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Abstract: - The approximate reasoning is perceived as a derivation of new formulas with the corresponding 
temporal attributes, within a fuzzy theory defined by the fuzzy set of special axioms. In a management 

application, the reasoning is evolutionary because of unexpected events which may change the state of the 
expert system. In this kind of situations it is necessary to elaborate certain mechanisms in order to maintain the 

coherence of the obtained conclusions, to figure out their degree of reliability and the time domain for which 
these are true. These last aspects stand as possible further directions of development at a basic logic level. The 

purpose of this paper is to characterize an extended fuzzy logic system with temporal attributes, attained by 
incorporating the basic elements of a first-degree fuzzy logic and certain elements of temporal logic.  
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1   Introduction 
I presented, throughout Section 2, the formalization 
and logical justification of the reasoning specific to a 

Real-time Expert system based on Fuzzy Knowledge 
(version 2), called REFK2. I also highlighted, as 
aspects of reasoning about time, the attachment of 

certain temporal descriptors to the fuzzy statements, 
according to the interval-based (temporal) logic. 

There are three features of any formalization which 
are actually used to create the inferential subsystem 
within the REFK2 system: i) defining and reducing  

reality (the problem domain) to a linguistic model 
(the management model); ii) the possibility to 

represent the same reality in various aspects, 
according to the position from which one may look 
at this reality (the model is not unique, since it 

always depends on the intended purpose and on the 
type of representation and processing of knowledge); 

iii) abandoning the external world in order to carry 
out deductions, once a formalization of it has taken 
place (the inferential chains are based on the 

management model and on the evidence knowledge). 
After the presentation of syntax and semantics 

elements of the extended first-degree fuzzy logic 
with modal temporal operators, the concepts of rules 
of inference, demonstration for a fuzzy formula as 

well as elements of approximate reasoning theory (as 
an exploitation methodology of imprecise knowledge 

with respect to the states of the expert management 
system, described as multidimensional possibility 

distributions). I have also analyzed the features of 
the possibility reasoning and of fuzzy temporal 

reasoning in order to deepen the inferential 
properties of the REFK2 system (Section 3). The 
conclusions of the paper appear in Section 4.  

 
 

2   Approximate Reasoning Modeling 
The approximate reasoning refers to creating new 
rules of inference and translation. It is a 

mathematical instrument used for modeling the 
human reasoning based on imprecise knowledge. 
The theory suggested by Zadeh is based on intuitive 

rules and leads to operations with fuzzy relations [1, 
6, 5], obtaining thus very useful applications. R. Lee, 

C. Chang and Zadeh went back to the concept of 
fuzzy set in the logic domain. This perspective has 
the advantage of demonstrating that the fuzzy logic 

is a generalization of bivalent logic, replacing the 
discrete feature of the latter with a continuous one. 

     If in the case of bivalent logic there are used 
methods that clear up every possibility of evaluation 
according to the interpretation function, when we 

refer to fuzzy logic this are no longer possible. 
      The formalism of the first-degree fuzzy logic 

represents the mathematical basis for the general 
theory of approximate reasoning [7]. A special 
feature of the human thinking is the effective use of 

natural language even within the process of logic 
reasoning. According to this observation, we can 

conclude that the mathematical model of the way in 
which man thinks (acts) in a management position 

and at a certain level of synthesizing decisions, could 
be based on the fuzzy logic [11, 4], combined with 
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modal temporal features. I will tackle next the 
formalism of first-degree fuzzy logic, highlighting 

the structure of truth values, the extended syntax and 
the semantics of this formal logic system. I will 

underline in this way the connections between fuzzy 
logic and approximate reasoning, which is further 
analysed through the possibility reasoning, which is 

considered useful by the inference engine of the 
expert management system SECOMBCF [3]. 

