) 

where α, β, and c are parameters and τ is the delay time. 

According as τ increases, the solution turns from 

periodic to chaotic. Equation is solved by a standard 

fourth order Runge-Kutta integration step. By setting the 

parameter β ranging between 0.1 and 0.9 the stochastic 

dependence of the deterministic time series obtained 

varies according to its roughness. The performance of 

the proposed method is tested with the SMAPE index 

and it is compared with a traditional NN based 

predictor. Due to the random process, it is proposed to 

use the Hurst’s parameter H in the learning process to 

modify on-line the number of patterns, of iterations and 

filter inputs. This H gives information about the 

roughness of a signal, and also to determine its 
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stochastic dependence. The definition of the Hurst's 

parameter is defined by Mandelbrot through its 

stochastic representation, 
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where, (·) represents the Gamma function 

                             



0

1 dxex x                            (3) 

and 0<H<1 is called the Hurst parameter. The integrator 

B is a stochastic process, ordinary Brownian motion. 

Note, that B is recovered by taking H=1/2 in (2) and B 

is defined on some probability space (, F, P). Thus, an 

fBm is a time continuous Gaussian process depending 

on the so-called Hurst parameter 0<H<1. The ordinary 

Brownian motion is generalized to H=0.5, and its 

derivative is the white noise. The fBm is self-similar in 

distribution and the variance of the increments is defined 

by 

                        
H

HH stsBtBVar
2

                (4) 

where v is a positive constant. 

This special form of the variance of the increments 

suggests various ways to estimate the parameter H . In 

fact, there are different methods for computing the 

parameter H associated to Brownian motion [6]. In this 

work, the algorithm uses a wavelet-based method for 

estimating H from a trace path of the fBm with 

parameter H [8]. 

1.2 NN Approach overview 

One of the motivations for this study follows the closed-

loop control scheme [16] where the controller considers 

meteorological future conditions for designing the 

control law as shown in Fig. 1. In that scheme the 

controller considers the actual state of the crop by a state 

observer and the meteorological variables, referred by 

x(k) and Ro, respectively. However, in this paper only 

the controller’s portion concerning with the prediction 

system is presented by using a benchmark time series.  

 
    

  

SYSTEM CONTROLLER  

CROP u(x,k,{Ro}) 

x(k)  

STATE 

OBSERVER 

CHARACTERISTICS 

Ro 

 

VARIABLE 

MODELING 

  

Fig. 1. Closed-loop PC-based control approach. 

 

The main contribution of this work is in the learning 

process, which employs the Levenberg-Marquardt rule 

and considers the long or short term stochastic 

dependence of passed values of the time series to adjust 

at each time-stage the number of patterns, the number of 

iterations, and the length of the tapped-delay line, in 

function of the Hurst’s value, H of the time series. 

According to the stochastic characteristics of each series, 

H can be greater or smaller than 0.5, which means that 

each series tends to present long or short term 

dependence, respectively. In order to adjust the design 

parameters and show the performance of the proposed 

prediction model, solutions of the MG equation are 

used. The NN-based nonlinear filter is applied to the 

time series obtained from MG to forecast the next 18 

values out of a given historical data set of 102 values. 
  

2 Problem statement 
 

The best prediction of the present values from a random 

(or pseudo-random) time series is desired. The predictor 

system may be implemented using an autoregressive 

model-based nonlinear adaptive filter. In this work, time 

lagged feed-forward neural networks are used. The 

adaptive filter output will be the one-step prediction 

signal. In Fig. 2 the block diagram of the nonlinear 

prediction scheme based on a NN filter is shown. Here, 

a prediction device is designed such that starting from a 

given sequence {xn} at time n corresponding to a time 

series it can be obtained the best prediction {xe} for the 

following sequence of 18 values. Hence, it is proposed a 

predictor filter with an input vector lx, which is obtained 

by applying the delay operator, Z
-1

, to the sequence {xn}. 

Then, the filter output will generate xe as the next value, 

that will be equal to the present value xn. So, the 

prediction error at time k can be evaluated as: 

 (5) 

which is used for the learning rule to adjust the NN weights. 

 

     kxkxke en 
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Fig. 2. Block diagram of the nonlinear prediction. 

 

The coefficients of the nonlinear filter are adjusted on-

line in the learning process, by considering a criterion 

that modifies at each pass of the time series the number 

of patterns, the number of iterations and the length of 

the tapped-delay line, in function of the Hurst’s value H 

calculated from the time series. According to the 

stochastic behavior of the series, H can be greater or 

smaller than 0.5, which means that the series tends to 

present long or short term dependence, respectively [17]. 

