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Abstract:- The need for accurate prediction of vibration and wear of heat exchangers in service has placed 
greater emphasis on improved modeling of the associated phenomenon of flow-induced vibrations. It was 
recognized that modeling of the complex dynamics of fluidelastic forces, that give rise to vibrations of tube 
bundles, requires a great deal of experimental insight. Accordingly, the prediction of the flow-induced 
vibration due to unsteady cross-flow can be greatly aided by semi-analytical models, in which some 
coefficients are determined experimentally. In this paper, the elastodynamic model of the tube array is 
formulated using the finite element approach, wherein each tube is modeled by a set of finite tube-elements. 
The interaction between tubes in the bundle is represented by fluidelastic coupling forces, which are defined in 
terms of the multi-degree-of-freedom elastodynamic behavior of each tube in the bundle. A laboratory test rig 
with an instrumented square bundle is constructed to measure the fluidelastic coefficients used to tune the 
developed dynamic model. The test rig admits two different test bundles; namely the inline-square and 45o 
rotated-square tube arrays.  Measurements were conducted to identify the flow-induced dynamic coefficients. 
The developed scheme was utilized in predicting the onset of flow-induced vibrations, and results were 
examined in the light of TEMA predictions. The comparison demonstrated that TEMA guidelines are more 
conservative in the two configurations considered.   
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1. Introduction 
Pressure fluctuations around heat 

exchanger tubes result in fluid-structure dynamic 
coupling, which give rise to vibrations in all tubes 
of the bundle. To gain more insight into this 
phenomenon, researchers resorted to dynamic 
modeling of such systems. However, modeling the 
dynamics of fluidelastic motions due to crossflow 
over a tube bundle is too complicated to be 
investigated only analytically.  At present, there is 
no such a reliable analytical model that accurately 
describes the phenomena of flow-induced 
vibration over a bank of tubes. Accordingly, a 
reliable mathematical model requires some tuning 
via experimental measurements.  
 The flow-induced vibration phenomena of 
tube bundle vibrations caused by shell-side flow in 
heat exchangers were addressed early in the 
literature, Wallis [1] and Putnam [2]. Today, the 
literature in the area of research has become very 
rich with a large number of publications addressing 
these problems and suggesting different methods 

of predictions and solutions. These include 
approximate analytical models, analytical models 
with purely structural emphasis, semi-analytical 
models where modeling simplifications were 
attributed to complementary experimental 
investigations, and pure experimental studies 
dedicated to understanding and identification of 
such excitation mechanisms. Progress in research 
activities related to this problem was reviewed by 
Paidoussis [3], Price [4], and Weaver et al. [5].   In 
addition, some books were dedicated to present a 
rather detailed account of this problem; e.g. the 
books by Chen [6], and Katinas and Zukauskas [7].  
  A number of theoretical investigations 
have been conducted on flow-induced vibrations in 
heat exchangers.  Chen [8, 9], in his sequel papers, 
presented a general theoretical approach to 
characterizing the instability mechanisms of a 
group of tubes in crossflow. Cai et al. [10] reported 
a theoretical investigation of the fluidelastic 
instability of loosely supported tubes in non-
uniform crossflow, wherein the unsteady flow 
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theory was employed.  Their instability analysis, 
however, was restricted to the inactive phase of 
tube motion. Further investigations were suggested 
to study the instability mechanism during the active 
mode of tube motion. Eisinger et al. [11] applied a 
numerical model to simulate the fluidelastic 
vibration of a representative tubes in a tube bundle 
based on unsteady flow theory. The numerical 
simulation was performed using the general 
purpose ABAQUS-EPGEN finite element code 
using a special subroutine incorporating fluidelastic 
forces. An analytical computational fluid dynamics 
technique was introduced by Ichioka et al. [12] to 
study fluidelastic vibration of tube bundles in heat 
exchangers. The technique was based on the 
moving mesh method which was developed by the 
authors. Kassera and Strohmeier [13] introduced a 
two-dimensional simulation model for the flow 
induced vibrations in tube bundles. The flow field 
equations including turbulence were solved using 
the boundary element method; however the tubes 
were structurally treated as rigid cylinders 
supported by linear elastic strings. Fischer and 
Strohmeier [14] introduced a coupled fluid-
structure interaction model to evaluate stability of 
tube bundles in cross-flow. A three-dimensional 
transient model is developed, which was 
augmented by a structural response model based on 
beam theory and frictional impact.  