 
 

2.1 The Syntax of the First-Degree Fuzzy 

Logic 
The structure of truth values is a residual lattice 

written  L = (L, ∨, ∧, ⊗, →, 0, 1) where the 0 and 1 
values are the smallest respectively the biggest 

elements, ∨ and ∧ are the supremum, respectively 

infimum operators, ⊗ is the isotone product operator 

for both variables, (L,⊗,1) is a commutative monoid, 

and → is the residuation operator. Furthermore, a ⊗ 

b < c only if a < b → c (∀) a,b,c ∈L. For L = [0,1] 
the logical connectives are ∨ = max, ∧= min, a⊗b = 

0∨ (a+b-1) şi a → b = 1 ∧ (1-a+b). If we consider, 

for instance, a⊗b=min(a,b), then the only 
corresponding residuation operator is the Gödel 
implication operator.  

     The syntax of the basic language of the extended 
first-degree fuzzy logic with modal temporal 

operators consists of: (x,y,...) variables and (c,d,r,...) 
constants seen as elements that describe the set of 
states of an expert management system XSEC 

=XSE∪X, (f, g,...) functional symbols of n arity, a set 

of symbols for the truth values {a: a ∈L}, predicate 

symbols of n arity, a binary connective ⇒, a {oi: 

i∈J} set of connectives of m arity, a symbol for the 

(∀) quantifier, the o modal temporal operators (the 

following moment in time),  (for all present or 

following moments in time), ◊ (for a present or 

following moment in time) and punctuation marks.  
The terms are classically introduced [9]. The 

formulas are defined as follows: i) an a symbol for a 

(a∈L) truth value is an atomic formula; ii) if t1,...,tn 
are terms and p a predicate symbol of n arity, then 

p(t1,...,tn) is an atomic formula; iii) if A, B, A1,...,Am 
are formulas and o1 is a connective of m arity, then A 

⇒ B, o1(A1,...,Am), (∀x)A are formulas. The A 

formula is an abbreviation for A ⇒ 0. There are 

similarly defined the (∨) disjunction, the (∧) 

conjunction, the (⇔) equivalence, A&B, (∃x) A, Ak 

= (A & A & ... & A) /k times; iv) The xSE ∈ XSE, x∈ X 

variables are formulas, and if g is a formula, then οg, 

g, ◊g are formulas, too; v) Any application of the 

above-mentioned rules for a certain number of times, 

determines a formula. Given a J1 language of the 
extended first-degree fuzzy logic with modal 

temporal operators, the set of all terms will be noted 
MJ1, and the set of all formulas will be noted FJ1. If t 

is a term and A is a formula, then Ax[t] is the 
formula obtained by substituting of the t term 
whenever the x variable appears freely in A. gs = 

(x1∨ x2 ∨…∨xn) and g0=(x01∨x02∨…∨x0n) are given 

fuzzy formulas. The g0  → ◊gs, g0 → ◊gs, g0 →◊gs 
relations are formulas too, and they allow expressing 

certain qualitative management conditions.  
 

 

2.2 The Semantics of the First-Degree 

Fuzzy Logic 
The semantics of the first-degree fuzzy logic is 
defined as follows. A structure of the language of the 

fuzzy logic J1, is characterised by D = (D, pD, ..., fD, 

..., u, v,...) where D is a set, pD  D
n are relations of n 

arity assigned to each p n-ar predicate symbol and, fD  

are n-are functions in D assigned to each functional 

symbol of n arity, whereas u,v,... ∈D are elements 

assigned to each u,v,... constant of the J1 language. 

