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Abstract: - The change in impedance per unit length of a double conductor line located above a conducting half-space 
with varying electric conductivity and magnetic permeability is calculated for the case where both electric conductivity 
and magnetic permeability are exponentially varying functions of the vertical coordinate. Closed-form solution of the 
problem is found by means of the Hankel transform. The solution is expressed in terms of improper integrals 
containing modified Bessel functions of complex argument. Calculations are performed for different values of the 
parameters of the problem using software package Mathematica. 
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1   Introduction 
In many cases theoretical models of eddy current non-
destructive testing are based on the assumption that the 
properties of a conducting medium (electric conductivity 
and magnetic permeability) are constants [1]. In 
applications such as surface hardening and 
decarbonization [2], [3] the electric conductivity and 
magnetic permeability of the conducting medium can 
vary with respect to one geometrical coordinate. There 
are two basic approaches to eddy current modeling of 
conducting media with varying properties. One approach 
is based on the assumption that the conducting medium 
with varying properties can be replaced by a multilayer 
medium where each layer has constant electric 
conductivity and magnetic permeability. Following this 
approach, up to 50 layers of a multilayer medium are 
used in [4] to represent the variation of the electric and 
magnetic properties in the vertical direction.  
     The second approach is based on closed-form 
solutions of the problem. It is known that in some cases 
analytical solutions can be found under the additional 
assumption that the electric conductivity and magnetic 
permeability are approximated by relatively simple 
continuously varying functions of one geometrical 
coordinate. Examples can be found in [5]-[8] where the 
change in impedance of the coil is found by means of 
known special functions. Analytical solution for the case 
where a single-turn circular coil is located above a 
conducting half-space is found in [5] under the 
assumption that either the electric conductivity or 
magnetic permeability are exponential functions of the 
vertical coordinate. The results reported in [5] are 
generalized in [8] for the case where both parameters of 

the medium, that is, the electric conductivity and 
magnetic permeability are exponential functions of the 
vertical coordinate. 
    In the present paper a problem similar to [8] is 
considered for the case where the source of the external 
current in a double conductor line formed by two 
infinitely long wires located parallel to the interface. The 
change in impedance of the double line is found in terms 
of improper integrals containing Bessel functions of 
complex argument.  
 
 
2   Mathematical Formulation of the 
Problem 
Different configurations of eddy current probes are used 
in engineering applications. One example is a probe in 
the form of a rectangular frame carrying an alternating 
current. It is known [9] that if the ratio of the sides of the 
frame is 1:4 or smaller, then the rectangular probe can 
be approximated by the double conductor line. 
     Suppose that two horizontal infinitely long wires are 
located above a conducting half-space. The alternating 
current in the wires at the points ),( 0 hy and ),( 1 hy is 
equal to )exp( tjI ω± , respectively, where I is the 
amplitude of the current. Regions }0{0 >= zR and 

}0{1 <= zR  represent the upper and lower half-space, 
respectively. The electric conductivity σ and magnetic 
permeability µ of region 1R are exponentially varying 
functions of the vertical coordinate z of the form 

z
meασσ = , z

meβµµµ 0= ,                                            (1) 
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where mσ , mµ , α , β are constants and 0µ is the 
magnetic constant. Exponential dependence of µ on the 
vertical coordinate is confirmed by experimental data  
[2] for the case of a coating on ferromagnetic metal.  
    The amplitudes of the vector potentials in regions 

0R and 1R , respectively, have only one non-zero 
component in the x -direction [7] and are functions of 
y and z only, that is, 

),(),,( 1100 zyAAzyAA == .                              (2) 
The systems of equations for the vector potentials 

0A and 1A has the form 
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where )(yδ is the Dirac delta-function. 
The boundary conditions are 
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The following conditions are assumed to be satisfied at 
infinity: 
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3   Problem Solution 
The solution to (3)-(6) can be represented as the sum of 
even and odd solutions (see [7]): 

1,0),,(),(),( oddven =+= izyAzyAzyA ieii .      (7) 
The right-hand side of (3) can also be written as the sum 
of even and odd solutions. Suppose that the right-hand 
side of (3) is denoted by ),( zyf . It can easily be shown 
that  

),,(),(),( oddeven zyfzyfzyf +=                          (8) 
where  
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The Fourier cosine transform of the form 
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is applied to (3)-(6) (where the right-hand side of (3) is 
replaced by ),(even zyf ) in order to find the even 

component, .1,0),,(ven =izyA ei In the transformed 

space the functions ),()(
0 zA c λ and ),()(

1 zA c λ satisfy the 
following system of equations 
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with the boundary conditions  
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Consider two subregions of 0R , namely, 
}0{00 hzR <<= and }{01 hzR >= . We denote the 

solutions in these regions by )(
00

~ cA and )(
01

~ cA , respectively.  
The general solution to (11) in 00R has the form 
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21
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In subregion 01R we select the general solution that is 
bounded as ∞→z : 

zc eCzA λλ −= 3
)(

01 ),(~
.                                               (15) 

