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Abstract: In the research field of vehicle crash mechanics one of the most important task is finding a model for
the deformational force, which gives acceptable approximation, but doesn’t need perfect knowledge about the
parameters of the vehicle. The FEM based methods, which are applied in the engineering practice give good
approximations, but they have extremely large computational complexity and need a large amount of data. On the
other hand there exist simple force models, but they not approximate well in details the force-deflection curve. In
this paper we introduce a force model for vehicle deformation based on the LPV-HOSVD paradigm, which well
approximates the force during the deformational process and has acceptable complexity.

Key–Words: Vehicle crash, LPV model, HOSVD.

1 Introduction
For all of the car factories one of the most important
task is developing better and better passive and ac-
tive vehicle safety systems. This project require a lot
of vehicle crash tests and computer simulations, and
based on the results of these, different kind of mod-
els are developed for passanger safety, vehicle stiff-
ness, etc. In the field of vehicle crash mechanics, acci-
dent analysis, accident reconstruction and crash anal-
ysis one of the most important task is finding a model
for the deformational force, which gives acceptable
approximation, but doesn’t need perfect knowledge
about the parameters of the vehicle.

In the engineering practice in general a kind of
finite element method (in usually a commercial soft-
ware) is applied to simulate the deformational pro-
cess. The main disadvantages of these approaches that
require a lot of detailed data the vehicle, for example
elasticity, stiffness, etc. These parameters are usually
unkown, but if we know all of the necessery parame-
ters, then we have to deal with a very complex system
of nonlinear partial differential equations. There are
commercial softwares which are able to handle this
kind of problems, but they have extremely large com-
putational complexity.

In real life we don’t know all of the detailed pa-

rameters of the vehicle, we just have partial informa-
tions about the circumstances of the vehicle crash and
about the vehicle itself (and of course there are no two
identical vehicles). This fact inspires us researching
on modeling techniques which not require the detaild
knowledge of physical and mechanical parameters of
the examined vehicle, but deal with just a few data,
which are relatively easy to measure (quantities which
are measurable without ”looking inside” the vehicle,
for example velocity, deformation, acceleration, time
etc.).

In this paper we introduce a force model for vehi-
cle deformation based on the LPV-HOSVD paradigm,
which well approximates the force during the defor-
mational process and has acceptable complexity.

2 Previous Force Models and Real
Crash Tests

2.1 Previous Simple Force Models
Several force models were developed for describing
the force during the deformational process (see for
example [1], [2], [3]). These not require too many
knowledge about the parameters of the vehicle, but
not gives good approximations. The main difference
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Figure 1: Force and deformation vs. time from a real
crash test (source: NHTSA).

Figure 2: Force-deflection curve derived from the
force vs. time and deformation vs. time curves in-
troduced above.

between these models is the concept of stiffness of the
vehicle. All of the models are generalizations of the
simple linear model, and achieve better approximation
applying a more and more complex stiffness concept.

2.2 The ’Stiffness’ of a Vehicle
The stiffness of a vehicle is a widely used quasi-
heuristic notion in the field of crash and accident anal-
ysis, accident reconstruction and vehicle safety re-
search ([4], [5], [6] [7], [8]). The stiffness, as a numer-
ical value, is unambiguous in case of the linear model,
but not for vehicle crash process [9]. Generalizations
of the stiffness of the linear modell (’k’) yield stiff-
ness which depends on the depth of the deformation
([2]).

Figure 3: Force-deflection curves for the same type of
vehicles for different velocities.

2.3 LCB Crash Test Data
In certain vehicle crash tests the examined vehicle is
driven into a rigid wall, which is equipped with special
instruments able to register the force during the very
short time of the defromational process. This is the
so-called lad cell barrier (LCB) test. Before the test
a large number of sensors, accelerometers, forceme-
ters etc. attached to the analyzed vehicle. From the
point of view of our task the most important that there
are accelerometeres on the vehicle, which are not be-
longing to the zone of deformation. From data of this
type of accelerometer and from the impact velocity,
one can determine the dynamic deformation in time.

We deal with data which are available from the
free database of NHTSA (National Highway Traf-
fic Safety Administration, USA): www.nhtsa.dot.gov.
These data are available ’as measured’ form, so we
have to filter them before of further computing. There
are rigorous prescriptions for filtering the crash test
data [10]. According to SAE J211 the force and accel-
eration data were filtered with CFC60 filter. So after
filtering we have two data sets: force vs. time and de-
formation vs. time (See Fig. 1). From these one can
easily produce the force–deflection curve (See Fig. 2).

