
Artificial Intelligence Problem Solved with Relational Database

MIRELA-CATRINEL VOICU

Faculty of Economics and Business Administration

West University of Timisoara, Romania

ROMANIA

mirelavoicu@feaa.uvt.ro, http://www.feaa.uvt.ro

Abstract: - In this paper we present an implementation method for eight-puzzle game. In the artificial intelligence

literature, different algorithms are proposed for implementing this game. These methods concern different heuristic

functions.There are being used expert systems, as well as different programming languages or environments (e.g. C,

Pascal, Java, Delphi etc.) for implementation, mentioning that users have to exploit a tree data structure. In our work

we use databases for model a tree.

Key-Words: - eight-puzzle, relational database, programming.

1 Introduction
The 8-puzzle game it’s a 3x3 game, using nine positions,

in which we can move in the free space eight pieces.

From a start state, we want to obtain a path solution to

the goal state. By constructing a search tree, the

computer can examine the possible configurations of the

puzzle systematically, until it reaches the goal state.

Then by following the path from the goal state back to

the start state, the computer can determine the correct

steps to solve the puzzle. A such example is presented in

the Figure 1.

Figure 1: A search tree example for the

8-puzzle problem

The tree comprises an arrangement of nodes,which

contain information. The nodes are linked by arcs (or

edges). Each node in a tree has two, three or four nodes

descending from it down to the bottom. The top node

(the root) is the start state node.The search tree for a

particular problem can grow in size quite rapidly if the

goal state is not found quickly. In order to reduce the

amount of searching, which the computer must do, the

tree can be constructed in a depth-first manner rather

than a breadth-first manner. In this way a single branch

of the tree is considered first before examining other

branches. The advantage of this approach is that more

promising branches can be considered first. A* is

perhaps the most famous heuristic off-line searching

algorithm of all-time. Several real-time algorithms have

been based off of A*, including the Learning Real-Time

A* and Real-time A* algorithms. The basic concept of

the A* algorithm is a best-first search—the most

probable paths are explored first, searching outward

from the starting node until it reaches the goal node. The

best path is determined by choosing the option with the

lowest cost, where cost is measured by the function: f(n)

= g(n) + h'(n). The function g(n) is the actual cost of the

path so far, while h'(n) is a heuristic function of the

estimated cost of the path from the current state to the

final goal. In our implementation we can use any

heuristic function, for this reason we remember not such

heuristic functions.

2 Algorithm presentation

In the Figure 2, we present the databases used to model

the search tree. Each record from this table refers a node

from the tree. In each such record we save the values

used in a node and additional information that concern

the node.

 The level field is used for the node level from the tree

(the root level will be 0). The code field is used for the

unique identification of the node in tree. This code is

given in the order in which the nodes will be created (the

root has the code 1). Each node from the tree (excepting

the root) has a unique parent node and we save this code

in the parent_code field (for the root, the parent_code

will be 0). The heuristic field refers the result of the used

NEW ASPECTS of APPLIED INFORMATICS, BIOMEDICAL ELECTRONICS & INFORMATICS and COMMUNICATIONS

ISSN: 1792-460X 121 ISBN: 978-960-474-216-5

heuristic function. The terminal, solution and expanded

fields will have the value n or y depending by situation.

Figure 2: The database used to model the tree

 Now, we present the implementation. We can use any

programming environment that allows connection with

databases.

 The user must introduce the start state. The

application verifies if the start state is the goal state. In

the affirmative case, the algorithm was finished.

In the negative case, the application inserts the record

corresponding to the root:

(0,1,0,value_of_a11,…,value_of_a33, result_of_heuristic

_ function,'n', 'n', 'n').

 Not having a solution while there are still non-

expanded nodes, as well as non-terminal ones, makes the

algorithm repeats itself.

Step 1. We select a record from the table Table1, that

corresponds to the nodes with the best heuristic, non-

expanded and non-terminals, as follows:

We determine the best heuristic:

s:='Select min(heuristic) from Table1 where

expandat="n" and terminal="n" ';

adoquery2.SQL.Clear;

adoquery2.SQL.Add(s);

adoquery2.Open;

heumin:=adoquery2.Fields[0].AsInteger;

adoquery2.SQL.Clear;

We select all the records which have the best heuristic:

s:='insert into heumin select * from table1 where

heuristic='+inttostr(heumin)+' and expandat="n" and

terminal="n" ';

adoquery1.SQL.Clear;adoquery1.SQL.Add(s);

adoquery1.ExecSQL;

We select the first such record:

adotable1.TableName:='heumin';

adotable1.Active:=true; adotable1.First;

level:=adotable1.Fields[0].AsInteger; code_p:=

adotable1. Fields[1].AsInteger;

The values which form the node which will be expanded:

x[1,1]:=adotable1.Fields[3].AsInteger;

x[1,2]:=adotable1.Fields[4].AsInteger;

x[1,3]:=adotable1.Fields[5].AsInteger;

x[2,1]:=adotable1.Fields[6].AsInteger;

x[2,2]:=adotable1.Fields[7].AsInteger;

x[2,3]:=adotable1.Fields[8].AsInteger;

x[3,1]:=adotable1.Fields[9].AsInteger;

x[3,2]:=adotable1.Fields[10].AsInteger;

x[3,3]:=adotable1.Fields[11].AsInteger;