Take D  a structure for the J1 basic language. The 

interpretation function of the formulas in D  is a  D
~

: 

FJ1→L function, which assigns a truth value for any 

formula from FJ1, as it follows: i) D
~

 (a) = a, a∈L; ii) 
Take t1,...,tn  terms without variables and p an n-ar 

predicate symbol. Then D
~

 (p(t1,...,tn))=pD( D
~

(t1),..., 

D
~

(tn)), where D
~

(ti)∈D is an interpretation of the 

ti∈MJ1, i=1,...,n term; iii) D
~

(A⇒B) = D
~

(A) → D
~

(B), 

highlights the fact that A and B are closed formulas; 

iv) D
~

(o1 (A1, ..., An)) = o1( D
~

(A1), ..., D
~

 (An)); v) 

D
~

((x) A(x)) = ∧d∈D D
~

(Ax[d]), where d is the name 

of the d∈D element; vi) D
~

(A(x1,...,xn)) = ∧d1,...,dn D
~

 

(Ax1,...,xn [d1,...,dn]). Take Y 
~
⊂  FJ1 a fuzzy set of 

formulas. The fuzzy set of semantic consequences of 

the Y fuzzy set (where Y(B) ∈ L represents the truth 

degree of B in Y) is: (CsemY)A = ∧{ D
~

(A): D  is a 

structure for J1 and (for each A∈FJ1), (Y(B)≤ 

D
~

(B))}. 
     If (CsemY)A=1, then for any fuzzy set of Y 

formulas the following relation occurs╞A and A is a 

tautology, and  Csem is the closing operator in L. 
 
 

Lemma 1. A) ╞ A⇒B only if D
~

(A) ≤ D
~

(B); b) ╞ 

A⇔B only if D
~

(A) = D
~

(B), for any D structure. 

This result is used in the derivation of tautologies. It 
is allowed the introduction of a set of fuzzy axioms 

to support the derivation of new formulas.  
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     A logical inference is a B1,...,Bm sequence of 
formulas, each of them being either a logical and 

special axiom, or a formula derived from other 
formulas, using a rule of inference. The rules of 

logical inference can be schematically written under 
the form A1,...,An / B where A1,...,An are known 

formulas, and B is a derived fact (A1,...,An, B∈FJ1). 

The rules of inference preserve the truth values after 
the inferential process.  

 
 

3   The Analysis of the Inferential 

Process  
The theory of approximate reasoning, as a 
methodology of exploitation of imprecise knowledge 
with respect to the state of the expert management 

system (noted with x
SEC∈XSEC and represented as 

distributions of possibility), allows that, given certain 

logical inferences, strict characterizations of the 
values of linguistic variables to be obtained from the 
structure of the x

SEC state, compliant to the 

management purpose. The XSEC set can be defined as 

a Cartesian product Xb 
x Xint 

x X, in which xb =[ b
1x  

b
2x  ... b

k1
x ]t ∈Xb. For instance, the b

1x  component 

marks, through its values, possible command events 

for the process, b
ix ∈U(i )  , i=2,...,k1 where U(i)  are 

the universes of discourse attached to the linguistic 

variables X(i) (chosen in order to characterise the 

x
SE∈Xb

xXint state), Xint represents the set of internal 
states of the engine of inference, and X refers to the 

set of the states of the process.  
 

Types of Knowledge Specific to a Real-Time 

Expert Fuzzy System 

Creating certain efficient reasoning algorithms, 

within expert management systems, demands for a 
corresponding analysis of the type and signification 

of knowledge from the structure of the involved 
models. The elements presented in the next section 
of the paper refer mostly to the logical aspects 

regarding fuzzy inference, without paying too much 
attention to the semantics of the fuzzy rules.  From 

this point of view, the implication and the multi-
evaluated extensions can correctly express the 

problem of the semantics of the fuzzy rules, hardly 
investigated in literature. There are put forth three 
types of fuzzy rules „if..., then...” according to the 