We can state that the previous force models are
too simple to be able to describe the peaks and the
elastic recovery (turning back) in the force–deflection
curve. Moreover, from the concepts of stiffness it is
clear, that this cannot be the same numerical value
during the deformation process for the whole car
body. Based on these experiences we are searching
for a model, which approximates the measured data
more better and which is a kind of generalization of
the linear (k · x) model, but deals with a non-constant
stiffness.
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3 Mathematical Background of
Model Reduction

In this section we shortly introduce the mathematical
tools which will be applied for reduction of the LPV
system. For more detail see for example [11], [12],
[13].

3.1 HOSVD based Canonical form
Consider such LPV state-space model(

ẋ(t)
y(t)

)
= S(p(t))

(
x(t)
u(t)

)
(1)

where p(t) = (p1(t), ..., pN (t)) ∈ Ω and which can
be given in the form of

(
ẋ(t)
y(t)

)
=
(
S �N

n=1 wT
n (pn))

)(x(t)
u(t),

)
(2)

where column vector wn(pn) ∈ RIn n = 1, . . . , N
contains one variable bounded and continuous weight-
ing functions wn,in(pn), (in = 1..In). The
(N + 2)-dimensional coefficient (system) tensor S ∈
RI1×···×IN+2 is constructed from linear time invariant
(LTI) vertex systems

Si1...iN = {Si1...iN ,α,β, 1 ≤ α ≤ IN+1, 1 ≤ β ≤ IN+2}

Si1...iN ∈ RIN+1×IN+2 .

Symbol �n represents the n-mode tensor-matrix
product.

For this model, we can assume that the functions
wn,in(pn),in = 1, . . . , In, n = 1, . . . , .N, are lin-
early independent over the intervals [an, bn], respec-
tively.

The linearly independent functions wn,in(pn) are
determinable by the linear combinations of orthonor-
mal functions (for instance by Gram–Schmidt-type
orthogonalization method): thus, one can determine
such a system of orthonormal functions for all n as
ϕn,in(pn), 1 ≤ in ≤ In, respectively defined over the
intervals [an, bn] , where all ϕn,kj

(pn), 1 ≤ j ≤ In
are the linear combination of wn,ij , where ij is not
larger than kj for all j. The functions wn,ij can re-
spectively be determined in the same way by functions
ϕn,kj

. Thus, if the form (2) of (1) exists then we can
determine it in equivalent form as follows:(

ẋ(t)
y(t)

)
=
(
C �N

n=1 ϕ
T
n (pn(t))

)(x(t)
u(t)

)
, (3)

where tensor C has constant elements, and column
vectors ϕn(pn(t)) consists of elements ϕn,kn(pn(t)).

Corollary 1 We can assume, without the loss of gen-
erality, that the functions wn,in in the tensor-product
representation of S(p) are given in orthonormal sys-
tem:

∀n :
∫ bn

an

wn,i(pn)wn,j(pn)dpn = δi,j , 1 ≤ i, j ≤ In,

where δi,j is the Kronecker-function (δij = 1, if i = j
and δij = 0, if i 6= j).

Theorem 2 (HOSVD) Every tensor S ∈ RI1×···×IL

can be written as the product

S = D �L
l=1 Ul (4)

in which
1. Ul =

[
u1,l u2,l . . . uIl,l

]
is an orthogo-

nal (Il × Il)-matrix called l-mode singular matrix.
2. tensorD ∈ RI1×...×IL whose subtensorsDil=α

have the properties of
(i) all-orthogonality: two subtensors Dil=α and

Dil=β are orthogonal for all possible values of l, α
and β : 〈Dil=α,Dil=β〉 = 0 when α 6= β,

(ii) ordering: ‖Dil=1‖ ≥ ‖Dil=2‖ ≥ · · · ≥
‖Dil=Il‖ ≥ 0 for all possible values of l.

The Frobenius-norm ‖Dil=i‖, symbolized by σ(l)
i ,

are l-mode singular values of D and the vector ui,l is
an i-th singular vector. D is termed core tensor.

