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Abstract:This paper presents a quick review of reaction-diffusion systems that self-organize spatio-temporal pat-
terns in chemical and biological systems. A pair of reaction-diffusion equations having activator and inhibitor vari-
ables is a typical model of equations describing their pattern formation processes. Some of the reaction-diffusion
systems can realize several functions of image processing such as edge detection and segmentation required for
pattern recognition processes. Thus, reaction-diffusion systems which have been studied as pattern formation pro-
cesses are also interesting topics as pattern recognition processes. The authors have recently done the research of
realizing functions of edge detection, segmentation and stereo disparity detection by utilizing reaction-diffusion
equations with large inhibitory diffusion. This paper additionally presents a brief introduction of our recent re-
search topic, in particular, an edge detection algorithm with a discretely spaced system of the FitzHugh-Nagumo
reaction-diffusion equations. Experimental results obtained for artificial and real images show the comparison be-
tween a previous standard algorithm and the reaction-diffusion algorithm designed for edge detection.

Key–Words:Reaction-diffusion, pattern formation, pattern recognition, long-range inhibition, image processing,
computer vision, edge detection, non-linear reaction

1 Introduction

Reaction-diffusion systems self-organize variety of
spatio-temporal patterns such as propagating circular,
spiral and periodic waves. Those spatio-temporal pat-
terns are observed in the Belousov-Zhabotinsky reac-
tion system, a kind of a chemical reaction system.
Particular points on the two-dimensional system of
the chemical reaction exhibit non-linear reaction and
diffusion processes on chemical species couple non-
linear oscillators spatially. The non-linear reaction
coupled with diffusion processes organizes the spatio-
temporal patterns. Pattern formation processes are
also found in biological systems [1].

A pair of reaction-diffusion equations having ac-

tivator and inhibitor variables is a typical model in
describing the pattern formation processes. Keener
and Tyson proposed a pair of time-evolving partial
differential equations having diffusion terms coupled
with non-linear reaction terms [2]. By computing
the reaction-diffusion equations numerically, we can
obtain such the spatio-temporal patterns. Reaction-
diffusion equations are well established as a mathe-
matical model of a reaction-diffusion system.

Stationary pattern formation processes organized
with rapid inhibitory diffusion are interesting phe-
nomena. Turing proposed a scenario that organizes a
stationary periodic pattern in a reaction-diffusion sys-
tem, in which the inhibitor variable rapidly diffuses
more than the activator variable does [3]. Although
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a diffusion process generally brings uniform distri-
bution of a substance, the scenario presents a non-
uniform and periodic pattern as a stationary state in a
reaction-diffusion system. Gierer and Meinhardt mo-
tivated by the Turing’s scenario proposed more realis-
tic versions of reaction-diffusion equations with rapid
inhibitory diffusion [4]. They additionally showed
that the equations can simulate the pattern formation
process observed in Hydra. The model of equations
also successfully realized regeneration of the head of
Hydra and grafting a head section to another terminal
section of its body in computer simulation. Recent ev-
idences found in biological systems support the Tur-
ing’s scenario [5]; biologists have accepted the realis-
tic version as a model of pattern formation processes
observed in biological systems [6]. The key point of
the scenario is the rapid inhibitory diffusion.

If turning our attention to pattern recognition pro-
cesses in biological vision systems, we can find sev-
eral interesting phenomena and their models. Lat-
eral eyes of Limulus, which is a kind of club, ex-
hibit the Mach bands effect, which is also found in
the human visual system. Previous physiological ex-
periments show that the Mach bands effect is due to
the long-range inhibition in a lateral inhibition mech-
anism working on outputs of discretely spaced omma-
tidia, which are individual visual receptor units [7]. A
model taking account of the lateral inhibition mecha-
nism completely simulated the Mach bands effect in
the lateral eyes of Limulus [8].

While many researchers were interested in
reaction-diffusion systems, Kuhnert et al. reported
that a photo-sensitive Belousov-Zhabotinsky reaction
system can enhance edges and extract segments on
intensity distribution [9]. More recently, Sakurai
et al. proposed a method of controlling chemical
wave propagation by utilizing laser light illumination
and succeeded in designing a path of the propaga-
tion [10]. These previous results have completely
linked reaction-diffusion systems with image process-
ing and computer vision research. Adamatzky et
al. named a class of computer algorithms utilizing
reaction-diffusion systems ”reaction-diffusion algo-
rithm” [11].

From an engineering point of view, the Chua’s
circuit is an interesting topic for reaction-diffusion
systems [12]. It generates a non-linear oscillation
and a resistively coupled Chua’s circuit system re-
alizes a reaction-diffusion system. The Chua’s cir-
cuit in two-dimensional version self-organizes spatio-
temporal patterns of circular and spiral waves and the
Turing pattern [13]. Thus, a reaction-diffusion system
can also be implemented on a circuit system.