Step 2. For the selected record from the Step 1, we

create a table with contains all records from the Table1,

which are the ancestors of this record from Step 1, in the

following way:

For the selected record, we will insert the data

corresponding to its parent node in a table named

ancestors:

codd:=adotable1.Fields[1].AsInteger;

s:='insert into ancestors select * from eumin where

cod='+inttostr(codd);

adoquery1.SQL.Clear;adoquery1.SQL.Add(s);

adoquery1.ExecSQL; adoquery1.SQL.Clear;

We will delete the table heumin (which corresponds to

the records with the best heuristic).

 s:='delete * from heumin'; adoquery1.SQL.Clear;

adoquery1.SQL.Add(s);

adoquery1.ExecSQL; adoquery1.SQL.Clear;

For which record from the table ancestors, we will insert

its parent in this table:

adotable1.Active:=false;

adotable1.TableName:='ancestors';

adotable1.Active:=true;

adotable1.First; codd:=adotable1.Fields[2].AsInteger;

while(codd>0) do

begin

 s:='insert into ancestors select * from Table1 where

cod='+inttostr(codd);

adoquery1.SQL.Clear;adoquery1.SQL.Add(s);

doquery1.ExecSQL;

adoquery1.SQL.Clear;adotable1.Active:=false;

adotable1.TableName:=' ancestors ';

adotable1.Active:=true;adotable1.Last;

codd:=adotable1.Fields[2].AsInteger;

end;

Step 3. For the node corresponding to the selected

record from Step 1, the application will generate its

NEW ASPECTS of APPLIED INFORMATICS, BIOMEDICAL ELECTRONICS & INFORMATICS and COMMUNICATIONS

ISSN: 1792-460X 122 ISBN: 978-960-474-216-5

children nodes, state(x, level+1, code_p,code), in the

following way:

Step 3.1. Firstly, the blank position is determined. In

function of situation, the application will create 2, 3 or 4

children nodes. We present all the possible situations, in

Table 1.

procedure TForm1.state(a:tablou; n:integer;

cp:integer; c:integer);

…

case blank_position of

 11: begin right(); down(); end;

 12: begin left(); down(); right(); end;

 13: begin left(); down(); end;

 21: begin up(); down(); right(); end;

 22: begin left(); up(); down(); right(); end;

 23: begin left(); down(); up(); end;

 31: begin up();right(); end;

 32: begin left(); up();right(); end;

 33: begin left(); up();end;

end;

end;

Node Children nodes

 right down

 left down right

 left down

 up right down

 left up down right

 left up down

 up right

 left up right

 left up

Table 1: Children nodes
 Step 3.2. When the application creates a new child node

(like in the Table 1), it is being calculated the heuristic

(corresponding to this new node) and verified if this

node:

- is a solution (for the new record, which will be inserted

in the table from the Figure 2, that means: field

terminal=’y’, solution=’y’ and expanded=’n’);

- exists in tree (in the ancestors tables from the Step 2)

and is not solution (this means: field terminal=’y’,

solution=’n’ and expanded=’n’);

- exists not and is not solution (this means: field

terminal=’n’, solution=’n’ and expanded=’n’);

 Now, the application inserts the corresponding record

of the new node into the table from Figure 2.

procedure TForm1.left(…);

…

sol:='n'; term:='n';exp:='n';

if heuristic=0 then

begin sol:='d'; term:='d'; end;

{b is the array corresponding to the new node}

s:='Select count(*) from ancestors where

a11='+inttostr(b[1,1])+' and a12='+inttostr(b[1,2])+'

and a13='+inttostr(b[1,3])+' and

a21='+inttostr(b[2,1])+' and a22='+inttostr(b[2,2])+'

and a23='+inttostr(b[2,3])+' and

a31='+inttostr(b[3,1])+' and a32='+inttostr(b[3,2])+'

and a33='+inttostr(b[3,3]);

adoquery2.SQL.Clear;

adoquery2.SQL.Add(s);adoquery2.Open;g:=adoquery2.

Fields[0].AsInteger; adoquery2.SQL.Clear;

if g>0 then term:='d';

s:='Insert Into Table1(level,code,

parent_code,a11,a12,a13,a21,a22,a23,a31,a32,a33,heur

istic, terminal, solution, expanded) values(

'+inttostr(n)+', '+inttostr(f)+', '+inttostr(cp);

For i:=1 to 3 do

For j:=1 to 3 do

 s:=s +', '+inttostr(b[i,j]);

 s:=s+', '+inttostr(eu1)+', "'+term+'", "'+sol+'",

"'+exp+'")';

adoquery1.SQL.Clear;adoquery1.SQL.Add(s);

adoquery1.ExecSQL;

end;

Step 4. The ancestors table from the Step 2, will be

deleted.

 When the application stops to repeat the Steps 1-4,

one of the following situations might occurs:

- we have founded a solution (we have the goal state);

- we have not founded a solution, but in the tree all the

nodes are expanded or terminals.