3 Proposed approach 

3.1 The Proposed Learning Process 

The NN’s weights are tuned by means of the Levenberg-

Marquardt rule, which considers the long or short term 

stochastic dependence of the time series measured by the 

Hurst’s parameter H. The proposed learning approach 

consists of changing the number of patterns, the filter’s 

length and the number of iterations in function of the 

parameter H for each corresponding time series. The 

learning process is performed using a batch model. In 

this case the weight updating is performed after the 

presentation of all training examples, which forms an 

epoch. The pairs of the used input-output patterns are 

(6) 

where, xi and yi are the corresponding input and output 

pattern respectively, and Np is the number of input-

output patterns presented at each epoch. Here, the input 

vector is defined as: 

(7) 

and its corresponding output vector as: 

(8) 

 

Furthermore, the index i is within the range of Np given 

by  

(9) 

where lx is the dimension of the input vector. 

In addition, the number of iterations performed by each 

epoch it is given by 

(10) 

 

The proposed criterion to modify the pair (it,Np) is given 

by the statistical dependence of the time series {xn}, 

supposing that it is an fBm. The dependence is evaluated 

by the Hurst’s parameter H, which is computed by a 

wavelet-based method [1] [8]. Then, a heuristic 

adjustment for the pair (it,Np) in function of H according 

to the membership functions shown in Fig. 3 is 

proposed. 

 

Fig. 3. Heuristic adjustment of (it,Np) in terms of H after 

each epoch. 

 

In order to predict the sequence {xe} one-step ahead, the 

first delay is taken from xn data and used as input. 

Therefore, the output prediction can be denoted by 
 

(11) 

 

where Fp is the nonlinear predictor filter operator, and 

xe(n+1) is the output prediction at n+1. 
(12) 

 

3.2 Approximation by Primitive 

The area resulting of integrating the data time series of 

MG equation is the primitive that is obtained by 

considering each value of time series its derivate; 

(13) 

 

where yt is the original value time series. The area 

approximation by its periodical primitive is: 

(14) 

During the learning process, those primitives are 

calculated as a new entrance to the NN, in which the 

prediction attempts to even the area of the forecasted 

area to the primitive real area predicted. The real 

primitive integral is used in two instances, firstly from 

the real time series an area is obtained and run by the 

algorithm proposed. The H parameter from this time 
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series is called HA. On the other hand, the data time 

series is also forecasted by the algorithm, so the H 

parameter from this time series is called HS. Finally, 

after each pass the number of inputs of the nonlinear 

filter is tuned —that is the length of tapped-delay line, 

according to the following heuristic criterion. After the 

training process is completed, both sequences -{{In}, 

{Ie}} and {{yn, ye}}, in accordance with the hypothesis 

that should have the same H parameter. If the error 

between HA and HS is greater than a threshold parameter 

θ the value of lx is increased (or decreased), according to 

lx 1. Explicitly, 

(15) 

 

Here, the threshold θ was set about 1%. 

 

4 Main results 

4.1 Generations of areas from MG equations 

Primitives of time series are obtained from the MG 

equations with the parameters shown in Table 1, with 

=100 and α=20. This collection of coefficients was 

chosen to generate time series whose H parameters vary 

between 0 and 1. The chosen one was selected in 

accordance to its roughness. 

Table 1. Parameters to generate the times series. 

 

Series No. β H 

1 0.32 2.71 

2 1.6 0.73 

 

4.2 Performance measure for forecasting 

In order to test the proposed design procedure of the NN 

-based nonlinear predictor, an experiment with time 

series obtained from the MG solution was performed. 

The performance of the filter is evaluated using the 

Symmetric Mean Absolute Percent Error (SMAPE) 

proposed in the most of metric evaluation, defined by 

(16) 

 

where t is the observation time, n is the size of the test 

set, s is each time series, Xt  and Ft are the actual and the 

forecasted time series values at time t respectively. The 

SMAPE of each series s calculates the symmetric 

absolute error in percent between the actual Xt and its 

corresponding forecast value Ft, across all observations t 

of the test set of size n for each time series s. 

4.3 Prediction Results for the MG Time Series 

Each time series is composed by sampling the MG 

solutions. However, there are three classes of data sets: 

one is the original time series used for the algorithm in 

order to give the forecast, which comprises 102 values. 

The other one is the primitive obtained by integrating the 

values of original time series and the last one is used to 

compare if the forecast is acceptable or not where the 18 

last values can be used to validate the performance of the 

prediction system, which 102 values form the data set, 

and 120 values constitute the Forecasted and the Real 

ones. A comparison is made between a linear and 

nonlinear NN dependent and independent filter and an 

ARMA predictor filter.  

The Monte Carlo method was used to forecast the next 

18 values from MG time series and its primitive acquired 

by integration. Such outcomes are shown from Fig. 4 to 

Fig. 8 .  The plot shown in Fig. 4 is provided for a linear 

ARMA filter outcome.  
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Fig. 4. Primitive of MG time series obtained from 

ARMA predictor filter. 