The authors and their co-workers have proposed
several reaction-diffusion algorithms for image pro-

cessing and computer vision research. A discretely
spaced system of the FitzHugh-Nagumo reaction-
diffusion equations detects edges and segments from
an image intensity distribution provided as an initial
condition of the equations [14, 15]. Kurata et al. an-
alyzed the system and obtained a condition for stable
results of edge detection and segmentation [16]. No-
mura et al. proposed an algorithm of detecting a stereo
disparity map from a pair of stereo images. The stereo
algorithm utilizes multiple reaction-diffusion systems
exclusively linked [17]. We have imposed the rapid
inhibitory diffusion on these reaction-diffusion algo-
rithms.

This paper firstly describes a quick review of
reaction-diffusion systems and then describes a sim-
ple idea for reaction-diffusion algorithms. In addition,
this paper presents a recently proposed edge detection
algorithm and its experimental results in comparison
to a standard algorithm.

2 Reaction-Diffusion System
A reaction-diffusion system is generally described
with a set of time-evolving partial differential equa-
tions. Each equation consists of a diffusion equation
coupled with a reaction term; the reaction term usually
describes a non-linear phenomenon observed in na-
ture. Most typical form of a reaction-diffusion system
is described with a pair of reaction-diffusion equations
having an activator variableu and an inhibitor variable
v, as follows:

∂tu = Du∇
2u+ f(u, v), (1)

∂tv = Dv∇
2v + g(u, v), (2)

in which, f(u, v) andg(u, v) are reaction terms; the
variablesu and v are defined in one-dimensional
spacex or two-dimensional space(x, y) and in time
t; ∂t = ∂/∂t and∇2 = ∂2/∂x2 + ∂2/∂y2; Du and
Dv are diffusion coefficients.

The Belousov-Zhabotinsky reaction exhibits non-
linear reaction of chemical species; the Oregona-
tor model describes the non-linear reaction. Since
the chemical species induce chemical reaction and
simultaneously diffuse, the chemical reaction sys-
tem on two-dimensional space self-organizes spatio-
temporal patterns of such as propagating circular and
spiral waves. Keener and Tyson proposed a model
of reaction-diffusion equations with the Oregonator
model [2].

We can find a wide variety of reaction-diffusion
systems in the fields of physics, chemistry and biol-
ogy [1]. One of the most popular reaction-diffusion
equations is a pair of the FitzHugh-Nagumo reaction-
diffusion equations [18, 19]. The pair qualitatively
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Figure 1: Phase plot of the FitzHugh-Nagumo or-
dinary differential equations: du/dt= f(u, v) and
dv/dt = g(u, v) [see Eqs. (3) and (4) for the reac-
tion termsf(u, v) andg(u, v)]. The points A and C
are stable steady states and B is an unstable steady
state. Depending on the parametersa andb, the sys-
tem of the equations becomes a uni-stable system or a
bi-stable system. An excited state refers to the point
C and its neighboring area and a resting state refers to
the point A and its neighboring area. Under the posi-
tive small constant0<ε≪1, depending on du/dtand
dv/dt, a solution(u, v) traces the trajectory denoted
by arrows as time proceeds.

emulates an active pulse transmission process along
a nerve axon. The equations have activator and in-
hibitor variables, which diffuse and also trace the non-
linearity of the cubic function, as follows:

f(u, v) = [u(u− a)(1− u)− v]/ε, (3)

g(u, v) = u− bv, (4)

in whicha andb are constants andε is a positive small
constant. Figure 1 shows a trajectory of the ordinary
differential equations du/dt= f(u, v) and dv/dt=
g(u, v) with Eqs. (3) and (4). The trajectory depends
on the parameter settings ofa, b andε. A bi-stable
system refers to that having two stable steady states
and a uni-stable system does to that having one stable
steady state.

The important point of the reaction terms of
Eqs. (3) and (4) is that the parametera works as a
threshold value for an initial condition. When an ini-
tial condition of the solution(u, v) is (u, v) = (a +
δ, 0), if δ > 0, the solution(u, v) becomes an excited
state; ifδ < 0, it becomes a resting state (see Fig. 1).
Thus, the system of the ordinary differential equa-
tions du/dt= f(u, v) and dv/dt= g(u, v) has the
function of thresholding for its initial condition. This
brings the basic idea of detecting edges and segments
with thresholding for image intensity distribution. By
performing numerical computation for the FitzHugh-
Nagumo reaction-diffusion equations, we have pro-

(a) (b)

0.0 0.5 1.0-0.2

u

Figure 2: Edge detection result with a discretely
spaced system of the FitzHugh-Nagumo reaction-
diffusion equations [14, 16]. (a) Original image with
524 × 684 (pixels). (b) Distribution ofu(x, y, t =
50). The parameter settings wereDu = 1.0, Dv =
5.0, a = 0.2, b = 1.0, ε = 1.0 × 10−3; a finite dif-
ference in space wasδh = 0.5 and that in time was
δt = 1.0× 10−3.

posed to realize computer algorithms of edge detec-
tion and segmentation from image intensity distribu-
tion given as its initial condition [14].

