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Abstract—Traditional diffusivity based denoising models detect 

edges by the gradients of images, and thus are easily affected by 

noise. In this paper, we introduce a nonlinear diffusion denoising 

method based on the wavelet domain diffusivity model and context 

information. The shift-invariant property of the stationary wavelet 

transform makes it suitable for edge detection and derivation of 

texture information. In the proposed diffusion model, the modulus of 

gradient in a diffusivity function is substituted by the modulus of a 

wavelet detail coefficient. The diffusion of a wavelet coefficient is 

performed based on the information about the energy of the transform 

in a local neighborhood of coefficients across the scales. It is shown 

that the new model has better noise suppression and better perceptual 

quality power for high levels of noise. Objectively results are 

evaluated based on PSNR and Laplacian mean-square error (LMSE) 

metrics. 

 

Keywords—Stationary wavelet, non-linear diffusion, context 

based diffusion  

I. INTRODUCTION 

HE diffusion process 

                 ut = (g(|ux|) ux)x                                          (1) 

can be obtained from a family u(x, t) of filtered versions 

of a signal f(x), where subscripts denote partial derivatives, 

and the simplification parameter with larger values 

corresponding to stronger filtering is the diffusion time t. The 

initial condition is given by f (.)  
                           u(x, 0) = f(x)                                         (2) 

The diffusivity g(s) is typically positive everywhere but 

rapidly and monotonically decreasing for s > 0. This ensures 

less blurring for strong edges than the noise and low-contrast 

details by the diffusion filter. Equation (1) covers a variety of 

filters, depending on the choice of the diffusivity function.  

Perona and Malik [1] introduced the following choice for g 

functions  

                                                                          (3) 
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where  is the modulus of gradient and parameter  is a 

constant. 

Since its introduction in [1], diffusion models have been 

developed and applied to different areas of image processing 

including image denoising. Well known nonlinear diffusion 

methods are Perona-Malik’s diffusion [1], Rudin-Osher-

Fatemi’s total variation [2], Mumford-Shah’s functional [3], 

Weickert’s tensor diffusion [4], Chambolle-Lions’s [5], and 

Vogel-Omans’s [6], total variation analyses, Chan-Vese’s 

active contours [7], Fourth Order PDE [8] and other. More 

recently a number of interesting connections between wavelet 

shrinkage, regularization methods and PDEs have been 

established. Bao and Krim [9] addressed the problem of 

texture loss in diffusion scale-spaces by incorporating ideas 

from wavelet analysis and showed that using wavelet frames 

with wavelets of higher order than Haar leads to a good 

preservation of texture while removing noise and making the 

image more open to other processing. Malgouyres [10, 11] 

proposed a hybrid method that uses both wavelet packets and 

TV technique. Experiments showed that it can restore textured 

regions without introducing visible ringing artifacts. In [12] 

Chen developed three denoising schemes by combining PDE 

with wavelet. In the first proposed model, a diffusion function 

was introduced in the regularization term of the ROF model, 

and the modulus of gradient was substituted by the modulus of 

wavelet transform, the model could preserve edges better and 

had strong ability of resisting noise. But the major 

disadvantage of this model is its computational complexity. 

The other two models are improvements of the first one based 

on the features of noise in the wavelet domain and the multi- 

resolution analysis of wavelet transform, respectively. The 

second model overcomes the disadvantage of computational 

complexity in the first model and the last model was based on 

the character of the multi-resolution analysis of wavelet 

transform. Shih and Liao [13] addressed a single step of 

nonlinear diffusion that can be considered equivalent to a 

single shrinkage iteration of coefficients of Mallat’s dyadic 

wavelet transform (MDWT). An iterated two-band filtering 

method solves the selective image smoothing problem and 

uses dyadic wavelet-based approximation to separate the high 

frequency coefficients from the low frequency ones in the 

decomposition process. A diffusivity function is used to retain 

useful data and suppress noise in the regularization process. A 

smoother version of the signal is computed by reconstructing 

the decomposed low frequency component and the regularized 

high frequency components. It has to be noted that no 

information about the contents is taken into account and thus 

both edges of extended objects and texture created edges can 

be affected by such a denoising approach. 
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In this paper, we combine in a single framework the 

advantages of non-linear diffusion multiresolution 

decomposition and explore the context information. The 

diffusivity function is used as a weighting function to the 

wavelet coefficients of a stationary wavelet transform (SWT) 

which provides both scale invariance and context information, 

such as an object edge, noise or texture. The latter is derived 

from the local transform energy information. We compare the 

performance of the proposed method to the method in [13], 

which exploits the edge information derived from two wavelet 

sub-bands. We demonstrate the performance of the method  on 

a known benchmark, that is the 8-bit Lena image. Additionally  

we show results of the method on a 16-bit X-ray Micro-

Tomography (XMT) image of a soil sample. 

