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Abstract: In computational vision research, low-level tasks such as edge detection, stereo matching, and motion

tracking have been widely emphasis as autonomous bottom-up processes. Active contours have also been widely

applied for various applications in medical image processing. Semi-implicit AOS is very stable constraint on the

size of the time step associated with explicit numerical schemes and will be adopted in our implementation. The

proposed algorithm using iterative methods such as Jacobi, Gauss-Seidel and SOR will be implementing in object
edge detection experiments performed on MRI images. MATLAB has been chosen as computational platform

for the experiment implementation. It is well suited and widely used in the medical image processing for the

monitoring and detection. The experimental results of the edge detection on medical images are illustrated in

analysis section. As the conclusion the iterative method is the alternative scheme instead using direct method for

accurate contours tracking of the medical image processing.
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1 Introduction

In computational vision research, process of au-

tonomous bottom-up has been widely used for low-

level tasks such as line or edge detection, motion

tracking and stereo matching. Image processing has

one problem where the edge detection has difficulty in

finding lines separating homogeneous regions. Active

contour model is one of the most-popular PDE(Partial
Differential Equation) based tools in computer vision

and powerful in object tracking.

Active contour model, also called classical ex-

plicit snaked is first introduce by Kass, Witkin and

Terzopoulos [1]. They have been used in a variety
of image and computer vision tasks such as object

boundary detection and tracking. The snake ACM has

two significant weaknesses [2]. Firstly, it depends on

the intrinsic characteristics of the contour and param-

eterization and the model is a non-geometric model.

Secondly, it cannot naturally handle topology of the

evolving contour changes because of situations where

no prior knowledge of the number of objects to be de-

tected is available.

To solve these problems, in [3] has proposed a

different model for active contours based on geomet-

ric partial different equation. It is independence of

parameterization, intrinsic and stable. As important

development has been the introduction of geodesic ac-

tive contours [4][5]. This model is approach to object

segmentation to connect snake model based on energy
minimization and geometric active contours based on

the theory of curve evolution. Level sets method were

introduced by Osher and Sethian [5] for capturing

moving fronts, in which the active contour is given

implicitly as the zero level set of a scalar embedding

function defined on the whole image domains; this al-

lows for changes in the curves topology much more

naturally than in parametric snakes.

In this paper, we will describe the proposed

scheme by Weickert et al [6]. Edge detection based

on semi-implicit addictive operator splitting (AOS)

technique will be implementing for our edge detection

on medical images such as medical resonance image
(MRI). Direct method such as Thomas has been im-

plemented in the proposed algorithm [6]. As the re-

sult, this method can be used as a consistent, uncon-

ditionally stable and computationally efficient. How-

ever, the disadvantages of this is reduced accuracy and

number of iterations is very high. When the time-

step, τ get very big, splitting artifacts emerge due to

reduced rotational invariance can emerge. This keep

number of iterations get very large for the contour to
converge and constrains of the time-step.

In our proposed algorithm, iterative method such

as Jacobi, Gauss-seidel and SOR will implementing
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for our edge detection. In this paper, we will describe

the analysis of our result in terms of numerical perfor-

mance.

2 Numerical Solution of the Model

2.1 Geodesic ACM using AOS scheme

The geodesic ACM using AOS scheme were proposed

in [7] will be applied in this research to detect the edge

of object. The equation of geodesic ACM [8] is ex-
pressed by

∂u(x,y, t)

∂ t
= |5u|div(

b(x)5u

|5u|
+ |5u|kg(x)). (1)

Then from (1) for k = 0, every step of the evolu-

tion of geodesic ACM corresponding to a linear non-

homogeneous diffusion is defined by:

∂u(x,y, t)

∂ t
= div(

b(x)5u

|5u|
). (2)

The conduction coefficient not evolving function

u and b(x,y) = b(|5 I|) depends on the image I. For

time derivative in (2), using a forward time difference:

∂u

∂ t
≈

u(n+1)−un

τ
, (3)

where τ is the size of the time-step.