For a stable stationary solution of edges and seg-
ments, an additional important point is that the sys-
tem is discretely spaced under rapid inhibitory diffu-
sion [16]. Although the earliest work done by Kuhn-
ert et al. show the impressive results of edge detection
and segmentation with a real chemical reaction sys-
tem [9], it does not provide stable results, which are
necessary for a realistic algorithm of image process-
ing. In comparison to that, Kurata et al. have found
that the discretely spaced version of the FitzHugh-
Nagumo reaction-diffusion system under the rapid in-
hibitory diffusion brings stable stationary results of
edges and segments. This important point is similar to
the Turing’s scenario [3, 4] and also to the long-range
inhibition causing the Mach bands effect [8]. These
similarities inspire us to develop reaction-diffusion al-
gorithms. It would be interesting, if reaction-diffusion
systems developed for modeling pattern formation
processes are helpful in modeling visual functions re-
quired for pattern recognition processes and realiz-
ing their algorithms. Figure 2 shows an example of
an edge detection result for a binary image; pulses
or areas being an excited state are edges. We uti-
lized the finite difference method for discretization of
the FitzHugh-Nagumo reaction-diffusion equations of
Eqs. (2) and (2) with Eqs. (3) and (4).

NEW ASPECTS of SIGNAL PROCESSING, COMPUTATIONAL GEOMETRY and ARTIFICIAL VISION

ISSN: 1792-4618 163 ISBN: 978-960-474-217-2



3 Reaction-Diffusion Algorithm De-
signed for Edge Detection

As shown in the previous section, a single pair of
reaction-diffusion equations has a function of detect-
ing edges for binary image. By utilizing two pairs of
reaction-diffusion equations, we show that it becomes
possible to realize an edge detection algorithm appli-
cable to gray level image [15, 20].

Let us consider a one-dimensional distribution
having a step-wise edge. If smoothing the distribu-
tion with a Gaussian filter or a simple diffusion equa-
tion, we can observe that the smoothed and original
distributions intersect at the inflection point of the
step-wise distribution. Thus, if we can divide the
original distribution into a higher level or a lower
level than the smoothed distribution, we can realize
an edge detection algorithm that is applicable to gray
level image. Let us recall that the FitzHugh-Nagumo
reaction-diffusion equations have the constant param-
etera which works as a threshold value for an initial
condition. Thus, we consider the parametera as a dis-
tribution and substitute the smoothed distribution for
the distributiona [15].

A reaction-diffusion system having a distribution
a of a threshold level self-organizes false pulses at
false edge positions as well as true pulses at around
true edge positions. This is because the step-wise edge
and its smoothed distribution intersect at the inflection
point and also converges at inside of a region having
a higher intensity level. Thus, the false edges are or-
ganized inside of the region. We need to eliminate
the false edges from outputs of the reaction-diffusion
equations.

By considering the parametera as a threshold
level distribution and for eliminating false edges, we
presents an edge detection algorithm [20]. The algo-
rithm consists of two pairs of the FitzHugh-Nagumo
reaction-diffusion equations coupled with a simple
diffusion equation, as follows:

∂tu0 = Du∇
2u0 + f(u0, v0, a0) + Θ(∂tu1), (5)

∂tu1 = Du∇
2u0 + f(u1, v1, a1), (6)

∂tvi = Dv∇
2vi + g(ui, vi), (7)

∂tai = Da∇
2ai, (8)

in which the variablesui, vi, ai are also defined in
space and time, andi = 0, 1 is the index number of
the two pairs. The functionΘ(s) givess, if s < 0, and
otherwise 0. The algorithm provides an original im-
age for initial conditions ofui and smoothed images
for initial conditions ofai, in which a1 is smoothed
more thana0.

