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Abstract: A wide range of empirical networks – whether biological, technological, information-related or linguistic
– generically exhibit important degree-degree anticorrelations (i.e., they are disassortative), the only exceptions
usually being social ones, which tend to be positively correlated (assortative). With a view to understanding where
this universality originates, we obtain the Shannon entropy of a network and find that the partition of maximum
entropy does not in general correspond to uncorrelated networks but, in the case of heterogeneous (scale-free)
degree distributions, to a certain disassortativity. This approach not only gives a parsimonious explanation to a
long-standing question, but also provides a neutral model against which to compare experimental data, and thus
determine whether there are specific correlating mechanisms at work among the forces behind the evolution of a
given real-world network.
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1 Introduction

Over the past decade, the study of complex systems
has been greatly facilitaded by an ever deeper under-
standing of their underlying structures – the topolo-
gies of their representations as graphs, or networks,
in which nodes play the role of the (dynamical) ele-
ments and edges stand for some form of interaction
[1]. Whether natural or artificial, complex networks
have non-trivial topologies which are usually studied
by analysing a variety of measures, such as the de-
gree distribution, clustering, average paths, modular-
ity, etc. [1, 2, 3] The mechanisms which lead to a par-
ticular structure and their relation to functional con-
straints are often not clear and constitute the subject
of much debate [2, 3]. For instance, when nodes are
endowed with some additional “property,” a feature
known as mixing or assortativity can arise, whereby
edges are not placed between nodes completely at ran-
dom, but depending in some way on the property in
question. If similar nodes tend to wire together, the
network is said to be assortative – while it is disas-
sortative when nodes are preferentially connected to
dissimilar neighbors. [4].

An interesting situation is when the property
taken into account is the degree of each node –
i.e., the number of neighboring nodes connected to
it. It turns out that a high proportion of empir-
ical networks – whether biological, technological,
information-related or linguistic – are disassortatively

arranged (high-degree nodes, or hubs, are prefer-
entially linked to low-degree neighbors, and vicev-
ersa) while social networks are usually assortative.
Such degree-degree correlations have important con-
sequences for network characteristics such as con-
nectedness and robustness [4].

However, while assortativity in social networks
can be explained taking into account homophily [4]
or modularity [5], the widespread prevalence and ex-
tent of disassortative mixing in most other networks
remains somewhat mysterious. Maslov et al. found
that the restriction of having at most one edge per pair
of nodes induces some disassortative correlations in
heterogeneous networks [6], and Park and Newman
showed how this analogue of the Pauli exclusion prin-
ciple leads to the edges following Fermi statistics [7]
(see also [8]). However, this restriction is not suf-
ficient to fully account for empirical data. In gen-
eral, when one attempts to consider computationally
all the networks with the same distribution as a given
empirical one, the mean assortativity is not necessar-
ily zero [9]. But since some “randomization” mecha-
nisms induce positive correlations and others negative
ones [10], it is not clear how the phase space can be
properly sampled numerically.

In this paper, we show that there is a general rea-
son, consistent with empirical data, for the “natural”
mixing of most networks to be disassortative. Using
an information-theory approach we find that the con-
figuration which can be expected to come about in the
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absence of specific additional constraints turns out not
to be, in general, uncorrelated. In fact, for highly het-
erogeneous degree distributions such as those of the
ubiquitous scale-free networks, we show that the ex-
pected value of the mixing is usually disassortative:
there are simply more possible disassortative config-
urations than assortative ones. This result provides
a simple topological answer to a long-standing ques-
tion. Let us caution that this does not imply that all
scale-free networks are disassortative, but only that, in
the absence of further information on the mechanisms
behind their evolution, this is the neutral expectation.

The topology of a network is entirely described
by its adjacency matrix â, the element âij representing
the number of edges linking node i to node j (for undi-
rected networks, â is symmetric). Among all the pos-
sible microscopically distinguishable configurations a
set of L edges can adopt when distributed among N
nodes, it is often convenient to consider the set of con-
figurations which have certain features in common –
typically some macroscopic magnitude, like the de-
gree distribution. Such a set of configurations de-
fines an ensemble. In a seminal series of papers Bian-
coni has determined the partition functions of vari-
ous ensembles of random networks and derived their
statistical-mechanics entropy [12]. This allows the au-
thor to estimate the probability that a random network
with certain constraints has of belonging to a particu-
lar ensemble, and thus assess the relative importance
of different magnitudes and help discern the mecha-
nisms responsible for a given real-world network. For
instance, she shows that scale-free networks arise nat-
urally when the total entropy is restricted to a small
finite value. Here we take a similar approach: we ob-
tain the Shannon information entropy encoded in the
distribution of edges. As we shall see, both methods
yield the same results [13, 14], but for our purposes
the Shannon entropy is more tractable.