It has become evident that modeling of the 
complex dynamics of fluidelastic forces that give 
rise to vibrations of tube bundles requires a great 
deal of experimental insight. Experimental 
investigations of the phenomenon of flow-induced 
vibrations in heat exchangers was recognized and 
pursued for the following two reasons: (a) to gain 
more insight into the nature of such complex 
dynamic behavior, and (b) to reduce the 
complexity of the derived mathematical models in 
the light of some experimental findings.  Grover 
and Weaver [15, 16] presented a sequel of 
experimental studies of cross flow-induced 
vibration of tube array, and pointed out some 
observations over the range of their tests. Based on 
experimental results, they concluded that only a 
single elastic tube and the flow streams 
immediately adjacent to either side of the tube are 
required to model the essential features of the 
fluidelastic system. To account for some fluid 
elastic effects that could not be tackled by the 
quasi-steady flow theory, Tanaka et al. [17-19], 
introduced a method for calculating the critical 
flow velocity based on the unsteady flow theory. 
Equations were presented in matrix form including 
coupling, and experimental measurements were 

utilized to determine the fluid-induced force 
coefficients. Granger [20] used the same linear 
model of the fluidelastic forces by Chen [8] to 
write the dynamic model for a tube bundle in 
crossflow. Experimental measurements were 
performed on a tube bundle with several 
instrumented tubes, and the measured modal 
parameters were then used to determine the global 
damping and natural frequency, which in turn used 
to determine the fluidelastic force coefficients. A 
methodology for modeling flow-induced 
vibrations of tubes in crossflow was presented by 
Chen et al. [21, 22]. The unsteady flow theory is 
utilized in establishing the fluidelastic force 
coefficients. The fluid-force coefficients were 
stated analytically and justified by experiential 
measurements. They concluded that fluidelastic 
coefficients depend on tube arrangement, pitch, 
oscillation amplitude, reduced flow velocities, and 
Reynolds number. 

Although a considerable progress has been 
made in the area of flow-induced vibrations since 
the early seventies, it remains necessary to 
understand the flow-induced vibration mechanisms 
for all possible flow situations. To date, there are 
no accurate criteria by which one could pinpoint 
the onset of fluidelastic instability in heat 
exchangers. The criteria set by TEMA [23] are 
relied upon in industry, though it is not adequate in 
predicting the onset of damaging flow-induced 
vibrations in many situations.  

In this paper, a fluidelastic dynamic model 
using the finite element approach is developed for 
a square tube bundle in crossflow. The resulting 
nonlinear dynamic model admits the unsteady 
fluidelastic coupling in terms of experimentally 
measured force coefficients. Once such 
coefficients are experimentally determined, they 
are inserted into the generalized non-self-adjoint 
eigenvalue problem. The resulting nonlinear 
eigenvalue problem is iteratively solved and the 
instability conditions, referring to the onset of 
vibrations, are determined.  

2. The elastodynamic model 
Based on the actual heat exchanger 

construction, all the tubes of the tube bundle are 
normally made of the same material and having 
same cross-sectional dimensions. The developed 
formulation, however, is written in a general form 
to admit different geometrical and material 
properties for each elastic component. The 
following are the basic assumptions underlying the 
elastodynamic modeling: (a) the material of the 
elastic tube is homogeneous and isotropic; (b) the 
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deflection of the tube is produced by the 
displacement of points of the centerline; and (c) 
the shear deformation for such slender tube 
configuration is neglected. Now, let us consider an 
element of the elastic tube for which the nodal 
coordinates are defined by }{q . Using the 
Lagrangean approach, we can write the equations 
of motion of tube i as 

 
[ ]{ } [ ]{ } [ ]{ } { }i i i

i i i iM q D q K q Q+ + =&& &   (1) 
 
The finite element expressions of the coefficient 
matrices are given by  
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where { }iQ  is the generalized force vector that 
may contain all externally applied forces, and may 
also contain the time-dependent fluidelastic 
coupling forces, [ ]iD  is the damping matrix,  