[2,4] paper and these will be further presented in this 
paper: i) Rules to qualify certainty. These rules are 

expressed like “the more u∈A, the more sure v∈B”, 

which are translated by the relation (∀) u, µA(u) ≤ gt 

(B), where gt (B) evaluates the degree of reliability of 

the statement v∈B when x=u. The gt function can be 
any occurrence of the kind necessity, possibility, and 

probability; ii) Gradual rules (or rules to qualify 

truth) expressed by: “the more u∈A, the more v = 

f(u)∈ B”, i.e. there is a f : Supp(A) → Supp(B) 

function  so as f(A) ⊆ B. This condition can be 

written down again as (∀)u∈A, µA(u) ≤ µB(f(u)), a 
relation as a definition of the fuzzy function in the 

paper [8]. This last relation can be relaxed by 
replacing the f function with the R fuzzy relation, 

and thus resulting the inequality: (∀)u,v, T(µA(u), 

µR(u,v)) ≤ µB (v),  where T is a triangular norm. We 
can create this type of statements of the kind “the 

more u∈A and the more u is in relation with v, the 

more v∈B”. In this situation, the degree of truth of 
the antecedent restricts the degree of truth of the 

consequent;  iii) Rules to qualify possibility 

expressed by: “the more u ∈ A the more possible 

v∈B”, which represents a partial description of the R 

relation between u and v. In this case, the inclusion 

AxB ⊆R takes place, and this further implies that 

µR(u,v) ≥ min(µA(u),µB(v)). This type of rules is 

used in the fuzzy control process.  
     The interpretation of the semantics of fuzzy rules 
is important, since it allows the selection of certain 

φ - operators to match with the significance of the 
rule. In the case of gradual rules, Yager’s principle 

of minimum specificity is satisfying in order to 
obtain the distributions of possibility implied by 
these rules. For instance, the R relation from the 

gradual rules definition is a relational fuzzy equation 

with unknown µR [5]. Applying the minimum 
specificity principle leads us to the definition of the 

distribution of possibility πx|y(u,v), which expresses 
the semantics of the rule as a maximum solution in 

the µA(u) ≤ µB (f(u)) relation, i.e. πx|y(u,v) = sup{α | 
T(µA(u,α) ≤ µB(v), (∀) u,v}. This result offers to the 
R – implications semantics of representation of 

gradual rules. The minimum specificity principle is 
not sufficient in order to solve the above-mentioned 
inequality, especially when B is fuzzy. This last 

problem demands the use of a qualification of α-
certainty applied to B. The above-mentioned aspects 

entail possible domains of application of the various 
types of fuzzy rules, compared to their semantics for 
different kinds of reasoning: uncertain, interpolative, 

by analogy. In the case of the expert management 
system REFK2 prototype, the inferential subsystem 

based on fuzzy logic uses the scheme of inference 
generalised modus ponens. The knowledge-based 
reasoning represented as certain distributions of 

possibility, uses the notion of similarity defined as 
complement of distance. 
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     If ρ∈PSB(XSEC) qualifies the given set of 
knowledge about all the states of the expert 

management system and ε∈PSB(XSEC) is the current 

observation on the x
SEC state, then ρ can become 

more specific compared to ε by their conjunctive 

combination, i.e. ρε =def min(ρ,ε). If ρ and ε are 

compatible, then ρε∈PSB(XSEC) and for (∀) xSEC ∈ 

XSEC, ρε(x
SEC)≤ ρ(xSEC), thus ρε at least as specific as 

ρ and at least as informative as it concerning the 
imprecise characterization of xSEC. Tom make things 
simpler, we create a specialization of knowledge 

offered a priori by the expert about the state of the 
x

SEC system, with the help of the factual knowledge 

acquired. We focus the ρ knowledge referring to the 

x
SEC state with the help of ε. We can, thus, model the 

possibilistic expert systems and the corresponding 

reasoning, which allow us to characterize a 

x
SEC∈XSEC state, based on certain imprecise 

information with respect to the xSEC state, i.e. with 

the help of a E ⊆XSEC subset, for which xSEC∈E. We 
consider that there can be components of the xSEC 
state, defined as predicates, with firm truth values. In 

this case, too it is taken into account the condition 
that the truth values belong to the [0,1] interval and, 

thus, we can work unitarily only with the [0,1] 
interval. The expert management system 
administrates the knowledge specific to a state of the 

x
SEC ∈ XSEC closed knot system, characterized at the 

k moment in time by SEC
kx = (xk, 

SE
kx ). A 

specialization of the expert management system 

presented entails the absorption of a imprecise 
knowledge-based expert system in the management 
structure, just as in the case of the REFK2 system. 

