
 

 

  
Abstract— The paper presents the mathematical model of a 

system, with direct action, for the regulation of the air debit in the 

aircrafts’ cabins. It consists of a debit transducer, a regulator and an 

execution element. Using two different methods (least square method 

and neural networks method), one makes the identification of the 

system, obtaining (using a Matlab program and a Matlab/Simulink 

model) the responses to step or impulse input in the complex and 

discrete planes and time variations of non-dimensional pressure 

inside the regulator. With least square method (LSM) the output of 

the system and the output of the model were plotted. The identi-

fication is made very well – the two signals overlap. The identifi-

cation may also be made using neural networks. Using this method, 

one obtained the indicial responses of the control system and of the 

neural network before and after the training process.  

 

Keywords— regulator, air debit, aircraft’ cabin, transducer, exe-
cution element.  

I. INTRODUCTION 

HE automatic regulation of the air debit which enters in 

aircrafts’ cabins has the following purposes: the expanding 

of the air mass that flows through the valve of the pressure 

control system (ARS) through leaks; the ensure of the cabin air 

pressure regulation [1], [2], [3]. 

  In this paper one presents the mathematical model of the air 

debit automatic regulation system (ARS) consisting of debit 

transducer, regulator and execution element. For this system 

(system with direct action) one obtains the mathematical 

model which permits its description in a dimensional, non-

dimensional or operational form. The study of the system 

refers to its stability and identification using different iden-

tification methods. 

The term pressurization means the process of creation of a 

extra-pressure in the hermetically aircrafts’ cabins [1], [2], [3]. 

The air debit introduced in the cabin for one person is about 
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;/hm3020 3÷  the CO2 concentration must not exceed 

,%15.0 ÷  while the temperature must be .2520 Co÷  

II. STRUCTURE OF THE PRESSURE CONTROL SYSTEM (ARS) 

This system is presented in fig.1. The components of the 

system are: 1 – fixed cylinder; 2 – mobile cylinder with valve; 

3 – Venturi nozzle (tube); 4 – shell; 5 – spring; 6 – goffering 

box; 7 – safety valve [1], [2], [3], [4]. 

 
Fig.1 The structure of the debit (pressure) control system 

On the lateral surface of the fixed cylinder there are shaped 

orifices. These are opturated more or less in rapport with the 

mobile cylinder’s position and with valve 2. The valve is 

moved by the mean of elements 5 and 6. In the case of the 

pressure’s increase over a prescribed maximum value, the air 

is evacuated in the atmosphere through the safe valve 7. 

III. THE MATHEMATICAL MODEL AND THE STABILITY 

ANALYSYS OF THE PRESSURE CONTROL SYSTEM 

The system presented in fig.1 maintains constant the 

pressure Rp  in the room of the regulator, limiting the air debit 

transmitted to the cabin. 

The dynamic regime of the regulator is described by equa-

tion [1], [2], [3], [4] 
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where tQ  is the air debit from the aircraft’s compressor,  
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−RQ  the debit which goes to the cabin, −vRt ppp ,,  

pressures in different parts of the regulator, −Rt TT ,  

temperatures in different parts of the regulator, −tS  the 

variable section of air flow through the regulator. 

Using the non-dimensional notations 
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one obtains the non-dimensional form of equation (1) 
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with the notations: −=τ
max

0

*
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NR
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QRT

pV
 the filling time of the 

regulator’s room, −
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−
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t
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p

q
k  the coefficient of auto-

equalization of the regulation element’s pressures (all the 

brackets with index “0” have been neglected). 

In stationary regime, the valve of the debit regulator has an 

equilibrium position expressed by the mean of coordinate 0x  

( x  is the displacement of cylinder 2; it is considered positive 

when it moves down). The equilibrium of the forces for the 

mobile elements of mass m  is expressed by equation [1], [2] 
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where ek  is the elasticity coefficient of the spring, −η  the 

damping friction coefficient, −fF  the friction force and 

−efS  the effective surface of the goffering box.   

Neglecting the friction force fF  and using the non-dimen-

sional variable 
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one yields the equation in a non-dimensional form 
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where one used the notations 
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Starting from equation (3) and using notation 
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equations (3) and (6) become 
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where −τ=τ RRR k/*  time constant. 

Using Laplace transformation for the two above equations, 

and after that eliminating variable ( ) ,sS  one gets 
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where  
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The characteristic equation of the system is 
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and the Hurwitz stability equations are expressed by the 

positivity of coefficients −= 3,0, iai  true condition and by 

the inequality ,3021 aaaa >  which, conform to (11), becomes 

 

( )( ) ( ).22 tRmRmRmmmRR kkkk +ττ>τ+τξτξ+τ  (13) 

 

In fig.2 [3], [4] one presents the block diagram of the model 

described by equations (9). 

