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Abstract: In this paper, we have obtained the Bayes estimators of Modi�ed-Weibull distribution scale
and shape parameters using Lindley's approximation (L-approximation) under various loss functions.
The proposed estimators have been compared with the corresponding MLE for their risks based on
corresponding simulated samples.
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1 Introduction

The Weibull distribution is one of the most popu-
lar widely used models of failure time in life test-
ing and reliability theory. The Weibull distribu-
tion has been shown to be useful for modeling and
analysis of life time data in medical, biological and
engineering sciences.
The three-parameter Modi�ed-Weibull has a dis-
tribution function of the form:

f(x) = �x��1(� + �x)e�x��x
�e�x (1)

with x � 0, �; �; � > 0 and cumulative distribu-
tion function

F (x) = 1� e��x�e�x ; x � 0; �; �; � > 0 (2)

Here � is the scale parameter, and � and � are
the shape parameters.
For a random sample x = (x1; x2; :::; xn) of size n
form (1) the likelihood function is

L(�; �; �jx) =
nY
i=1

f(xi) = �
ne

�

nX
i=1

xi��

nX
i=1

x
�
i
e�xi

�

�
nY
i=1

h
x��1i (� + �xi)

i
(3)

and taking the logarithm we get

l(�; �; �jx) = n ln�+ �
nX
i=1

xi � �
nX
i=1

x�i e
�xi+

+(� � 1)
nX
i=1

ln(xi) +
nX
i=1

ln(� + �xi) (4)

2 Maximum likelihood estima-

tion of the parameters

The maximum likelihood estimate of parameters
of the Modi�ed-Weibull distribution is obtained
by di�erentiating the log of the likelihood and
equating to zero. The three normal equations
thus obtained are given below:

n

�
�

nX
i=1

x�i e
�xi = 0

��
nX
i=1

x�i ln(xi)�e�xi+
nX
i=1

ln(xi)+
nX
i=1

1

� + �xi
= 0

��
nX
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x�+1i e�xi +
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xi +
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xi
� + �xi

= 0
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But the last two equations are not solvable.
Therefore the MLE does not exist in a nice closed
form for � and �.

However, the maximum likelihood estimator
of the Modi�ed-Weibull distribution can be ob-
tained by iterative procedures. We propose here
to use a bisection or Newton-Raphson method
for solving the above-mentioned normal equa-
tions which give the MLE of � and �, �̂ML and
�̂ML.Then, the MLE of � is

�̂ML =
n

nX
i=1

x�̂ML
i e�̂MLxi

(5)

3 Bayesian estimation of the pa-

rameters

In Bayesian estimation, we consider three types
of loss functions. The �rst is the squared error
loss function (quadratic loss) which is classi�ed
as a symmetric function and associates equal im-
portance to the losses for overestimation and un-
derestimation of equal magnitude. The second
is the LINEX (linear-exponential) loss function
which is asymmetric, was introduced by Varian
in [14]. These loss functions were widely used by
several authors; among of them [11], [1], [7], [12],
[13] and [6]. This function rises approximately ex-
ponentially on one side of zero and approximately
linearly on the other side. The third is the gener-
alization of the Entropy loss used by several au-
thors where the shape parameter c is taken equal
to 1. This more general version allows di�erent
shapes of the loss function.

The squared error loss (SEL) function is as
follows

LBS(�
�; �) / (�� � �)2 (6)

Under the assumption that the minimal loss oc-
curs at �� = �, the LINEX loss function (LINEX)
for can be expressed as

LBL(�) / ec� � c�� 1; c 6= 1 (7)

where � = (�� � �), �� is an estimate of �.
The sign and magnitude of the shape parameter
c represents the direction and degree of symme-
try, respectively. (If c > 0, the overestimation
is more serious than underestimation, and vice-
versa.) For c close to zero, the LINEX loss is ap-
proximately SEL and therefore almost symmetric.

The posterior expectation of the LINEX loss
function (7) is

E�[L(�
� � �)] / ec��E�[e�c�]� c(�� �E�[�])� 1

(8)

where E�(�) denotes the posterior expectation
with respect to the posterior density of �. By
a result of Zellner in [15], the (unique) Bayes es-
timator of �, denoted by ��BL under the LINEX
loss function is the value �� which minimizes (8).
It is

��BL = �
1

c
ln
n
E�[e

�c�]
o

(9)

provided that the expectation E�[e
�c�] exists and

is �nite. The problem of choosing the value of the
parameter c is discussed in [2].