The significance of this system derives from the fact 
that the imprecision will be represented by 

possibility distributions. 
     The class of the possibilistic expert systems can 
entail the temporal reasoning also. In this situation, 

the rules background is not consisted of R jM

i  ⊆ UMj x 

VLj, j=1,...,m, Mj∈M0 relations anymore, but of 
jM

iρ ∈PSB(UMj x VLj) multidimensional possibility 

distributions instead, to which we attach temporal 

descriptors like DTα, which can be punctual (α=p) or 

interval(α=i). These temporal descriptors can be 

modeled with the help of certain distributions of 
possibility, so as to attach the fuzzy statements of 

temporal features [10]. The attachment of the 
temporal fuzzy descriptors is specific to artificial 
intelligence techniques, but from the point of view of 

automation, this idea is equal to the fuzzyfication of 
the moments of time within the discrete events 

systems theory, a class of systems which the expert 

management system developed in this paper is part 
of. So as to elaborate an actual model for an expert 

system, in which to make possible the development 
of the temporal possibilistic inference, we will refer 

to the structure of the expert system based on the 
fuzzy inference. The temporal descriptors are 
operators that characterize the temporal properties of 

a P fuzzy statement and these can be:  

i) punctual DTp P
t

t
u

T

,
( )

,
µ

∫








 ; ii) of interval type 

DTi P
t

t

t

t
u

T T

,
( )

,
( )

,
µ µ1 2∫ ∫









 , in which P is a fuzzy 

sentence, µ( )t

t
T

∫  is a T-number that describes the 

point on the axis of time at which statement P takes 

place, and µ represents the membership function of 
the moment of time associated to P. Similarly, the T-

numbers µ1( )t

t
T

∫ , µ2 ( )t

t
T

∫ ,  that represent the moments 

of emergence and extinction of the event described 

by the P statement are also interpreted. The available 
information about a certain moment in time will be 

represented within the model by a possibility 
distribution. In this way we can define the DTp 
operator as it follows:  
 

Definition 1. The punctual time descriptor is 

characterized by DTp : F(U(i)) x F(T) →[0,1]2, so as 

DTp(X
(i),t) = (α1, α2), with α1 ∈ [0,1], α2 ∈[0,1], α1  

representing the value of the possibility degree πi 
attached to the Pi (Pi = “X(i)

  is Fi”, X(i) statement  is 

the linguistic variable defined on the U(i) universe, 
while Fi is the value of the X(i) linguistic variable 

defined on F(U(i))); α2 represents the value of the 

membership degree at the Ti fuzzy moment of time, 

for which the Pi statement is true, µTi(t)∈F(T), 

i=1,...,n. 
 

     For instance, take Pi =“The temperature of the 
cauldron increases for approximately three minutes”. 

If we use the DTp operator, we can represent the Pi 

statement as it follows: DTp P
t

t
ui

T

,
( )

,
µ1∫









 , for which 

µTi(t) can be a trapezoidal distribution of possibility 

like: (g1, d1, ϕ1, δ1), with g1 = d1 = 3, ϕ1 = 1, δ1 = 1. 
 

     The DTi time descriptor can derive from the DTp 

descriptor, by associating a Pi event, two moments of 
time, Ta and Td (the moment of emergence and, 

respectively, the moment of extinction of the Pi 
event). The fuzzy time interval can be represented 
with the help of the Ta and Td instances. 
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Definition 2. If there is a pair of fuzzy instances Ta 

and Td from F(T), the time interval that appears after 

Ta  and before Td can be defined as a fuzzy set 

T(Ta,Td), so that DTi : F(U(i))xF(T)→[0,1]2, in which 

U(i) is the universe of discourse associated to the X(i) 
linguistic variable from the structure of Pi. For 