Setting C := b
5u

. Descritize div(c 5 u) by the

standard five-point stencil. In two dimensions, if for

example the size of the square in the grid is h by h, the

five point stencil of a point (x,y) in the grid is

(x−h,y), (x,y), (x +h,y), (x,y−h), (x,y+h)

div(c5u) ∼= ∂x(c(i, j)

u(i+1/2, j) −u(i−1/2), j)

hx
)+∂y (c(i, j)

u(i, j+1/2) −u(i, j−1/2)

hy
),

∼= c(i+1/2, j)((
u(i+1/2,+1/2 j) −u(i−1/2+1/2, j)

h2
)

−c(i−1/2, j) ((
u(i+1/2−1/2, j) −u(i−1/2−1/2, j)

h2
)

+c(i, j+1/2) ((
u(i, j+1/2+1/2) −u(i, j−1/2+1/2))

h2
)

−c(i, j−1/2) ((
u(i, j+1/2−1/2) −u(i, j−1/2−1/2))

h2
),

∼= c(i+1/2, j)((
u(i+1, j) −u(i, j)

h2
)−c(i−1/2, j) ((

u(i, j) −u(i−1, j)

h2
)

+c(i, j+1/2) ((
u(i, j+1) −u(i, j)

h2
)−c(i, j−1/2) ((

u(i, j) −u(i, j−1)

h2
). (4)

where hx,hy are the spatial finite difference dis-

cretization mesh grid lengths. In the following, it is

assumed for convenience that hx = hy = h.

Setting c(i+(1/2), j) =
c(i+1, j)+c(i, j)

2 , quotation in
matrix-vector notation is written as

div(c5u) ≈ Au. (5)

A = [a(i, j)] is the N × N(N = N×Ny is the to-

tal number of pixels of the Nx × Ny image) time-

independent matrix with elements.
ℵ(i) denotes the 4-neighborhood of pixel Pi.

Hence, following its semi-implicit formulation as

ai, j =











gi+g j

2
, j ∈ N(i)

−ΣkΣN(i)
gi+g j

2
, j = i

0, otherwise.

(6)

N(i) marked the 4-neighborhood of pixel Pi.

Hence, following its semi-implicit formulation as

un+1
i = un

i +τ(ai|5u|ni Σ j∈N(i)

( b
|5u|)

n
i +( b

|5u|)
n
j

2

un+1
j −un+1

i

h2
).

(7)
N(i) denotes the 4-neighborhood of pixel xi.

Here,the implementation is straight-forward finite dif-
ference which will give the cause of the problems
when |5u| vanishes in a 4-neighborhood. If one uses
a finite difference scheme with harmonic averaging
then these problems will not appear. Thus, substitut-

ing 1
2
(( b

|5u|)
n
i +( b

|5u|)
n
j) in (7) by its harmonic coun-

terpart:

un+1
i = un

i +τai|5u|ni Σ j∈N(i)
2

(
|5u|

b
)n

i +(
|5u|

b
)n

j

un+1
j −un+1

i

h2
).

(8)

In matrix-vector, notation is:

un+1 = un + τΣ j∈{x,y}Al(u
n)un+1. (9)

However, this scheme cannot determine the solu-
tion for un+1 directly. Instead, it is needed in solving
the systems of linear equations. The solution is given
by:

un+1 = (I − τΣl∈{x,y}Al(u
n))−1un, (10)

where I is unit matrix. Reformulating (10) using
AOS approximation yielded

un+1 =
1

2
Σl∈{x,y}(I −2τAl(u

n))−1un. (11)

The operators Bl(uk) := I − 2τAl(un) is to solve
for the strict diagonally dominant tridiagonal linear
systems efficiently. The constant force term |5u|kg
had been neglected so far. This term stems from
the hyperbolic dilation/erosion ∂t u = | 5 u|. Conse-
quently, the gradient has to be approximated by an
upwind scheme in a numerical implementation:

|5u|in =



















|5− u|in = max(D−xun
i ,0)2 +max(D+xun

i ,0)2

+max(D−yun
i ,0)2 +max(D+yun

i ,0)
1
2 , if k ≤ 0

|5+ u|in = max(D−xun
i ,0)2 +max(D+xun

i ,0)2

+max(D−yun
i ,0)2 +max(D+yun

i ,0)
1
2 , if k ≤ 0
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where D+x, D+y, D−x, and D+y denoted forward

and backward for spatial derivatives approximation.