The modi�ed Linex loss i.e the General En-
tropy loss (GEL) is de�ned as:

LBE(�
�; �) /

�
��

�

�c
� c log

�
��

�

�
� 1 (10)

where �� is an estimate of parameter �: It may
be noted that when c > 0, a positive error causes
more serious consequences than a negative error.
On the other hand, when c < 0, a negative error
causes more serious consequences than a positive
error.

The Bayes estimate ��E of under general en-
tropy loss (GEL) is given as

��BE = [E�f��cg]�
1
c (11)

provided that E�f��cg exists and is �nite. It can
be shown that, when c = 1, the Bayes estimate
(11) coincides with the Bayes estimate under the
weighted squared-error loss function. Similarly,
when c = �1 the Bayes estimate (11) coincides
with the Bayes estimate under squared error loss
function.

For a Bayesian estimation, we need prior dis-
tribution for the parameters �, � and �. Hence,
gamma prior may be taken as the prior distri-
bution for the scale parameter of the Modi�ed-
Weibull distribution. It is needless to mention
that under the above-mentioned situation, the
prior is a conjugate prior. On the other hand, if
all the parameters are unknown, a joint conjugate
prior for the parameters does not exist. In such
a situation, there are a number of ways to choose
the priors. We consider the use of piecewise in-
dependent priors for all the parameters, namely
a non-informative prior for the shape parameters
and a natural conjugate prior for the scale pa-
rameter (under the assumption that shape para-
meter is known). Thus the proposed priors for
parameters �, � and � may be taken as

g1(�) =
ba�a�1e�b�

�(a)
; � > 0; a; b > 0 (12)
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g2(�) =
1

�
; � > 0 (13)

and

g3(�) =
1

�
; � > 0 (14)

respectively, to give the joint prior distribution for
�,� and � as

g(�; �; �) =
ba�a�1e�b�

���(a)
; � > 0; �; � > 0; a; b > 0

(15)
Substituting L(�; �; �jx) and g(�; �; �) from (3)
and (15) respectively we get the joint posterior
P (�; �; �jx) as

P (�; �; �jx) = K�
n+a�1

��
e

�

nX
i=1

xi��
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nX
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�
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i
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where

K�1 =

1Z
0
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0

1Z
0
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It may be noted here that the posterior distrib-
ution of (�; �; �) takes a ratio form that involves
an integration in the denominator and cannot be
reduced to a closed form. Hence, the evaluation of
the posterior expectation for obtaining the Bayes
estimator of �, � and � will be tedious. Among
the various methods suggested to approximate the
ratio of integrals of the above form, perhaps the
simplest one is Lindley's approximation method
[5], which approaches the ratio of the integrals as
a whole and produces a single numerical result.
Thus, we propose the use of Lindley's approxima-
tion [5] for obtaining the Bayes estimator of �, �
and �. Many authors have used this approxima-
tion for obtaining the Bayes estimators for some
lifetime distributions; see among others, [3] and
[4].

In this paper we calculate E(�ijx) and E(�2i jx)
in order to �nd the posterior variance estimates
given by V ar(�ijx) = E(�2i jx) � (E(�ijx))2, i =
1; 2; 3, where �1 = �, �2 = �, �3 = �.

If n is su�ciently large, according to [5], any
ratio of the integral of the form

I(x) = E[u(�1; �2; �3)jx] =

=

Z
(�1;�2;�3)

u(�1; �2; �3)e
L(�1;�2;�3)+G(�1;�2;�3)d(�1; �2; �3)

Z
(�1;�2;�3)

eL(�1;�2;�3)+G(�1;�2;�3)d(�1; �2; �3)

where
u(�) = u(�1; �2; �3)=function of �1, �2 or �3

only
L(�1; �2; �3)=log of likelihood
G(�1; �2; �3)=log of joint prior of �1, �2 and �3

can be evaluated as
I(x) = u(�̂1; �̂2; �̂3)+
+(u1a1 + u2a2 + u3a3 + a4 + a5)+
1
2 [A (u1�11 + u2�12 + u3�13)+
+B (u1�21 + u2�22 + u3�23)+
+C (u1�31 + u2�32 + u3�33)]
where