Similarly, the general solution to (12) which remains 
bounded as −∞→z has the form (see[10]): 
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where )(sIν is the modified Bessel’s function of the first 
kind of order ν , and the parameters c and ν  are given 
by 
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There are four unknown constants in (14)-(16) and only 
two boundary conditions (13). The third condition is 
obtained in the form 

hz
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since the vector potential is continuous at hz = . The 
last condition can be derived from equation (11). 
Integrating (11) with respect to z from ε−h to 

ε+h ( )0>ε and taking the limit as 0+→ε , we obtain 

).cos(cos
2

|
~

|
~

01
0

)(
00

)(
01 yy

I
dz
Ad

dz
Ad

hz

c

hz

c

λλ
µ

−=− ==  (18) 

Using solutions (14)-(16) and boundary conditions (13), 
(17) and (18) the following system of linear equations is 
obtained: 
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The constants 321 ,, CCC and 4C are determined from 
(19) and have the form 
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Hence, the solution in the transformed space is defined 
by (14)-(16) where the coefficients 321 ,, CCC and 

4C are obtained from (20). Applying the inverse Fourier 
cosine transform  
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to (14)-(16), we obtain the solution to (3)-(6) for the 
even component, 1,0),,(ven =izyA ei , of the vector 

potential in regions 0R and 1R . In particular, the 
solution in free space (region 0R ) has the form 
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is the vector potential due to double conductor line in an 
unbounded free space (region 1R is absent).  
    The second term on the right-hand side of (22) is 
equal to 
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and represents the induced component of the vector 
potential in free space due to the conducting half-space.  
    The Fourier sine transform 
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and the inverse Fourier sine transform 
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are used to determine the odd components, 
1,0),,(odd =izyAi , of the vector potential in regions 

0R and 1R . It can be shown that the odd component of 
the solution is given by formulas (22)-(24) where cosine 
is replaced by sine. In particular, the induced (odd) 
component of the vector potential in region 0R can be 
written as follows 
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Using (7), (24) and (27) we obtain the solution to 
problem (3)-(6) in the form 
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Finally, we compute the change in impedance per unit 
length of the double conductor line using the formula 
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I
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Substituting (28) into (29) we obtain 
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the distance between the wires.   
 
 4   Numerical Results 
The results of numerical computations are presented in 
this section. Integral (30) is evaluated numerically using 
package Mathematica since it allows one to compute 
modified Bessel function of variable order and complex 
argument.  
     The change in impedance is computed for different 
values of the parameters α~ , β~ and η . The parameter 
γ was fixed at 0.05 for all calculations.  
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Fig.1. The change in impedance given by (30) for 

0~ =α and three values of β~ , namely, 

5.2;5.1;5.0~
=β (from top to bottom). The points 

shown on the graph correspond to 
10,...,3,,2,1=η (from left to right).  
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Fig.2. The change in impedance given by (30) for 

0~
=β and three values of α~ , namely, 

5.2;5.1;5.0~ =α (from top to bottom). The points 
shown on the graph correspond to 

10,...,3,,2,1=η (from left to right).  
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Fig.3. The change in impedance given by (30) for 

;5.2~,5.2~;5.1~,5.1~;5.0~,5.0~ ====== βαβαβα
(from top to bottom). The points shown on the graph 
correspond to 10,...,3,,2,1=η (from left to right).  
 
It is interesting to note that for large frequencies (large 
η values) the change in impedance seem to be 

independent on the values of α~ and β~ for the case 

βα ~~ = . 
 
    
 
4   Conclusion 
Closed-form solution for the change in impedance of a 
double conductor line located above a conducting half-
space with varying electric conductivity and magnetic 
permeability is obtained in the present paper. The 
electric conductivity and magnetic permeability are 
assumed to vary exponentially with depth. The solution 
is obtained in terms of improper integral containing 
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modified Bessel’s functions of the first kind of complex 
argument. It is shown in experiments [1], [2] that in 
some applications the magnetic permeability vary 
exponentially with respect to the vertical coordinate. 
Thus, the obtained closed-form solution can be applied 
for the analysis of the inverse problem in order to 
estimate the unknown parameters (σ and/or µ ) of the 
conducting medium in the case where these parameters 
are not constants.  
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