The constant force term integrate into (11) and results

for k < 0:

un+1 =
1

2
Σl∈{x,y}(I−2τAl(un))−1(un +τ |5− u|nkg).

(12)

The algorithm of the AOS step is summarized as

follows [9]:

Algorithm 1 Pseudocode for AOS Step in m dimen-

sions.
Input: u = un

(read image) Regularization: v := Kσ ∗u

(stop function) Compute of diffusivity g(|5v|2)
(approximate 5v using central differences)

(use look up table for evaluating g)
Create copy: f := u

Initialize sum : u := 0

(initial contour)

For l = 1, . . . ,m :

Compute v := (mIm2τAl)−1 f :

(solve N
Nl

tridiagonal systems of size Nl with Numeri-

cal method)

Update : u := u+v

Output: u = un+1 (final contour)

2.2 Numerical method

The semi-implicit scheme requires to solve a linear

system, where the system is tridiagonal and diag-

onally dominant. Iterative method such as Jacobi,

Gauss-seidel and SOR will be used to solve this tridi-

agonal linear system.

A system of algebraic equations has the form of

A11u1 +A12u2 + . . .+A1nun = f1

A21u1 +A22u2 + . . .+A2nun = f2

A31u1 +A32u2 + . . .+A3nun = f3

...

An1u1 +An2u2 + . . .+Annun = fn (13)

where the coefficients Ai j and the constants f j are
known, and ui represents the unknowns. In matrix no-

tation the equations are written as



























a b 0 0 0 0 0

c a b 0 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0
. . .

. . .
. . . 0 0

0 0 0
. . .

. . .
. . . 0

0 0 0 0 c a b

0 0 0 0 0 c a















































u1

u2

:

:

:

un−1

un





















=





















f1

f2

:

:

:

fn−1

fn





















or, simply

Au = f (14)

The following tridiagonal system of equations
from (14) can be expressed as follows:

2

h2
uh

1 −
1

h2
uh

2 = f h
1 ,

−
1

h2
uh

j−1 +
2

h2
uh

j −
1

h2
uh

j+1 = f h
j j = 2,3, ...,n,

−
1

h2
uh

n−1 +
2

h2
uh

n = f h
n . (15)

The residual vector b− Ax is a criteria to mod-

ify a component of approximate vector in order to

improve an iteration. The algorithm is iterated until

some specified convergence is achieved. Convergence

is achieved when some measure of the relative or ab-

solute change in the solution vector is less than a spec-

ified convergence criterion. The number of iterations

required to achieve convergence depends on:

1. The dominance of the diagonal coefficients.

As the diagonal dominance increases, the number of

iterations required to satisfy the convergence criterion

decreases.

2. The method of iteration used.

3. The initial solution vector.

4. The convergence criterion specified.

A large sparse linear system of equations is Au =

f , where A can be decomposed into a diagonal D,

a lower triangular component L, and a strictly upper

triangular component U, then A = D−L−U as illus-

trated in Figure 3.10. It is always assumed that the

diagonal entries of A are all nonzero.

2.3 Jacobi

The Jacobi iteration determines the i-th component of

the next approximation so as to eliminate the i-th com-

ponent of the residual vector. In the following, u
(
ik)

denotes the i-th component of the iterate uk and fi the

i-th component of the right-hand side f . Decompo-

sition of A = D−L−U will lead immediately to the
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vector form of the Jacobi iteration,

uk+1
i = D−1(L+U)uk +(D)−1b (16)

This algorithm can be shown in discrete equation

as

uk+1
i =

fi − cuk+1
i−1 −buk

i+1

aii

(17)

The Jacobi method can be written as follows:

uk+1
i =

1

aii
( fi −

i−1

∑
j=1

ai ju j −
n

∑
j=i+1

ai ju j) i = 1,2, ...,n (18)

This leads to the following program:

Algorithm 2 Pseudocode for Jacobi Iteration

For k = 0,1, . . ., until convergence Do:

For i = 1,2, ..., p Do:

Solve Aiiδi = W T
i (b−Axk)

Set xk+1 := xk +Viδi

EndDo

EndDo

2.4 Gauss Seidel

Gauss Seidel method is to solve linear systems of

equations, Au = f . The Gauss-Seidel method requires

diagonal dominance to ensure convergence and con-

verges faster than the Jacobi iteration. The Gauss Sei-

del method can be written as follows:

uk+1
i =

1

aii

( fi −
i−1

∑
j=1

ai ju
k+1
j −

n

∑
j=i+1

ai ju
k
j) i = 1,2, ...,n(19)

This algorithm can be shown in discrete equation

as

uk+1
i =

fi −cuk+1
i−1 −buk

i+1

aii

(20)

This equation will leads immediately to the vector

form of the Gauss-Seidel iteration

uk+1
i = (D−L)−1Uuk +(D−L)−1b (21)

This leads to the following program:

Algorithm 3 Pseudocode for Gauss-seidel Iteration

For k = 0,1, . . ., until convergence Do:

For i = 1,2, ..., p Do:

Solve Aiiδi = W T
i (b−Axk)

Set x := x+Viδi

EndDo

EndDo

2.5 Successive-over-relaxation

Successive-over-relaxation is given by the following
recursion:

(D−ωE)uk+1 = (ωF +(1−ω)D)uk +ωb, (22)

uk+1
i =

ω

aii
( fi −

i−1

∑
j=1

ai ju
k+1
j −

n

∑
j=i+1

ai ju
k
j)+(1−ω)uk

i = 1,2, ...,n (23)

When ω = 1.0, the SOR method is reduced to the

Gauss-Seidel. The maximum rate of convergence is

achieved for some optimum value of ω , denoted by

ωo pt , which lies between 1.0 and 2.0.

3 Experimental Result and Discus-

sion

The proposed algorithm using iterative methods such

as Jacobi, Gauss-Seidel and SOR have been imple-

mented in object edge detection experiments per-

formed on MRI images. The MRI images used are

brain tumor and breast tumor images. The proposed

model was initialized randomly by closed curve. Fig-

ure 4.3-4.14 show the demonstration of the Geodesic

ACM based AOS scheme using iterative method ap-

plied on 4 MRI images. In this case, time-step used

was very small, τ is less than or equal to 5.

As shown on Figure 1-12, the edge boundaries of

tumor regions are much visible on the final contour,

where iteratively the tumor edge boundaries are lo-

cated. From the demonstration, the speed and utility

of iterative methods is proven for treating topological

changes and finding boundaries for segmentation even

in noisy environments.
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(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour(500 itera-

tions)

Figure 1: Final contour of the MRI image 1 based on

Jacobi method

(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour(500 itera-

tions)

Figure 2: Final contour of the MRI image 2 based on

Jacobi method

(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour(2200 iter-

ations)

Figure 3: Final contour of the MRI image 3 based on

Jacobi method

(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour(700 itera-

tions)

Figure 4: Final contour of the MRI image 4 based on

Jacobi method
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(a) Initial contour (b) 100 iterations

(c) 250 iteration (d) Final contour((450 iter-

ations))

Figure 5: Final contour of the MRI image 1 based on

GS method

(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour(300 itera-

tions)

Figure 6: Final contour of the MRI image 2 based on

GS method

(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour(2000 iter-

ations)

Figure 7: Final contour of the MRI image 3 based on

GS method

(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour (600 iter-

ations)

Figure 8: Final contour of the MRI image 4 based on

GS method
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(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour(430 itera-

tions)

Figure 9: Final contour of the MRI image 1 based on

SOR method

(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour(250 itera-

tions)

Figure 10: Final contour of the MRI image 2 based on

SOR method

(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour(1900 iter-

ations)

Figure 11: Final contour of the MRI image 3 based on

SOR method

(a) Initial contour (b) 100 iterations

(c) 250 iterations (d) Final contour (550 iter-

ations)

Figure 12: Final contour of the MRI image 4 based on

SOR method

The numerical analysis results and the parame-

ters was used for sequential direct and iterative meth-

ods are shown in Table 1 and Table 2. From the ta-

ble SOR shows the lowest iteration. To detect the

edge for image 1, SOR needed 430 iterations to solve

the 128x128 image pixels, while Gauss-Seidel needed

450 iterations and Jacobi with 500 iterations. Root

mean squared error,rmse of the SOR method shows
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the lowest value than other methods, thus showing

that SOR has the best convergence rate compared to

Gauss-seidel and Jacobi method.