�̂1; �̂2; �̂3 are the MLE of �1, �2, respective �3
ai = �1�i1 + �2�i2 + �3�i3; i = 1; 2; 3
a4 = u12�12 + u13�13 + u23�23
a5 =

1
2(u11�11 + u22�22 + u33�33)

A = �11L111 + 2�12L121 + 2�13L131+
+2�23L231 + �22L221 + �33L331
B = �11L112 + 2�12L122 + 2�13L132+
+2�23L232 + �22L222 + �33L332
C = �11L113 + 2�12L123 + 2�13L133+
+2�23L233 + �22L223 + �33L333

and subscripts 1,2,3 on the rigth-hand sides refer
to �1, �2, �3 respectively and

�i =
@�
@�i
; i = 1; 2; 3; ui =

@u(�1;�2;�3)
@�i

; i = 1; 2; 3

uij =
@2u(�1;�2;�3)

@�i@�j
; i; j = 1; 2; 3,

Lij =
@2L(�1;�2;�3)

@�i@�j
; i; j = 1; 2; 3

Lijk =
@3L(�1;�2;�3)
@�i@�j@�k

; i; j; k = 1; 2; 3

and �ij is the (i; j)-th element of the inverse of
the matrix fLijg; all evaluated at the MLE of pa-
rameters.

For prior distribution (14) we have
� = ln g(�; �; �) = a ln b+(a�1) ln��b�� ln��
ln�� ln �(a)
and then we get
�1 =

a�1
� � b, �2 = � 1

� , �3 = �
1
� :

We can deduce the values of the Bayes esti-
mates of various parameters in what follows.
a) The Bayes estimators under the squared error
loss function of the parameters

(I) If u(�̂; �̂; �̂) = �̂ then
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�̂BS = �̂+
a�1�b�̂

�̂ �11 � 1
��12 �

1
��13+

+A�11+B�21+C�31
2

(II) If u(�̂; �̂; �̂) = �̂ then

�̂BS = �̂ +
a�1�b�̂

�̂ �21 � 1
��22 �

1
��23+

+A�12+B�22+C�32
2

(III) If u(�̂; �̂; �̂) = �̂ then

�̂BS = �̂+
a�1�b�̂

�̂ �31 � 1
��32 �

1
��33+

+A�13+B�23+C�33
2

b) The Bayes estimators under the Linex loss
function of the parameters
(I) If u(�̂; �̂; �̂) = e�c1�̂ then
�̂BL =

�̂+ log
h
1� c1

�
a�1�b�̂

�̂ �11 � 1
��12 �

1
��13�

+ � c1
2 �11 +

A�11+B�21+C�31
2

�i
(II) If u(�̂; �̂; �̂) = e�c2�̂ then

�̂BL =

�̂ + log
h
1� c2

�
a�1�b�̂

�̂ �21 � 1
��22 �

1
��23�

+ � c2
2 �22 +

A�12+B�22+C�32
2

�i
(III) If u(�̂; �̂; �̂) = e�c3�̂ then

�̂BL =

�̂+ log
h
1� c3

�
a�1�b�̂

�̂ �31 � 1
��32 �

1
��33�

+ � c3
2 �33 +

A�13+B�23+C�33
2

�i
c) The Bayes estimators under the general en-
tropy loss function of the parameters
(I) If u(�̂; �̂; �̂) = �̂�c1 then
�̂BE =h
�̂�c1