2 Entropy of networks

The Shannon entropy associated with a probability
distribution pm is s = −∑

m pm ln(pm), where the
sum extends over all possible outcomes m [14]. For
a given pair of nodes (i, j), pm can be considered to
represent the probability of there being m edges be-
tween i and j. For simplicity, we will focus here
on networks such that âij can only take values 0 or
1, although the method is applicable to any num-
ber of edges allowed. In this case, we have only
two terms: p1 = ε̂ij and p0 = 1 − ε̂ij , where
ε̂ij ≡ E(âij) is the expected value of the element âij

given that the network belongs to the ensemble of in-
terest. The entropy associated with pair (i, j) is then

sij = − [ε̂ij ln(ε̂ij) + (1− ε̂ij) ln(1− ε̂ij)], while the
total entropy of the network is S =

∑N
ij sij :

S = −
N∑

ij

[ε̂ij ln(ε̂ij) + (1− ε̂ij) ln(1− ε̂ij)] . (1)

Note that, since we have not imposed symmetry of the
adjacency matrix, this expression is in general valid
for directed networks. For undirected networks, how-
ever, the sum is only over i ≤ j, with the consequent
reduction in entropy. This expression for the Shannon
entropy has been shown by Anand and Bianconi to be
equivalent to the statistical mechanics entropy for the
same ensemble [13].

For the sake of illustration, we will obtain the en-
tropy of two different ensembles often used as mod-
els of random graphs: the fully random graph, or
Erdős-Rényi ensemble, and the configuration ensem-
ble with a scale-free degree distribution [2]. In this
example, we assume the network to be sparse enough
to expand the term ln(1 − ε̂ij) in Eq. (1) and keep
only linear terms. This reduces Eq. (1) to Ssparse '
−∑N

ij ε̂ij [ln(ε̂ij) − 1] + O(ε̂2ij). In the Erdős-Rényi
ensemble, each of N nodes has an equal probability
of receiving each of 1

2〈k〉N undirected edges, where
〈k〉 is the mean degree. So, writing ε̂ER

ij = 〈k〉/N , we
have

SER = −1
2
〈k〉N

[
ln

(〈k〉
N

)
− 1

]
. (2)

The configuration ensemble, which imposes a given
degree sequence (k1, ...kN ), is defined via the ex-
pected value of the adjacency matrix: ε̂c

ij =
kikj/(〈k〉N) [2, 15]. This value leads to

Sc = 〈k〉N [ln(〈k〉N) + 1]− 2N〈k ln k〉,

where 〈·〉 ≡ N−1
∑

i(·) stands for an average over
nodes. The Internet, like many real-world networks,
has a scale-free degree distribution, i.e. p(k) ∼ k−γ .
For undirected networks of this kind, with an expo-
nent γ > 2 and large N , the previous expression be-
comes

Sc(γ) =

−〈k〉N
2

[
ln

(〈k〉
N

)
+ 2 ln

(
γ − 2
γ − 1

)
− γ − 4

γ − 2

]
. (3)

Fig. 1 displays the entropy per node for two en-
sembles form which the Intenet at the autonomous
system level could have been taken, corresponding to
various dates: an ER random network, Eq. (2), and a
scale-free network with γ = 2.3, Eq. (3). The drop
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Figure 1: (Color online) Entropy per node of two en-
sembles which the Internet at the AS level beloged
to at different dates [12]. Blue squares: Erdős-Rényi
ensemble, from Eq. (2). Red circles: configuration
ensemble, from Eq. (3) with γ = 2.3, respectively.

in entropy that comes about when the degree distri-
bution is also considered highlights the unlikelihood
of a scale-free distribution, and therefore the need for
some specific mechanism (in this case, preferential at-
tachement) to account for this feature.