(∀)t∈T(Ta,Td)  the following relation occurs: 
 

µT(Ta,Td)(t)=ρ * µT[Ta,Td](t)+(1 - ρ)  * µ T]Ta,Td[(t) =  

=ρ *
'

sup
sts ≤≤
min(µTa(s), µTd(s'))+(1-ρ) 

*
'

inf
sts ≤≤
min(1-µTa(s'),1- µTd(s)), ρ∈[0,1] (1) 

 

     In the above-mentioned relation, T[Ta,Td] 
indicates the fuzzy set from the axis of time which is 
possible after Ta and before Td. Similarly, the 

T]Ta,Td[ interval indicates the fuzzy set of points 
from T which are necessarily after Ta and before Tb. 

T(Ta,Td) represents the average between T[Ta,Td] and 
T]Ta,Td[. The DT temporal descriptor can highlight 
three types of temporal relations [10]:  

i) Absolute or real-time description. The  “The 
temperature increases from around 5 o’clock until 

around 6 o’clock” statement is represented by: DTi 

(P,(g1,d1,ϕ1,δ1),(g2,d2,ϕ2,δ2), u), in which P is the 
fuzzy sentence “The temperature increases”, 

(g1,d1,ϕ1,δ1) and (g2,d2, ϕ2,δ2) are T-number with the 
property that g1= d1=5, g2=d2=6, u=1hour, 

ϕ1=ϕ2=0.25h, δ1 =δ2 = 0.25h;  

ii) Relative description. This relation signifies the 
fact that time can be determined by adding a fuzzy 

time interval at a temporal point of reference. The 

DT
















min,

0

1
,P1

 

representation and DT(P2,(g1,d1,ϕ1, 

δ1),min) shows that the fuzzy statement P1 took place 
approximately g1 minutes earlier than P2 (g1 = g2);  

iii) Before/After Description. This means that the 

relation between the time mentioned by the temporal 
descriptor and its temporal point of reference can be 

illustrated by the before and after relations. For 

instance, the DT
















min,

0

1
,P1

 and DT
















>

min,
0t

1
,P2

 
representations, show the fact that the emergence of 
the fuzzy statement P1 took place before the fuzzy 

statement P2. In this way, a fuzzy rule like Ri, 
i=1,...,n, can be explained as it follows: if TD1 (P1) 

and TD2 (P2) and ... and TDk (Pk) then TDj (Pj ) 
(|Lj|=1) with a possible coefficient of reliability 

Wj∈[0,1]. The corresponding index subset has the k0 

cardinal. We can take into account a TD'1(P1),..., 
TD'k0(Pk0) set of fact also, and to each fact there is 

attached a αj, j = 1,...,k0 (k0=|Mk|) coefficient of 

reliability.  
 

     Due to the change of values of the variables in a 
dynamic way within the technological field, the 

evolution of the x(i) (t) specimens can engender 
dynamic corresponding symptoms in the fact base. 

Moreover, the basic rules describe the dependences 
between the numerical values of the symptoms by 

means of fuzzy sentences Pj, j∈Mk, Mk∈M0, and the 

temporal relations between these symptoms by using 
the DTj associated temporal descriptors. In the case 

of the REFK2 system, this kind of knowledge does 
not interfere, since the temporal aspect appears only 
as real time, and not as the reasoning concerning 

time also. In fact, this last aspect of time is adequate 
in the artificial intelligence systems with applications 

in diagnosis. An important feature of time in expert 
systems in order to manage processes is represented 
by their real-time behavior, capable to guarantee a 

satisfying response time. By introducing certain real-
time restrictions inside an expert system, we provide 

the system with features like: i) reasoning is 
evolutionary and non-monotonous because of the 
dynamic aspect of the application; ii) unexpected 

events can change the state of the expert 
management system. There is a series of additional 

problems if we take into account the temporal 
characteristics, associated both to the model and to 
the evidence system that reflect the state of the 

process at a certain moment in time. These problems 
can be summarized as it follows: i) The filtering of a 