h
1� c1

�̂

�
a�1�b�̂

�̂ �11 � 1
��12 �

1
��13�

� c1+1
2�̂ �11 +

A�11+B�21+C�31
2

�ii� 1
c1

(II) If u(�̂; �̂; �̂) = �̂�c2 then

�̂BE =h
�̂�c2

h
1� c2

�̂

�
a�1�b�̂

�̂ �21 � 1
��22 �

1
��23�

� c2+1
2�̂
�22 +

A�12+B�22+C�32
2

�ii� 1
c2

(III) If u(�̂; �̂; �̂) = �̂�c3 then

�̂BE =h
�̂�c3

h
1� c3

�̂

�
a�1�b�̂

�̂ �31 � 1
��32 �

1
��33�

� c3+1
2�̂
�33 +

A�13+B�23+C�33
2

�ii� 1
c3

Also, let u(�̂; �̂; �̂) = �̂2. Then
E(�̂2jx) = �̂2 + 2�̂(a�1�b�̂�̂ �11 � 1

��12 �
1
��13)+

+�11 + �̂
A�11+B�21+C�31

2
Hence the posterior variances are given by
V ar(�̂jx) = E(�̂2jx)� (E(�̂jx))2 =
=�11 �h
a�1�b�̂

�̂ �11 � 1
��12 �

1
��13 �

A�13+B�23+C�33
2

i2
<

< �11 = V ar(�̂)

Similary V ar(�̂jx) < �22 = V ar(�̂) and
V ar(�̂jx) < �33 = V ar(�̂)

4 Numerical Findings

The estimators �̂ , �̂, and �̂ are maximum
likelihood estimators of the parameters of the
Modi�ed-Weibull distribution; whereas �̂BS ,
�̂BL, �̂BG, �̂BS , �̂BL, �̂BG, and �̂BS , �̂BL, �̂BG
are Bayes estimators obtained by using the L-
approximation for squared error, Linex and gen-
eral entropy loss function respectively. As men-
tioned earlier, the maximum likelihood estimators
and hence risks of the estimators cannot be put
in a convenient closed form.

Therefore, risks of the estimators are empir-
ically evaluated based on a Monte-Carlo simula-
tion study of samples. A number of values of un-
known parameters are considered. Sample size is
varied to observe the e�ect of small and large sam-
ples on the estimators. Changes in the estimators
and their risks have been determined when chang-
ing the shape parameter of loss functions while
keeping the sample size �xed.

Di�erent combinations of prior parameters �,
� and � are considered in studying the change
in the estimators and their risks. The results are
summarized in following tables.

It is easy to notice that the risk of the estima-
tors will be the function of sample size, population
parameters, parameters of the prior distribution
(hyper parameters), and corresponding loss func-
tion parameters.

In order to consider the wide variety of values,
we have obtained the simulated risks for sample
sizes N=20, 40, 60 and 100.

The various values of parameters of the distri-
bution considered are scale parameter �=0.2 (.3)
1.4, shape parameters �=0.6 (.2) 1.2, �=0.2 (.3)
1.4, and loss parameter ci = �1:5, �1:1, �0:5 and
0:1 with i = 1; 2; 3.

Prior parameters a and b are arbitrarily taken
as 1 respectively 2. After an extensive study of
the results thus obtained, conclusions are drawn
regarding the behavior of the estimators, which
are summarized below. It may be mentioned here
that because of space restrictions, all results are
not shown in the tables. Only a few are presented
here to demonstrate the e�ects found and the con-
clusion drawn.

However, in most of the cases, the proposed
Bayes estimator is better than the Maximum
Likelihood Estimator (MLE).
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Table 1: The e�ect of sample size on risks of
the estimator of � when true vales are � = 1:2,
� = 0:8, � = 0:7.

20 40 60 100
�ML 0.279 0.132 0.103 0.083
�BS 0.481 0.330 0.243 0.035

c=-0.5 �BL 0.210 0.125 0.111 0.050
c=0.5 �BL 0.824 0.363 0.198 0.154
c=1 �BL 0.322 0.149 0.109 0.094
c=-0.5 �BG 0.794 0.483 0.316 0.035
c=0.5 �BG 23.18 3.157 0.743 0.050
c=1 �BG 2.473 0.998 0.489 0.041

Table 2: The e�ect of sample size on risks of
the estimator of � when true vales are � = 1:2,
� = 0:8, � = 0:7.

20 40 60 100
�ML 0.062 0.019 0.018 0.011
�BS 0.034 0.036 0.032 0.006

c=-0.5 �BL 0.028 0.016 0.019 0.007
c=0.5 �BL 0.149 0.045 0.027 0.019
c=1 �BL 0.074 0.022 0.019 0.012
c=-0.5 �BG 0.054 0.046 0.036 0.006
c=0.5 �BG 0.463 0.116 0.051 0.007
c=1 �BG 0.146 0.072 0.044 0.007

Table 3: The e�ect of sample size on risks of
the estimator of � when true vales are � = 1:2,
� = 0:8, � = 0:7.