[ ] [ ]/eB N xθ= ∂ ∂ ,  [ ] [ ]/a tB N x= ∂ ∂   

and /B N xϕ ϕ   = ∂ ∂     are the derivatives of 

the shape function matrices [ ]Nθ , [ ]tN , and 

Nϕ   , respectively, as given by Perzemieniecki 

[24], or Bazoune et al. [25].  
       The dynamic equations of motion that 
represent the elastodynamic behavior of the tube 
can be derived using the Lagrangean approach. 
Denoting { }iq as the vector of nodal 
displacements of tube i , one can substitute the 
Lagrangean function in the variational form, carry 
out the associated differentiations, and then 

perform standard finite element assembly 
procedure to express the equation of motion of 
tube i  in the following final form: 
 

[ ]{ } [ ]{ } [ ]{ } { }i i i
i i i iM q D q K q Q+ + =&& &    (4) 

 
 The fluid-structure interaction, as 
manifested by the fluidelastic forces can be 
represented to include the coupling between the 
adjacent tubes in the tube bundle. Let the 
fluidelastic force that couples tube i  and tube 
j be  

 ijKijDij sCsCF
ijij

+= &             (5) 

where ijs is a vector in the yz-plane, which 

represents the distance between tube i  and tube 
j , 

ijDC is the damping coefficient that depends 

on the tube diameter, fluid density and the bundle 
gap velocity. 

ijKC is the stiffness coefficient that 

depends on the fluid density and the bundle gap 
velocity. Using the virtual work expression, one 
can write the work done by ijF as 
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The vectors i
FQ and j

FQ are the generalized 
forces associated with the fluidelastic coupling 
between tube i  and tube j . These forces are to be 
added to the right hand side of the equation of 
motion. For the rest of the derivation, the subscript 
s is introduced to refer to the intrinsic structural 
properties, e.g. structural mass, damping and 
stiffness properties, while the subscript f  refers 
to the corresponding fluidelastic terms. Now, 
equation (4) can be written for tubes i  and j , 
including the added-mass effect, as 
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where M is the mass matrix that includes both the 
structural inertia properties and the added-mass 
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effects., i.e. i
f

i
s

i MMM += . The added-mass 

matrix i
fM  is a function fluid density and the 

tube dimensions. Equation (7) can be written in a 
general assembled form to represent all active 
tubes in the tube array.  The added-mass effects as 
well as the coupling fluidelastic forces are 
determined experimentally by estimating the 
fluidelastic coefficients.  

3. The fluidelastic forces   
The linearity assumption of the fluid-

dynamic forces has been verified by some 
experimental investigators, e.g. Tanaka et al. [19], 
and consequently the superposition principle can 
be applied to express the fluidelastic forces. 
Accordingly, the total force acting on the center 
tube (O) is obtained by the superposition of the 
fluidelastic forces due to the vibration of the 
individual tubes (each one of the tubes O, L, R, U 
or H) when the rest of the tubes are stationary. 
Therefore, the fluid-dynamic forces (per unit 
length) on the center tube (O) in y- and z-
directions can be expressed as follows: 
 

   2
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1 ( )
2
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Y f g YLZ L R

YUY U YDY D

C Y C Y Y
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where CYLZ, etc., are fluid-dynamic coefficients, as 
explained in [26]. Each coefficient is identified by 
three suffixes. The first suffix indicates the 
direction of the fluid force, the second indicates 
the position of the vibrating tube, and the third 
suffix indicates the direction of tube vibration.  

The dependence of the mass matrix on the 
natural frequency results in a nonlinear eigenvalue 
problem. Neumaier [27] presented an inverse 
iteration scheme for the nonlinear eigenvalue 
problem. A class of nonlinear eigenvalue problems 
encountered in solid-structure problems has been 
addressed by Conca et al. [28]. The scheme 
adopted in this paper employs an inverse iteration 
outer loop with the MATLAB complex eigenvalue 
solver as its inner core. The method first calculates 
structural stiffness, mass and damping matrices for 
the tube bundle. It also interpolates the fluid force 

coefficients by curve fitting so that these 
coefficients can be determined at any iteration step 
of the reduced velocity. It then updates the 
stiffness, mass and damping matrices with the 
current value of fluidelastic effects. The modal 
characteristics of the whole system (tube bundle) 
are then determined by solving the associated 
complex eigenvalue problem. The critical reduced 
velocity is defined as the reduced velocity at the 
onset of instability. The iteration is indexed over 
the reduced velocity, and the iteration is 
terminated once the critical reduced velocity is 
reached. In other words, the critical reduced 
velocity is one at which the highest real part of an 
eigenvalue change its sign from negative (stable 
region) to positive (unstable region).  