 
Fig.2 The block diagram of the system’s model 

For ,N/m10,m10,K300kg/s,02.0 2531
max

==== −
NRRt pVTQ  

one obtains .s8.5* =τR  With ,104/ 3
max

−⋅=∆ tR QQ  

,10/,106/ 53
max

−− =∆⋅−=∆ NRtt ppQQ  it results 310=Rk  
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and s.108.5/ 3* −⋅=τ=τ RRR k  The coefficient tk  is calcula-

ted from the second equation (8); for 1.0/ max =∆ xx  and 

,106/ 3
max

−⋅−=∆ tt QQ  one gets .106 2−⋅=tk   

With 

 

23
max m103m,0.015

Ns/m,32.0N/m,1kg,1

−⋅==

=η==

ef

e

Sx

km
 (14) 

 

using (6), one obtains .102,16.0,1 4⋅==ξ=τ kmm  

The value of the perturbation ( )tF  is calculated first 

equation (8). It results ( ) .102 3−⋅=tF  

Using the Matlab/Simulink model (fig.3) of the block 

diagram from fig.2, one obtains the time variations of the non-

dimensional pressure inside the regulator – fig.4. 

 
Fig.3 The Matlab/Simulink model of the ARS 

 
Fig.4 Time variation of the non-dimensional pressure  

Rp  inside the regulator 

 
Fig.5 The indicial functions and responses to impulse input  

in the complex and discrete planes for the system from fig.2 

For the above system one also obtains, using a Matlab pro-

gram and a Simulink model (fig.3), the frequency charac-

teristics, the indicial functions in the complex plane and in 

discrete plane, responses to impulse input in the complex and 

discrete planes. Also, one identifies the systems using two 

different methods (least square method, and neural networks 

method). For each of these methods, some graphics were 

obtained. For the system from fig.2, the indicial functions and 

responses to impulse input in the complex and discrete planes 

are presented in fig.5 (the first two graphics correspond to the 

complex plane, while the last two correspond to the discrete 

plane).  

The program also calculates the matrices that describe the 

state equations of the system in the complex or discrete plane 
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the poles of the system 
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the zeros, the transfer functions in complex description or in 

discrete description, the stability margins and so on.  

From graphic characteristics – fig.4, fig.5 and from the 

analysis of the system’s eigenvalues (poles) one notices that 

the system is a stable one with good dynamic properties.  

IV. IDENTIFICATION OF THE SYSTEM  USING THE LEAST 

SQUARE METHOD (LSM) 

A state estimator must assure the controllability of the 

system whose parameters are estimated, whatever the adap-

tive structure [5], [6]. The least square method doesn’t 

always give models characterized by controllability. That’s 

why in some cases it must be modified. The system A  and 

the estimated model of the system Â  are described by the 

equations 
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where −−1z  the delay operator, )z( 1−L  and )z( 1−M  are 

polynomials containing the coefficients of the discrete 

transfer function, ( )tê  is the noise applied to the model and 

polynomials ( ) ( )11 zˆ,zˆ −− ML  contain the estimated coeffici- 
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ents of )z( 1−L  and .)z( 1−M  

LSM algorithm (least square algorithm) modification is 

based upon the discrete transfer function modification 

through origin pole ( )0z =  compensation. The modified 

LSM algorithm (LSMM) builds a convergent vector )(tν  and 

with it the vector of the estimated parameters [7], [8] 

 

).()()(ˆ)(ˆ kkPkbkb ν+=′   (18) 

 

Thus, the coefficient b′ˆ  is almost non-null.  

 
Fig.6 The debit control system’s output and the model’s output 

The control law may be chosen of general form 

 

( ) ( ) ),(ˆ,z)(ˆ,z)( 11 kybSkubRku ′+′= −−  (19) 

  

with the polynomials 
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The closed loop system is described by equation [7] 
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where 
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and 

 

[ ] ),1()()()()1( ++−=+ knkbkbkxke TT  (23) 

 

)1( +kn  is a white noise. 

In the Matlab program the input u  and the perturbation e  

of the leaded system are chosen as random type. For the b̂  

parameters of model Â  estimation one uses ARX operator 

from Matlab, which has the following syntax th=ARX(z,nn), 

where −= ][ uyz  matrix that contains the output vector 

( )y  and the input vector ( );u  nn −= ][ ncnbna  defines the 

denominator order ( ),na  numerator order ( )nb  and the 

model’s delay ( );nc  th returns the estimated parameters in 

theta format (the elements of the vector b̂ ) using the least 

square method [8]. The program plots the characteristics 

)(ty  and ,)(ˆ ty  presented in fig.6; )(ty  is the output of the 

control system ,(A)  while )(ˆ ty  is the output of the estimated 

model ( ).Â  As one can see in the above figure that the 

identification is made very well - the two signals overlap 

( ) .ˆ yy →  

V. IDENTIFICATION OF THE SYSTEM USING THE NEURAL 

NETWORKS’ METHOD 

Flying parameters’ modification and atmospheric distur-

bances lead to difficulties in stability derivates calculus and to 

flying objects’ models stabilization. That’s why one may use 

identification methods or state estimate methods [8], [9], [10], 

[11], [12], [13], [14], [15]. The identification method presen-

ted in this paper is based on a neural network’s use. As one 

can see in fig.7 for off-line identification, a feed-forward 

neural network is used; the network is trained by minimizing 

the quadratic quality indicator )(),(
2

1
)( 2 kekekJ =  being the 

training error [8], [13], [14], [15]. 