3 Results

We will now go on to analyse the effect of degree-
degree correlations on the entropy. In the configu-
ration ensemble, the expected value of the mean de-
gree of the neighbors of a given node is knn,i =
k−1

i

∑
j ε̂c

ijkj = 〈k2〉/〈k〉, which is independent of
ki. However, as mentioned above, real networks of-
ten display degree-degree correlations, with the re-
sult that knn,i = knn(ki). If knn(k) increases (de-
creases) with k, the network is assortative (disassor-
tative). A measure of this phenomenon is Pearson’s
correlation coefficient applied to the edges [2, 4, 3]:
r = ([klk

′
l] − [kl]2)/([k2

l ] − [kl]2), where kl and k′l
are the degrees of each of the two nodes belonging to
edge l, and [·] ≡ (〈k〉N)−1

∑
l(·) represents an aver-

age over edges. Writing
∑

l(·) =
∑

ij âij(·), r can be
expressed in terms of averages over nodes:

r =
〈k〉〈k2knn(k)〉 − 〈k2〉2

〈k〉〈k3〉 − 〈k2〉2 . (4)

The ensemble of all networks with a given degree
sequence (k1, ...kN ) contains a subset for all mem-
bers of which knn(k) is constant (the configuration
ensemble), but also subsets displaying other functions
knn(k). We can identify each one of these subsets
(regions of phase space) with an expected adjacency
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Figure 2: (Color online) Entropy of scale-free net-
works in the correlation ensemble against parameter
β for various values of γ (increasing from bottom to
top). 〈k〉 = 10, N = 104, C = 1.

matrix ε̂ which simultaneously satisfies the follow-
ing conditions: i)

∑
j kj ε̂ij = kiknn(ki), ∀i, and ii)∑

j ε̂ij = ki, ∀i (for consistency). An ansatz which
fulfills these requirements is any matrix of the form

ε̂ij =
kikj

〈k〉N +
∫

dν
f(ν)
N

[
(kikj)ν

〈kν〉 − kν
i − kν

j + 〈kν〉
]

,

(5)
where ν ∈ R and the function f(ν) is in general ar-
bitrary, although depending on the degree sequence
it will here be restricted to values which maintain
ε̂ij ∈ [0, 1], ∀i, j. This ansatz yields

knn(k) =
〈k2〉
〈k〉 +

∫
dνf(ν)σν+1

[
kν−1

〈kν〉 −
1
k

]
(6)

(the first term being the result for the configuration
ensemble), where σb+1 ≡ 〈kb+1〉 − 〈k〉〈kb〉. In
practice, one could adjust Eq. (6) to fit any given
function knn(k) and then wire up a network with
the desired correlations: it suffices to throw random
numbers according to Eq. (5) with f(ν) as obtained
from the fit to Eq. (6) [16]. To prove the uniqueness
of a matrix ε̂ obtained in this way (i.e., that it is the
only one compatible with a given knn(k)) assume
that there exists another valid matrix ε̂′ 6= ε̂. Writting
ε̂′ij − ε̂ij ≡ h(ki, kj) = hij , then i) implies that∑

j kjhij = 0, ∀i, while ii) means that
∑

j hij = 0,
∀i. It follows that hij = 0, ∀j.

In many empirical networks, knn(k) has the form
knn(k) = A + Bkβ , with A,B > 0 [3, 17] – the
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mixing being assortative (disassortative) if β is pos-
itive (negative). Such a case is fitted by Eq. (6) if
f(ν) = C[δ(ν − β − 1)σ2/σβ+2 − δ(ν − 1)], with C
a positive constant, since this choice yields

knn(k) =
〈k2〉
〈k〉 + Cσ2

[
kβ

〈kβ+1〉 −
1
〈k〉

]
. (7)

After plugging Eq. (7) into Eq. (4), one obtains:

r =
Cσ2

〈kβ+1〉
(〈k〉〈kβ+2〉 − 〈k2〉〈kβ+1〉

〈k〉〈k3〉 − 〈k2〉2
)

. (8)