temporal fuzzy rule demands that, beside the 
numerical filtering, to adequately solve the temporal 

filtering also, i.e. the temporal attributes attached to 
the motives within the structure of the fuzzy 

sentences Ri, i=1,...,n, must filter the temporal 

attributes formed by the corresponding dynamic 

symptoms from the fact base in a fuzzy sense. It is 
also necessary to determine a method of numerical 

temporal filtration, so as to evaluate the degree of 

filtration between R and Xb; ii) the way in which the 

conclusion can be inferred (i.e. the result of the 

inference and the corresponding degree of reliability) 
and which is the domain of time associated to it. The 
model associated to the filtering stage from the 

structure of a temporal fuzzy reasoning system based 
on intervals, must satisfy a series of conditions 

presented in above example. From the filtering point 
of view, we can obtain various situations, by 
choosing a corresponding window of filtration in the 

U(i) x T bi-dimensional space. Figure 1 presents a 
similar type of filtration. The filtering window can 

be a point or a rectangle, depending on how the 
temporal attribute attached to the Pi sentence is: 
punctual or interval. In the fact base, the evolution of 

values afferent to the X(1) and X(2)variables, generates 
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if tr is the emergence time of the event described by Pr  

if tr is the extinction time of the event 

represents the temporal filtering threshold) 

certain manifestations or specific situations, which 
are determined for the xb state of the expert system.  

Meanwhile, the rules in which the X(1) and X(2) 

variables appear (implicitly attached to the P1 and P2 

sentences), highlights the presence of some temporal 
descriptors that define the temporal relation between 
P1 and P2. 
 

 
Figure 1.  The bi-dimensional filtering space 

 

     In this way, we can give top priority to numerical 

filtering by choosing x1(t3) and x2(t6) to be filtered 
with P1 and, respectively P2. We obtain a good result 
of the numerical filtering, but the temporal filtering 

offers weak results instead. We can give priority to 

the temporal filtering as compared to the numerical 

filtering. The results may favorably change for the 
temporal filtering compared to the first case (for 
example, we choose x1(t3) and x2(t8) or x1(t1) and 

x2(t6) in order to filter with P1, respectively P2). It is 
obvious the fact that there are other choice 

possibilities also in the U(i) x T space of the window 
filtering position. The unsolved problems from a 
practical point of view represent the means by which 

the width of the filtering windows is determined (F1, 
F2), their best possible positioning within the U(i)xT 

(i=1,2) space, the summary inside the filtering 
windows of the evolutions afferent to the X(1) and 

X(2) variables   in values that can be further undergo 
a numerical filtering with P1 and P2, by assessing the 
consistency of the filtering phase on the whole. The 

advanced stages in order to obtain the reasoning 
strategy are: determining the time domain, temporal 

and numerical filtering. Once these properties have 
been mentioned, we may continue the development 
of the advanced model for the class of possibilistic 

expert systems, as it follows:  
i) Determining the time domain. We assume that the 

Pi fuzzy sentence that describes the X(i) linguistic 
variable takes place in an interval specified through 

its temporal descriptor. We have to determine the 

[ i
e

i
b jj

tt , ] time domain of X(i) corresponding to the 

temporal characteristics of Pi, i.e. the width of the 
filtering window and its position in the U(i)xT space, 

giving top priority to temporal filtering. There are 
various methods to determine the time domain. We 

present the method based on relative time description 
only. We consider that Pr is the fuzzy sentence that 
takes place at the reference moment afferent to Pi, 

and X(r) is the linguistic variable from the structure of 
Pr. If the temporal reference point is described by a 

before/after number, then time  tr corresponding to 
X(r) (for the temporal reference point) can be 
calculated as it follows: 

{ }
{ }
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     The time domain [ i
e

i
b jj

tt , ] corresponding to Pi can 

be obtained by adding fuzzy intervals µ j

T

t

T

( )
∫  to the 

value of tr. 