When compare between direct and iterative

method, direct method is more accurate than iterative

method. Direct method is much simpler and reduce

the total number of operations, thus the truncation and

round-off error that accumulates for large systems.

While iterative method computes the error, r = f -Au

and continue the same step to reduce the error until

it converges. Although aims both of efficiency and

accuracy, if accuracy takes as precedence will caused

the accurate program is slightly slower while if is pre-

ferred to a faster one, the result will come out with un-

reliable accuracy. The unreliable accuracy arise from

errors in the input data, computation errors due to fi-

nite precision arithmetic and the approximation error.

This make the result is not accurate, while the direct

method solve the problem directly to the exact solu-

tion.

Table 1: Numerical analysis of Gauss-

elimination(GE) and Thomas Method(TH) for MRI

image 1, image 2 and image 3
Parameter Image 1 Image 2 Image 3

GE TH GE TH GE TH

τ 5 5 5 5 5 5

k -0.3 -0.3 -0.3 -0.3 -0.1 -0.1

Size of pixel 128×128 128×128 128×128 128×128 56×56 56×56

σ -0.5 -0.5 -1.5 -1.5 -0.5 -0.5

Iteration 500, 500 600 600 2400 2400

Σ∆ 0.8,0.1 0.3,0 0,3.3 0,2.9 1.8,3.3 1.5,2.7

4 Conclusion

In this section the proposed algorithm with various

geodesic ACM based on numerical implementation

is presented. The target application of the proposed

ACMis tumor detection on MR images.

We have experimented with two algorithms, 1)

Direct method such as Thomas algorithm and Gauss-

elimination, 2) conventional iterative method such as

Jacobi, Gauss-seidel and SOR, to solve our implemen-

tations based on Geodesic ACM using AOS scheme.

Our future work concentrated how to improve the

computational efficiency and accuracy with multigrid

method.
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Table 2: Numerical analysis of Jacobi(JC), Gauss-seidel(GS) and SOR method for MRI image 1, image 2 and

image 3
Parameter Image 1 Image 2 Image 3

JC GS SOR JC GS SOR JC GS SOR

τ 5 5 5 5 5 5 4 5 5

k -0.3 -0.3 -0.3 -0.1 -0.1 -0.1 -0.1 -0.1 -0.1

σ 0.5 0.5 0.5 1.5 1.5 1.5 0.5 0.5 0.5

Size of pixel 128×128 128×128 128×128 128×128 128×128 128×128 56×56 56×56 56×56

Iteration 500 450 430 500 300 250 2200 2000 1900

Σ∆ 1.1,1.0 1.1,0.4 1.1,0.4 0.2,3.4 0.2,3.1 0.1,3.1 1.8,3.7 1.8,3.7 1.8,3.6

rmse 1.4493e-004 4.28226e-010 1.06581e-014 8.62281e-003 1.42624e-004 1.34345e-006 2.12180e-003 6.98604e-004 5.62541e-005

rmspe 6.59924e-004 1.94091e-009 4.83054e-014 5.70397e-002 8.87065e-004 8.34868e-006 4.64915e-002 1.51557e-002 1.21711e-003

max err 2.61442e-002 2.73352e-004 3.15326e-006 1.9881e-003 8.82359e-004 2.43006e-006 4.52338e-002 4.65890e-002 4.23943e-002

ε 0.5e-3 0.5e-3 0.5e-3 0.5e-3 0.5e-3 0.5e-3 0.5e-3 0.5e-3 0.5e-3
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