Inserting Eq. (5) in Eq. (1), we can calculate the en-
tropy of correlated networks as a function of β and
C – or, equivalently, as a function of r, by using Eq.
(8). Particularizing for scale-free networks, then given
〈k〉, N and γ, there is always a certain combination of
parameters β and C which maximizes the entropy; we
will call these β∗ and C∗. For γ . 5/2 this point cor-
responds to C∗ = 1. For higher γ, the entropy can be
slightly higher for larger C. However, for these val-
ues of γ, the assortativity r of the point of maximum
entropy obtained with C = 1 differs very little from
the one corresponding to β∗ and C∗ (data not shown).
Therefore, for the sake of clarity but with very little
loss of accuracy, in the following we will generically
set C = 1 and vary only β in our search for the level
of assortativity, r∗, that maximizes the entropy given
〈k〉, N and γ. Note that C = 1 corresponds to re-
moving the linear term, proportional to kikj , in Eq.
(5), and leaving the leading non-linearity, (kikj)β+1,
as the dominant one.

Fig. 2 displays the entropy curves for various
scale-free networks, both as functions of β and of r:
depending on the value of γ, the point of maximum
entropy can be either assortative or disassortative.
This can be seen more clearly in Fig. 3, where r∗ is
plotted against γ for scale-free networks with various
mean degrees 〈k〉. The values obtained by Park and
Newman [7] as those resulting from the one-edge-per-
pair restriction are also shown for comparison: notice
that whereas this effect alone cannot account for the
Internet’s correlations for any γ, entropy considera-
tions would suffice if γ ' 2.1. Since most networks
observed in the real world are highly heterogeneous,
with exponents in the range γ ∈ (2, 3), it is to be ex-
pected that these should display a certain disassorta-
tivity – the more so the lower γ and the higher 〈k〉.
In Fig. 4 we test this prediction on a sample of em-
pirical, scale-free networks cited in Newman’s review
[2] (p. 182). For each case, we found the value of r
that maximizes S according to Eq. (1), after insert-
ing Eq. (5) with the cited values of 〈k〉, N and γ. In
this way, we obtained the expected assortativity for six
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Figure 3: (Color online) Value of r at which the en-
tropy is maximized, r∗, against γ, for random scale-
free networks with N = N0 = 10697 nodes and mean
degrees 〈k〉 = 1

2 , 1, 2 and 4 times k0 = 5.981 (lines
from top to bottom; N0 and k0 correspond to the val-
ues for the Internet at the AS level in 2001 [7], which
had r = r0 = −0.189). Circles are the values ob-
tained in [7] as those expected soley due to the one-
edge-per-pair restriction for k0, N0 and γ = 2.1, 2.3
and 2.5. Inset: r∗ against N for networks with fixed
〈k〉/N (same values as the main panel) and γ = 2.5;
the arrow indicates N = N0.

networks, representing: a peer-to-peer (P2P) network,
metabolic reactions, the nd.edu domain, actor collab-
orations, protein interactions, and the Internet (see [2]
and references therein). For the metabolic, Web do-
main and protein networks, the values predicted are
in excellent agreement with the measured ones; there-
fore, no specific anticorrelating mechanisms need to
be invoked to account for their disassortativity. In the
other three cases, however, the predictions are not ac-
curate, so there must be additional correlating mecha-
nisms at work. Indeed, it is known that small routers
tend to connect to large ones [17], so one would ex-
pect the Internet to be more disassortative than pre-
dicted, as is the case [18] – an effect that is less pro-
nounced but still detectable in the more egalitarian
P2P network. Finally, as is typical of social networks,
the actor graph is significantly more assortative than
predicted, probably due to the homophily mechanism
whereby highly connected, big-name actors tend to
work together [4].

4 Conclusions
We have shown how the ensemble of networks with
a given degree sequence can be partitioned into re-
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Figure 4: (Color online) Level of assortativity that
maximizes the entropy, r∗, for various real-world,
scale-free networks, as predicted theoretically by Eq.
(1) against exponent γ. Bar ends show the empirical
values.

gions of equally correlated networks and found, us-
ing an information-theory approach, that the largest
(maximum entropy) region, for the case of scale-free
networks, usually displays a certain disassortativity.
Therefore, in the absence of knowledge regarding the
specific evolutionary forces at work, this should be
considered the most likely state. Given the accuracy
with which our approach can predict the degree of
assortativity of certain empirical networks with no a
priori information thereon, we suggest this as a neu-
tral model to decide whether or not particular exper-
imental data require specific mechanisms to account
for observed degree-degree correlations.
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