 In the first case, for viewing the solution path, for the

founded goal state, we will the ancestors table.

 Using this new table, starting from the start state the

goal state, we will obtain the solution path.

s:='select count(*) from table1 where solution="y" ';

NEW ASPECTS of APPLIED INFORMATICS, BIOMEDICAL ELECTRONICS & INFORMATICS and COMMUNICATIONS

ISSN: 1792-460X 123 ISBN: 978-960-474-216-5

adoquery2.SQL.Clear;

adoquery2.SQL.Add(s); adoquery2.Open;

level:=adoquery2.Fields[0].AsInteger;

 if level>0 then

begin

{we insert the goal state in the table solution_path}

 s:='insert into solution_path select * from table1 where

solution="y"' ;

adoquery2.SQL.Clear;adoquery2.SQL.Add(s);

adoquery2.ExecSQL;

 adotable1.Active:=false;

adotable1.TableName:='solution_path';adotable1.Active

:=true;adotable1.First;

codd:=adotable1.Fields[2].AsInteger;

Figure 3: A solution path for a start state

{For each record from the table solution_path, we will

also insert, in this table, its parent note}

 while(codd>0) do

 begin

s:='insert into solution_path select * from Table1 where

code='+inttostr(codd);

adoquery1.SQL.Clear;

adoquery1.SQL.Add(s);

adoquery1.ExecSQL;

adoquery1.SQL.Clear;

adotable1.Active:=false;

adotable1.TableName:='solution_path';adotable1.Active

:=true;adotable1.Last;

codd:=adotable1.Fields[2].AsInteger;

 end;

{The states will be ordered from the start state to goal

state}

 s:='Select * from solution_path order by cod';

 adoquery1.SQL.Clear;

adoquery1.SQL.Add(s); adoquery1.Open;

adoquery1.First;

{The solution path will be displayed for viewing (in this

case-like example, in a ListBox component)}

 while not(adoquery1.Eof) do

 begin

listbox1.Items.Add(adoquery1.Fields[3].AsString+' '+

adoquery1.Fields[4].AsString+'+adoquery1.Fields[5].A

sString);

listbox1.Items.Add(adoquery1.Fields[6].AsString+' '+

adoquery1.Fields[7].AsString+'

'+adoquery1.Fields[8].AsString);

listbox1.Items.Add(adoquery1.Fields[9].AsString+' '+

adoquery1.Fields[10].AsString+'

'+adoquery1.Fields[11].AsString);

listbox1.Items.Add('-- -- -- --');

adoquery1.Next;

end;

 adoquery1.SQL.Clear;

 In the Figure 3, we present a solution path (in

ListBox) for a start state. We also remember that for

certain start states, solutions path may not exist. Also,

we can generally find one or more solution paths for

each start state.

3 Conclusion
In this paper we have presented a certain case (an

application - eight-puzzle) studied in the artificial

intelligence domains in which, using database, we can

model a tree structure. The using of databases to modes

trees, can be applied in more others practical situations.

This method conduces to a quick implementation, due to

the possibility of using SQL statements when exploiting

NEW ASPECTS of APPLIED INFORMATICS, BIOMEDICAL ELECTRONICS & INFORMATICS and COMMUNICATIONS

ISSN: 1792-460X 124 ISBN: 978-960-474-216-5

the tree – and this means: a short program, easily

implementation and short time to obtain results. This

paper wants to come with the idea that different

problems from artificial intelligence domain (which is a

very interesting and difficult domain of informatics) can

be solved using SQL statements. In this way, we want to

be focused on the direction that for solve many problems

from artificial intelligence it will can be use relational

databases. After an implementation using databases, the

user will have a nice surprise to observe a facile

implementation.

 The first goal of SQL statement it is, of course, the

relational database exploring. Our purpose is to highlight

the using of SQL statement that can be more and more

extended in the informatics problems and domains, with

easily implementations and a very good program.

 In order to illustrate our observation, we have

presented such implementation in Delphi, using database

from Access, but we can use any programming

environment which accepts connections with different

relational databases types.

References:

 [1] http://www.cs.utexas.edu/users/novak/asg-8p.html

[2] http://kantz.com/jason/writing/8-puzzle.htm

[3]http://www.csupomona.edu/~jrfisher/www/prolog_

tutorial/5_2.html

[4]http://www.cs.duke.edu/~mlittman/courses/cps271/le

ct-05/node25.html

[5] http://www.aaai.org/AITopics/html/seachreason.html

[6]http://www.cc.gatech.edu/classes/cs3361_96_spring/l

ecture-2.html

[7]http://www.informatics.sussex.ac.uk/courses/kr/lec04

.html

[8]http://thor.info.uaic.ro/~dcristea/cursuri/IAOnWeb/IA

4-SistProd-Control.htm

[9]http://www.zib.de/reinefeld/bib/93ijcai.pdf

NEW ASPECTS of APPLIED INFORMATICS, BIOMEDICAL ELECTRONICS & INFORMATICS and COMMUNICATIONS

ISSN: 1792-460X 125 ISBN: 978-960-474-216-5