The paper is organized as follows. Section II provides a 

theoretical background and introduces the new local context 

based diffusion in the stationary wavelet domain (SWCD). 

Section 3 shows the experimental results; the last section 

concludes the paper. 

 

II. LOCAL CONTEXT BASED DIFFUSION IN 

STATIONARY WAVELET DOMAIN (SWCD) 

     In a decimated discrete wavelet transform (DWT) after 

high and low pass filtering, coefficients are down sampled. 

Although this prevents redundancy and allows for using the 

same pair of filters in different levels, this decimated 

transform lacks shift invariance. Thus, small shifts in the input 

signal can cause major variations in the distribution of energy 

of coefficients at deferent levels. Even with periodic signal 

extension, the DWT of a translated version of a signal X is 

not, in general, the translated version of the DWT of X. To 

restore the translation invariance one can average a slightly 

different DWT, called ε-decimated DWT, to define the 

stationary wavelet transform (SWT) [14]. SWT algorithm is 

simple and is close to the DWT one. More precisely, for level 

1, all the decimated DWT for a given signal can be obtained 

by convolving the signal with the appropriate filters as in the 

DWT case but without down-sampling. The two-dimensional 

SWT leads to a decomposition of approximation coefficients 

at level j to four components: the approximation at level j+1, 

and the details in three orientations, i.e., horizontal, vertical, 

and diagonal). Considering the multi-sampling filter banks, 

SWT decomposition is shown in Eq.4. 

 

 

 

              (4)  
                                                                   

Where  respectively denote the (2
j 
-1) zeros padded 

between h0, h1. The inverse transform of SWT is shown in 

Eq.5. 

 

+  

 +  

+ }  (5) 

where A and D are approximation and detail coefficients 

respectively. 

From the above two equations, we can verify that SWT 

includes redundant information and shift- invariance suitable 

for accurate edge detection and denoising in the wavelet 

domain. Smooth regions in image are represented mainly by 

approximation coefficients. Level 1 and Level 2 detail 

subbands convey the noise and the fine-grain texture 

information, respectively. The higher scales carry the 

information of edges of extended objects which are to be 

preserved. Therefore, the image can be denoised by diffusing 

the detail coefficients in level 1 and level 2. One can also 

perform it selectively depends on the importance of the 

information to be preserved. Based on this consideration the 

following is implemented. 

The algorithm proceeds as follows: 

(1) Perform SWT on the input image. We use Haar 

wavelet basis and a scale 3.  

(2) The detail coefficients (vertical ( , horizontal 

(  and diagonal ( ) obtained in step 1 are 

processed by diffusivity function (3a).  In the 

diffusivity function is the edge estimate at 

pixel (x,y), usually approximated by gradient 

magnitude operator, and is the edge threshold 

parameter. The edge estimate is given by  

                                  (6) 

Where i = 1 or 2 or 3 and k = v or h or d. 

Vertical Coefficients:   

 = *  

Horizontal Coefficients:   

 = *  

Diagonal Coefficients:  

 = *                                          (7)                          

Conditions for detail coefficients diffusions  

a) If , then this is an 

actual object edge, we diffuse less in scale 2 and 

more in scale 1. 

b) If , then this is 

noise, we diffuse more in scale1 and scale2. 

c) If , this is texture, 

we diffuse less in scale2 and scale 1. 

where k = v (vertical) or d (diagonal) or h 

(horizontal)            
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where w is m x n neighborhood in scale j 

(3) Wavelet Reconstruction: The denoised image is obtained 

by implementing the inverse SWT using the 
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approximation coefficients and detail coefficients 

obtained in step 2. 

 

III. EXPERIMENT 

To study the performance of SWCD we choose Gaussian 

additive noise of zero mean, i.e., µ=0 and variance σ
2
= 0.02, 

0.04, 0.06, 0.08. 