4. The experimental setup   
To simulate the flow-induced vibration in 

tube bundles, an experimental water loop was 
designed and built for this study. The water loop is 
a closed type loop, which consists of a water 
circulation tank, a primary 30-HP water pump (in 
conjunction with a secondary 20 HP water pump), 
a 3-m3 (3000 Liter) head tank and a damping tank. 
The experimental setup used in this investigation is 
shown in Figure 1. The water is pumped from the 
lower circulation tank into the upper head tank. 
The controlled flow of water passes through a 
damping tank, which houses a series of screens, 
and then into the rectangular test channel. Two 
control valves control the flow velocity and water 
level in the channel.  
 

 
Figure 1: The experimental test rig 

 
The test rig admits two different test 

bundles; namely the inline-square and 45o rotated-
square tube arrays, as shown in Figures 2 and 3, 
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respectively.  The test section carries the tube 
bundle that consists of 25 tubes; with 1.45 pitch-to-
diameter ratio for square and 2.0 for rotated square 
arrays, [29]. The shaker is used to excite the center 
tube (tube O) in x- and y-direction at a range of 
frequencies. The experimental tube bundle is 
shown in Figure 4. The tube is made of steel with 
1.85-cm (0.725-in) diameter and 12-cm (4.72-in) 
length. The tube is supported by a flexible thin 
steel cylinder of 0.5-cm (0.2-in) diameter and15-
cm (5.9-in) length. All other tubes are identical. 
Due to symmetry, only four active tubes (tubes O, 
L, U, and H) are instrumented; each with two strain 
gages. One strain gage is mounted along the flow 
direction (z- or 0o- direction) and the other strain 
gage is mounted along the perpendicular direction 
to the flow (y- or 90o-direction). Only the active 
lengths of the test tubes are submerged with water 
at any time. All tubes, except for the center one, 
are clamped to a heavy steel support plate. 
 

 
 

Figure 2:  The inline square tube array 
(Pitch-to-diameter ratio of 1.45) 

 

Figure 4 shows the instrumented test section. 
The exciter control (Brüel & Kjær type 1047) is 
used to generate an excitation sinusoidal signal 
with a selected excitation frequency. This signal is 
then amplified using a power amplifier (Brüel & 
Kjær type 2718) before it is fed to the shaker.  The 
response signals of the strain gages are captured 
and processed by the multi-channel scanner 
(Vishay Model 6100). The scanner is controlled 
via a PC loaded with StrainSmart 6000 
software. Strain gages used to measure forces were 
calibrated by the static method. 

 

Figure 3:   The rotated square tube array 
(Pitch-to-diameter ratio of 2.0) 

 

 
Figure 4:   The instrumented test section  

 

5. Data acquisition and analysis   
The data acquisition sessions included the 

recording of measurements of nine strain gages at 
the following permuted settings: 

1.   The shaker frequency is varied within the 
range 1-18 Hz, with several increments.   

2.   The shaker position is varied between (a) 
flow direction ( 0θ = ) and (b) 

perpendicular to flow direction ( 90oθ = ); 
and step (1) is repeated in each case. 

3.   Steps (1) and (2) are repeated for several 
values of flow velocities, staring from zero 
velocity (still water), in addition to one 
measurement in air.  

Upon processing the acquired data, one could 
identify phase difference, and the fluidelastic 
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mass, damping, and stiffness coefficients needed 
for the computational algorithm.  
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Figure 5: Amplitude of fluid-force 
coefficient for in-line square array 

 
In order to proceed with experimental 

analysis, one needs to measure the natural 
frequencies of the tube in air and in water through 

dynamic damping tests. The following values were 
found from those measurements:  the damping  

 
Coefficient YLY

0
2
4
6
8

10
12
14

0 5 10 15

Reduced Velocity (m/s)

Coefficient YLZ

-5

0

5

10

15

20

0 5 10 15

Reduced Velocity (m/s)

Coefficient ZLY

0

5

10

15

0 5 10 15
Reduced Velocity (m/s)

Coefficient ZLZ

0

10

20
30

40

50

60

0 5 10 15

Reduced Velocity (m/s)