20 40 60 100
�ML 0.554 0.201 0.131 0.099
�BS 0.267 0.149 0.122 0.042

c=-0.5 �BL 0.233 0.111 0.103 0.058
c=0.5 �BL 0.891 0.332 0.185 0.142
c=1 �BL 0.628 0.227 0.141 0.108
c=-0.5 �BG 0.217 0.111 0.099 0.045
c=0.5 �BG 0.235 0.092 0.081 0.054
c=1 �BG 0.221 0.096 0.086 0.050

Table 4: The e�ect of variation of � on risks
of the estimator of � when true vales are � = 0:8,
� = 0:7.
True value 0.2 0.5 0.8 1.1

�ML 0.005 0.023 0.069 0.111
�BS 0.010 0.025 0.051 0.070

c=-0.5 �BL 0.007 0.019 0.046 0.063
c=0.5 �BL 0.005 0.038 0.127 0.246
c=1 �BL 0.005 0.025 0.077 0.128
c=-0.5 �BG 0.012 0.030 0.062 0.091
c=0.5 �BG 0.021 0.070 0.184 0.302
c=1 �BG 0.016 0.045 0.098 0.163

Table 5: The e�ect of variation of � on risks
of the estimator of � when true vales are � = 0:5,
� = 0:5.
True value 0.6 0.8 1 1.2

�ML 0.028 0.036 0.065 0.083
�BS 0.037 0.042 0.055 0.064

c=-0.5 �BL 0.030 0.033 0.051 0.057
c=0.5 �BL 0.028 0.047 0.097 0.164
c=1 �BL 0.028 0.037 0.070 0.095
c=-0.5 �BG 0.041 0.048 0.063 0.065
c=0.5 �BG 0.055 0.072 0.105 0.121
c=1 �BG 0.048 0.060 0.081 0.085

Table 7: The e�ect of variation of � on risks
of the estimator of � when true vales are � = 0:7,
� = 0:8.
True value 0.2 0.5 0.8 1.1

�ML 0.012 0.046 0.091 0.187
�BS 0.007 0.043 0.124 0.103

c=-0.5 �BL 0.007 0.040 0.087 0.075
c=0.5 �BL 0.018 0.066 0.139 0.359
c=1 �BL 0.013 0.049 0.099 0.222
c=-0.5 �BG 0.218 0.027 0.085 0.075
c=0.5 �BG 3.550 13.17 2.327 0.064
c=1 �BG 0.025 0.023 0.061 0.064

Table 8: E�ect of loss parameters on risks
of the estimator of �, �, � when true vales are
� = 1:2, � = 0:8, � = 0:7.

BL BG
c � � � � � �
-1.5 0.060 0.008 0.303 0.067 0.012 0.064
-1.1 0.059 0.010 0.082 0.070 0.010 0.056
-0.5 0.076 0.020 0.067 0.084 0.009 0.055
0.1 0.145 0.039 0.144 0.122 0.008 0.059
0.5 0.258 0.060 0.201 0.182 0.008 0.062
1.1 0.705 0.107 0.269 0.478 0.010 0.070
1.5 1.633 0.153 0.297 1.708 0.017 0.075

5 Conclusion

The performance of the proposed Bayes estima-
tors has been compared to the maximum likeli-
hood estimator. On the basis of these results, we
may conclude that for positive c, i.e., overesti-
mation is more serious than underestimation, the
Bayes estimators SEL and GEL of � performs bet-
ter than the corresponding maximum likelihood
estimator and the Bayes estimators LINEX. The
maximum likelihood estimators and Bayes esti-
mators SEL of � and � are better for small and
moderate sample sizes; whereas risks of the Bayes
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estimator GEL of all parameters population per-
form better than any of the estimators for a very
large sample sizes.

For negative c, the Bayes estimators LINEX
and he maximum likelihood estimators of � and
� performs better than the Bayes estimators SEL
and GEL. For parameter �; the Bayes estimators
LINEX and GEL are better for small and mod-
erate sample sizes; whereas risks of the Bayes es-
timators GEL and LINEX of all parameters of
population perform better than any of all the es-
timators for a very large sample sizes.
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