ii) Temporal filtering is realized by comparing the 
relation between the time domains of the variables 
determined in i) with the time domains specified by 

the corresponding time descriptors. A reliability 
coefficient is defined inside the temporal filtering 

process;  
iii) Numerical filtering takes place only if a certain 

event e0∈E0 has emerged, or only in the presence of 

some er∈Er events. We consider that any of these 
events is described by a Pi event. Due to temporal 

filtering we know if the Pi event emerged, is about to 

emerge etc., in other words, we know its degree of 

emergence. Even if the time domain [ i
e

i
b jj

tt , ] 

corresponding to some specimen values was 

determined, the problem of synthesizing a single 
value from the xi(t) specimens set situated in inside 

the time domain from i) appears, which must 
eventually filter with the Pi fuzzy sentence. This 
synthesis takes place closely related to the semantics 

of the Pi sentence and compared to the used synthesis 
method. Typical to these methods is the estimation 

of the [ i
f

i
s tt

11
, ] and [ i

f
i
s tt

22
, ] time domains, that 

signify the time intervals in which the values of the 

X(i) variable can be synthesized in a single value. The 
possible maximum time of the emergence of the Pi 
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event will also interfere, and also the possibility 
distribution attached to the Pi event.  

 
 

4   Conclusion 
In the present paper I analyzed the formal aspects of 
the reasoning corresponding to an expert 

management system of the technological processes 
that includes imprecise knowledge and time 
variables. With this aim, I extended a first-degree 

logic fuzzy system with temporal modal operators 
that allow the justification of the synthesis of certain 

linguistic process management models. The process 
of modeling the approximate reasoning assumes the 
definition of certain fuzzy sets of evaluated closed 

formulas, which are actually fuzzy subsets of certain 
sets of special axioms. The description of some 

models that include also attributes like temporal 
descriptors, we highlight the fact that the 
specification and synthesis of fuzzy management 

models is marked, from a logical point of view first 
of all, by the presence of the possible and the 

necessary. The temporal precedence relations can 
appear especially in diagnosis applications, where 

the introduction of time is made from the exterior 
and these types of applications allow symptoms 
classification. The formulas from the extended first-

degree fuzzy logic domain with temporal modal 
operators can be used in order to model various 

management strategies. For instance, take gs = (x1∨ 

x2 ∨…∨xn), where xi∈Xs⊆X and take g0=(x01∨ x02 ∨ 

… ∨ x0n) in which x0i  are initial states for the state 

variables of the (1≤ i ≤ n) process. Take Xb
 ⊂ XSE 

and gb= (xb1 ∨xb2∨…∨ xbn) in which xbi∈Xb. The g0 

→ ◊gs formula can be seen as an admission 

condition. The formulas: i) g0 → ◊gs (if the process 

starts from one of its initial states, then, after a 
certain number of moments of time its state will 

always be found in Xs); ii) g0 → ◊gs (if the process 

starts from one of its initial states, then it will be in 

Xs for an infinity of times);  iii) gb → gs (if the 
inputs of the process are always in a Xb set, then the 

states of the process will always remain in Xs set), 
characterizes properties which can be thought of as 

the equal of the stability demands.  The temporal 
logic is a particular type of modal logic and provides 
a formal framework which allows the description of 

the way in which certain systemic properties can be 
specified, and it is useful in a more profound 

understanding of the state of the systems.  It is very 
important to know these facts when we refer to the 
expert management systems of technological 

processes, in order to analyze the time evolution of 

the states and events sequences, to implement and 
verify the system itself. We can more adequately 

specify the behavior of the management system 
within the temporal logic formalism, since this kind 

of specifications have a greater expressivity in 
comparison to the classical logic specifications. The 
temporal logic properties cover many of the dynamic 

behavior aspects of the knowledge-based 
management systems. That is why we consider that 

the logic formalism presented above is important for 
the creation of the REFK2 system, since it is an 
attempt of including both fuzzy and temporal 

attributes.  
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