Figure 6: Amplitude of fluid-force 
coefficient for rotated square array 

 
factors are 0.0144ζ = in air and 0.0344ζ = in 
water, while the corresponding fundamental 
frequencies are found to be  20.25Hzf n =  in air 

and  18.99Hzf n =  in water. 
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Measurements and processing of data 
resulted in the fluidelastic coefficients, as 
manifested by the added mass coefficients, as well 
as the fluid elastic force coefficients; both 
magnitude and phase.  Figures 5 and 6 display the 
fluidelastic force coefficient of both inline-square 
and rotated-square acting on tube L, respectively. 
Similarly, the complete set of fluidelastic 
coefficients is identified for further utilization of 
the numerical prediction scheme. It is noteworthy 
to note the phase difference between the tube 
vibrations and the fluid dynamic forces; wherein a 
positive phase difference indicates that the force is 
leading the tube displacement. It was also 
observed that change of sign of the phase 
difference corresponds to the fluid dynamic force 
switching from a damping force to an exciting 
force. Similar behavior was also observed by 
previous investigators [17], and was attributed to 
the possible contribution of the Karman vortex or 
similar vortices at lower velocities.  

The developed prediction scheme was then 
tested in comparison to TEMA standards. The 
TEMA guidelines for estimating the critical flow 
velocity for the onset of tube bundle vibrations are 
given in the Standards of Tubular Exchanger 
Manufacturers Association, Mechanical 
Standards, Class RCB, Section 5, [23]. The critical 
velocity estimate cv  is given by 

 

 / sec
12

n o
c

f dv ftΓ
=                        (10) 

where    
    

( / sec)
( )

n

o

Dimensionless critical flow Velocity parameter
f Fundamental natural frequncy c
d Outside diameter of tube inches

Γ ≡
≡
≡

 

The dimensionless parameter Γ is given 
for different tube array configurations as a 
function of tube pitch, effective weight of tube per 
unit length, and the logarithmic decrement. For the 
two cases tested in this investigation; inline square 
and rotated-square tube arrays, the estimates 
produced by our computational scheme, which are 
based on the experimentally evaluated fluidelastic 
coefficients, were compared to that obtained using 
the above TEMA empirical formulas, Figures 7 
and 8. The comparison shows that TEMA 
estimates are in the conservative side. In addition, 
one notes that the estimate predicted by TEMA’s 
formula is less sensitive to tube pitch variations. 

 

6. Conclusions   
The Elastodynamic model of the tube 

array is formulated using the finite element 
approach, wherein each tube is modeled by a set of 
finite tube-elements. The interaction between tubes 
in the bundle is represented by fluidelastic 
coupling forces, which are defined in terms of the 
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Figure 7: Critical velocity estimates for 

inline square array 
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Figure 8: Critical velocity estimates for 

rotated square array 
 

 
multi-degree-of-freedom elastodynamic behavior 
of each tube in the bundle. A laboratory test 
facility with close-loop water test channel and a 
complicated design of an instrumented test section 
with a tube bundle of 25 tubes is established. The 
tubes were instrumented with strain gages, and the 
center tube was excited by a shaker at different 
frequencies to study a wide range of fluidelastic 
effects. Two configurations of tube bundles were 
investigated; namely the inline-square and the 
rotated-square tube arrays. The functionality of the 
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augmented test facility, where fluids, structures, 
electronics, and digital equipment are all 
interconnected, was manifested by successful 
measurements of the fluidelastic coefficients at a 
wide range of parameter variations.  

The experimental results show clearly the 
dependency of the measured coefficients on the 
excitation frequency, which is an important factor 
that was ignored by previous investigations. The 
experimentally identified fluidelastic coefficients 
are utilized by a computer program in MATLAB 
code, developed in Part-I of this paper, to compute 
the critical velocities that define the threshold of 
instability for a given set of heat exchanger 
parameters. As pointed out in Part-I, the developed 
numerical scheme utilizes the finite element 
method, wherein the fluidelastic coupling is more 
accurately calculated for being treated as 
distributed over the entire tube length. Another 
important finding, which was verified in the field, 
is gleaned out from comparisons with TEMA 
guidelines. It was demonstrated that TEMA 
guidelines are on the conservative side for the two 
cases considered in this experimental 
investigation. 
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