In the figure, the legend ―Data‖ represents the values 

obtained by Eq. (11), and the legend ―Real‖ denotes the 

actual values -not available in practice- used here for 

verification purposes only. From time k equal 103 to 

time 120 the inputs of Eq. (11) include the outputs 

delayed one time interval. The obtained time series has a 

mean value, which is indicated at the foot of the figure 

by ―Forecasted Mean‖. The ―Real Mean‖ it is not 

available at time 102. In the learning process, the 

primitive is calculated as area by the predictor filter, in 

which each value of time series represents its derivate. In 

Fig. 7, the MG equation in which the H parameter is 

equal to 2.71 was discarded due to its low roughness. 
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Fig. 5. Primitive of MG time series with β=0.32. 

The algorithm proposed to predict the area related with 

the energy of the time series is shown in Fig. 6 and Fig. 

7. These are calculated by a dependent and independent 

NN filter.  
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Fig. 6. H independent algorithm. 
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Fig. 7. H dependent algorithm. 
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Fig. 8. Comparisons. 

4.4 Comparative Results 

The performance of the stochastic NN-based predictor 

filter is evaluated through the SMAPE index —Eq. (16), 

shown in Table 2 and  

Table 3 along the time series from MG solutions with 

β=1.6.  

Table 2. Figures obtained by the proposed approach 

Series 

No. 
H He Real mean 

Mean 

Forecasted 
SMAPE 

Fig. 6 0.73 0.587 0.529 0.509 2.811 

Fig.8 0.002 0.039 0.103 0.105 0.034 

Fig.9 0.002 0.033 0.103 0.102 2.9 10-5 

 

Table 3. Comparisons obtained by the proposed 

approach 

Series No. HS HA 

Fig. 10 0.6543 0.6423 

 

The comparison between the deterministic [19], the 

stochastic approach [22] and the present forecasted time 

series is shown through Fig. 6 to Fig. 8. In addition, an 

area of a primitive value acquired of MG time series was 

incorporated in order to use the proposed approach. The 

SMAPE index for each time series is obtained by a 

deterministic NN-based filter, which uses the 

Levenberg–Marquardt algorithm with fixed parameters 
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(it, Np). In addition, the results of the SMAPE obtained 

by the stochastic NN-based filter proposed here are also 

shown in Fig. 6 and Fig. 7 where the Forecasted mean is 

closer the Real media in Fig. 9 than in Fig. 8 due to the 

fact that H is dependent of the algorithm. Furthermore, 

the SMAPE value is improved of order of 10
-5

 for a 

class of time series with high roughness of the signal, in 

this case with β=1.6 which is one of worst condition for 

signal prediction. 

5 Discussion 

The assessments of the obtained results by comparing 

the performance of the proposed filter with the classic 

filter, both are based on NN. Although the difference 

between both filters resides only in the adjustment 

algorithm, the coefficients that each filter has, each ones 

performs different behaviors. In the four analyzed cases, 

the generation of 18 future values from 102 present 

values was made by each algorithm. The same initial 

parameters were used for each algorithm, but these 

parameters and the filter’s structure are changed by the 

proposed algorithm that is not modified by the classic 

algorithm. The adjustment of the proposed filter, the 

coefficients and the structure of the filter are tuned by 

considering their stochastic dependency. It can be noted 

that in each of the figures —Fig. 4 to Fig. 8— the 

computed value of the Hurst’s parameter is denoted 

either by He or H,  both taken from the Forecasted time 

series or from the Data time series, respectively, since 

the Real time series (future time series) are unknown. 

Index SMAPE is computed between the complete Real 

time series (it includes the series Data) and the 

Forecasted one, as indicates the Eq. (16) for each filter. 

Note that there is no improvement of the forecast for 

any given time series, which results from the use of a 

stochastic characteristic to generate a deterministic 

result, such as a prediction. 

6 Conclusions 

In this work a NN-based autoregressive model for time 

series forecasting that considers the energy associated 

with the data series was presented. The learning rule 

proposed to adjust the NN’s weights is based on the 

Levenberg-Marquardt method. Likewise, in function of 

the long or short term stochastic dependence of the time 

series evaluated by the Hurst parameter H, an on-line 

heuristic adaptive law was proposed to update the NN 

topology at each time-stage. The major result shows that 

the area predictor system supplied to time series has an 

optimal performance from several samples of MG 

equations, in particular, those whose H parameter has a 

high roughness of signal, which is assessed by HS and 

HA, respectively. This fact encourages us to be applied 

for meteorological variables measurements such as soil 

moisture series, daily rainfall and monthly cumulative 

rainfall time series forecasting when the observations are 

taken from a single point. 
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