The evaluation is performed based on objective criteria which 

are 

1. Peak Signal to Noise Ratio (PSNR) 

                                     (8) 

2. Laplacian Mean Square Error (LMSE) 

               LMSE     (9) 

Where L is a Laplacian operator. 

The latter metric is based on the edge measurement. In Fig. 1, 

we show a part of the original Lena image, the original with 

the added Gaussian noise with µ=0 and σ
2
 = 0.04, and images 

denoised using method as given in [13], and the herein 

proposed SWCD method with  = 20 and 10 at scales 1 and 2 

respectively for condition a),  = 100 and 50 at scale1 and 

scale2 respectively for condition b) and  = 10 and 5 at scales 

1 and 2 respectively for condition c) for the window of 3x3 

pixels. In Fig.2 we show the original Lena image with a 

marked area chosen in a relatively smooth part of the image 

and enlarged marked area with the noise, and results of 

diffusion. We notice that the method proposed in [13] 

produces large artifacts not seen in Fig.2e which displays the 

result of the proposed approach. Table 1 provides the results 

for the reference method [13] and implementations of the 

SWCD with different window sizes. The best results are 

obtained for the 3x3 neighborhood pixel window that is a 

smaller neighborhood statistics. In Fig.3 we show the results 

of denoising  performed  on a segment of an original 16 bit 

XMT image (Source: Advanced Light Source at Lawrence 

Berkeley National Laboratory). A Gaussian noise with mean 

µ=0 and variance, σ
2
 = 0.02 is added to the original. The 

method in [13] produces artifacts on both sharp edges between 

air and soil structures and short edges which constitute texture 

features of components and does that not uniformly. In 

contrast, the proposed method shows a good smoothening 

results along the extended edges of a pore structures and the 

edges of the texture. Results with SWCD are particularly 

encouraging for high levels of noise.  

IV. CONCLUSION 

The paper presented a non-linear diffusion in the wavelet 

domain. Unlike the method proposed by Shi in [13] the 

diffusion is controlled adaptively by the local context. The 

redundant representation of SWT adds the shift invariance 

which is shown to be effective for denoising; and the analysis 

of energy in a local neighborhood across scales provides the 

context information for the choice of the magnitude of 

diffusion. Based on the evaluation results, the SWCD shows a 

high performance based on both objective measures for 

medium to high levels of noise. Additionally the method does 

not produce visual artifacts and the perceptual quality as a 

result is higher. 
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Fig.1.Results for Gaussian noise σ
2
= 0.04;  a)Original Image  b)Noisy Image 

c) Diffusion based on the method in [13] d) diffusion with SWCD (3X3) 

 

 

 

Table I:  (a) PSNR; (b) and LMSE for denoising of Gaussian noise (σ
2
= 0.02, 0.04, 0.06, 0.08) in Fig. 1a. 

 

Variance(σ
2
) 0.02 0.04 0.06 0.08 

 

PSNR LMSE PSNR LMSE PSNR LMSE PSNR LMSE 

Noisy Image 17.20 63.51 14.45 119.75 13.00 166.91 12.03 207.64 

Method in [13] 26.59 1.83 21.99 6.01 19.49 11.44 17.98 16.61 

SWCD_3x3 27.07 1.47 25.55 1.85 24.41 2.17 23.58 2.47 

SWCD_5x5 26.75 2.49 25.19 3.74 23.96 5.03 23.12 5.84 

SWCD_7x7 26.47 3.28 24.76 5.30 23.56 6.93 22.65 8.60 
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Fig.2 Subjective quality; a)Original Image with a marked area b) enlarged marked area of the original; c) Marked area affected 

by noise σ
2
= 0.04; d) diffusion in the marked area by method [13]; e) diffusion in the marked area with SWCD (3X3) 

 

  

 

 
 (a)                                                                        (b)      e) 

  

 

 
(c)                                                                           (d)      f) 

 

Fig 3 Demonstration of the method on a 16-bit  XMT image of soil (ALS, Lawrence Berkeley National Laboratory, Berkeley, 

CA); a) a region with soil aggregates (light) and air-filled pores (dark); b) noise a) (14.13dB); result by [13] (PSNR = 21.96dB); 

d) result by SWCD(26.83dB); e) marked area diffused according to the method by [13];f) marked area diffused by SWCD . 
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