The termΘ(∂tu1) in Eq. (6) eliminates false
pulses organized inu0. The temporal derivative∂tu1
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Figure 3: Edge detection for a step-wise image in-
tensity distribution with zero-mean Gaussian noise.
(a) Original image with256 × 128 (pixels). (b) Edge
map obtained by the Canny’s algorithm [21] with
σ = 3.50 and threshold levels of 0.70 and 0.90.
(c) Edge map obtained by the reaction-diffusion al-
gorithm. (d) Initial conditions ofu0 = u1,a0 and
a1. (e) Spatial distribution ofu0 obtained att = 1.0.
(f) Spatial distribution ofu1 obtained att = 1.0. (d),
(e) and (f) show spatial distributions at the vertical po-
sitiony/δh = 64. Refer to Section 4 for the parameter
settings of the reaction-diffusion algorithm.

becomes negative, when a solution(u1, v1) moves
from an excited state to a resting state along the so-
lution trajectory shown in Fig. (1). Thus, temporal
changes of the other distributionu1 eliminates the
false pulses locating between the true edge position
and the false pulse inu1, when the distributionu1 goes
back to the resting state from the excited state. After
a finite duration of time, we obtain an edge detection
result by searching pulses fromu0.

Figure 3 shows a simple result of edge detection,
in which an image intensity distributes as a multi-level
step-wise function and has four edges. The Canny’s
edge detection algorithm provides a complete result
of edge detection, as shown in Fig. 3(b). In com-
parison, the reaction-diffusion algorithm consisting of
Eqs. (6)-(8) provides an almost correctly detected re-
sult except for the fourth edge, as shown in Fig. 3(c).
These situations show that the algorithm works in the
simple situation.

4 Experimental Results

This section presents experimental results of edge de-
tection done by the Canny’s algorithm [21] and the

NEW ASPECTS of SIGNAL PROCESSING, COMPUTATIONAL GEOMETRY and ARTIFICIAL VISION

ISSN: 1792-4618 164 ISBN: 978-960-474-217-2



(a) (b)

(c) (d)

Figure 4: Results of edge detection for an artificial
image. (a) Original image with341 × 269 (pixels).
(b) Ground-truth data of an edge map. (c) Edge map
obtained by the Canny’s algorithm [21] withσ = 0.20
and threshold levels of 0.01 and 0.10. (d) Edge map
obtained by the reaction-diffusion algorithm.

reaction-diffusion algorithm. In the reaction-diffusion
algorithm, we fixed its parameter settings atDu =
1.0, Dv = 5.0, Da = 10.0, b = 1.0, ε = 1.0 × 10−3

and the finite differencesδh andδt on space and time
at δh = 0.5 andδt = 1.0× 10−4.

Figure 4 shows the results of edge detection for
an artificial image having three intensity levels. The
Canny’s algorithm almost completely detected edges
contained in the ground-truth data of its edge map and
also did not detect any false edges. In comparison, the
reaction-diffusion algorithm failed to detect edges and
detected false edges in several areas, in particular, in
areas facing three different intensity levels.

Figure 5 shows results of edge detection for a real
image. As shown in Fig. 5(a), the real image con-
tains defocused edges as well as focused edges. Thus,
we tested an algorithm detecting edge positions and
simultaneously evaluating edge strength. The algo-
rithm consists of multiple reaction-diffusion systems,
each of which consists of Eqs. (6)–(8). By providing
images smoothed with different diffusion coefficients
for each of the systems, we tried to evaluate edge
strength [20]. Figure 5(c) shows the obtained edge
strength distribution and Fig. 5(d) shows the strong
edge extracted from the distribution. From these re-
sults, we can confirm that the edge strength evaluation
algorithm utilizing multiple reaction-diffusion system
works. Since we do not have the ground-truth data,
we can not confirm the performance of the algorithm
at this moment. Since defocusing cause weak edges,
the edge strength information may provide additional
information for detecting a depth map [24].

Strong WeakEdge strength:

(b)

(c) (d)

(a)

Figure 5: Results of edge detection for a real im-
age. (a) Original real image provided on the web-
site [22, 23]; a size of the image is461 × 665 (pix-
els). (b) Edges extracted by the Canny’s algorithm
with σ = 1.20 and threshold levels of 0.20 and
0.80. (c) Edge strength distribution obtained by the
reaction-diffusion algorithm. (d) Strong edges ex-
tracted from the result (c).

5 Conclusion

In this paper, we presented a quick review of reaction-
diffusion systems observed in pattern formation pro-
cesses and also presented a basic idea for realizing vi-
sual functions of edge detection and segmentation re-
quired in pattern recognition processes. Furthermore,
we presented an edge detection algorithm applicable
to gray level image. We imposed the rapid inhibitory
diffusion on the algorithms. In addition, by utiliz-
ing multiple reaction-diffusion systems, we tested to
evaluate edge strength as well as edge position for
a real image. These results show that the reaction-
diffusion algorithms work for grey level image and
also evaluate edge strength. However, their perfor-
mance is not satisfactory in comparison to a standard
algorithm of edge detection. Future research work re-
quired for the reaction-diffusion algorithms is the per-
formance improvement and further development of an
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edge strength evaluation algorithm.
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