 
Fig.7 Dynamic model of the control system 

The dynamics of the rockets’ movement may be described 

by equation 

 

( ) ,)1()()()2()1()( +−−−−−−= uy nqkuqkunkykykyfky LL  (24) 

 

with −= Rpy  the non-dimensional pressure inside the 

regulator, ( ) −= sFu  system’s perturbation, −q  dead time; 

yn  and un  express the system’s order. 

If nothing is known about the control system ( fqnn uy ,,,  

and −hn  the number of hidden layer neurons), by identificati- 

on one determines these parameters. So that, starting from 

minimal neural network’s architecture (numbers yhu nnn ,,  

and q ) and imposing a value for the error )(ke  and a maxim 

number of training epochs, the neural networks begins the 

training process. If the error )(ke  doesn’t tend to the desired  
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value then yu nn ,  and hn  are modified [8], [13], [14], [15]. 

 
Fig.8 The output of the system from fig.2 (blue color)  

and the output of the NN (red color) before training. 

For identification process’s simulation of the rockets’ dyna-

mics with neural network one may use the discrete transfer 

function associated to the system. A neural network with one 

hidden layer is chosen. This network is characterized by 

5,3,1 === hyu nnn  and .0=q   

 
Fig.9 The output of the system from fig.2 (blue color)  

and the output of the NN (red color) after training. 

 
Fig.10 Dependence between the error of the training process  

and the training epochs’ number for the system from fig.2 

One chooses calculus steps ( ) ,p  which is equal with vector 

'y s components number (the values at respective moments of 

the control system). The matrix of neural network P  is obta-

ined (it has the dimension ( ) ( )( ).3−×+ pnn yu  Also, matrix T  

(of desired output of the network, which represents control 

system’s output values matrix) is the matrix of the system 

output’s values at time moments corresponding calculus steps; 

( ) ( ) ee npnT ,3dim −×=  being output neurons’ number (in 

this example 1=en ). In fig.8 one presents the output of the 

system from fig.2 (blue color) and the output of the NN (red 

color) before training. After the training process, the two 

signals overlap (fig.9).  

Neural network‘s training is made using instruction “train” 

till the moment when ;)()(ˆ)()( imposed kekykyke →−=  

12
imposed 10)( −=ke  or until the number of training epochs is 

reached (in our example this number has been chosen 10000). 

In fig.10 the dependence between error )(ke  and training 

epochs’ number is presented.  

By neural network’s training pseudo – neurons weights 

matrix 1W  and hidden layer neurons weights vector 2W  are 

obtained. Also, vectors 1B  and ,2B  which contains polari-

zation coefficients’ values (bias) for neurons from hidden layer 

and for output neuron, respectively, are obtained. For this sta-

bilization system they are 
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VI. CONCLUSIONS 

The paper presents the mathematical model of a system, 

with direct action, for the regulation of the air debit in the 

aircrafts’ cabins. It consists of a debit transducer, a regulator 

and an execution element. 

One has determined the transfer functions (in closed loop -

( )sH  and in open loop) of the system; a study of stability is 

made using Hurwitz conditions and the poles of the closed 

loop transfer function. All the poles of the systems are placed 

in the left complex semi-plane. This is a proof of system’s 

stability. The system responds fast to a step input – the 

duration of the transient regimes is about 25 seconds. For these 

kind of systems (systems for the control of the cabin’s pressure 

and air debit in the cabin), 25 seconds represent a good 

stabilization time.  

Using two different methods (least square method and 

neural networks method), one makes the identification of the 

system. One obtains, using a Matlab program and a Simulink 

model, the indicial functions in the complex plane and in 

discrete plane, responses to impulse input in the complex and 

discrete planes, the poles, the zeros, the stability margins and 

so on. With the least square method (LSM) the output of the 
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system and the output of the model for the two systems are 

plotted (fig.6). As one can see in this figure, the identification 

is made very well - the two signals overlap ( ).ˆ yy →  

The identification may also be made using neural networks. 

Using this method, one obtained the indicial response of the 

system and of the neural network before and after NN’s 

training. Before training the two signals were different, but 

after training (1241 epochs) these signals overlap too. One 

also obtained the weights and the biases of the neural network. 

The dependence between the error of the training process and 

the training epochs number for the system is plotted (the error 

tends to its imposed value 1210− ).  
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