Theorem 3 (Compact HOSVD) For every tensor
S ∈ RI1×···×IL the HOSVD is computed via execut-
ing SVD on each dimension of S . If we discard the
zero singular values and the related singular vectors
url+1, . . . ,uIl , where rl = rankl(S), during the SVD
computation of each dimension then we obtain Com-
pact HOSVD as:

S = D̃ �L
l=1 Ũl, (5)

which has all the properties as in the previous theorem
except the size of Ul and D. Here Ũl has the size of
Il × rl and D̃ has the size of r1 × ...× rL.

Consider (1) which has the form of (2). Then we
can determine:

(
ẋ(t)
y(t)

)
=
(
D0 �N

n=1 wn(pn(t))
)(x(t)

u(t)

)
, (6)

via executing CHOSVD on the first N -dimension of
S. The resulting tensor D0 = D̃ �N+2

n=N+1 Ũn has the
size of r1× ...× rN × IN+1× IN+2, and the matrices
Ũk ∈ RIk×rk , k = N + 1, N + 2 are orthogonal.

The weighting functions have the property of:
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1. The rn number of weighting functions
wn,in(pn) contained in vector wn(pn) form an or-
thonormal system. The weighting function wi,n(pn)
is an i-th singular function on dimension n = 1..N .

Tensor D has the properties as:
2. Tensor D ∈ Rr1×...×rN+2 whose subtensors

Din=i have the properties of
(i) all-orthogonality: two subtensors Din=i and

Din=j are orthogonal for all possible values of n, i
and j : 〈Din=i,Din=j〉 = 0 when i 6= j,

(ii) ordering: ‖Din=1‖ ≥ ‖Din=2‖ ≥ . . . ≥
‖Din=rn‖ > 0 for all possible values of n =
1, . . . , N + 2.

3. The Frobenius-norm ‖Din=i‖, symbolized by
σ

(n)
i , are n-mode singular values of D.

4. D is termed core tensor consisting the LTI sys-
tems.

3.2 Tensor Product Transformation
Tensor product (TP) transformation is numerical ap-
proach, which make a connection between linear
parameter varying models and higher order tensors
([12], [13], [14]). The main steps are the followings:

• Discretize the LPV model over a hyper-
rectangular grid in the parameter space (dimen-
sion is defined by the number of the parameters).
If we deal with state space representation, we get
matrices SDm1m2...mN

.

• Store the matrices into the tensor
SD ∈ RM1×M2×...MN×O×I .

• Execute HOSVD on the firstN dimension of ten-
sor SD and we get the following:

SD ≈ S
N
⊗
n=1

Un

Tensor S ∈ RI1×I2×···×IN×O×I contains the LTI
(parameter independent) matrices.

• The weighting functions for the LTI matrices are
stored in discretized form in the columns of ma-
trices Un.

4 LPV Type Force Model
The results of crash tests show more difficult force and
displacement behaviors than the simple models men-
tioned above. We are going to develop a model which
gives better approximation for the deformational force
during the whole deformational process.

4.1 Model Identification
According to the observations, the stiffness parameter
of a vehicle (or a part of the vehicle) is not a constant
value, but depends on the measure of deformation (x)
and on the impact velocity of the vehicle (v). Based
on this fact, we assume the force can be approximated
well by a nonlinear form, which is a generalization of
the linear spring model:

F = k(x, v)x. (7)

Or, in differential equation form:

mẍ = k(x, v)x. (8)

From this, with k′ = k(x, v)/m, x1 = x and x2 = ẋ1

we obtain the following matrix form:(
ẋ1

ẋ2

)
=
(

0 1
k′ 0

)(
x1

x2

)
. (9)

This is a parameter varying matrix and our main as-
sumption is that the behavior of original system (force
and displacement) can be described quite well using
this kind of nonlinearity. In general state-space model
form

ẋ(t) = f(x(t)) (10)
y(t) = c(x(t))

where

f(x(t)) =
(

x2(t)
k (x1(t), v)

)
(11)

c(x(t)) =
(
x1(t) 0

)
The next task is to determine the function k′. The

approach is similar to the methods introduced in [15]
and [16]. Firstly the functional dependence of k′ on
the variables x (depth of deformation) and v (impact
speed) must be specified, for example piecewise lin-
ear, polynomial, spline or other linear combinations
of given functions of x and v.

The model identification includes two major
steps: identification of the local models (LTI models)
with the same structure of the LPV model and on the
base of these models identification of the final LPV
model.

For local model identification we need some data
from well-measured crash tests: depth of deformation
vs. time, force (at sensors) vs. time. From this data set
for a certain deformation x a linear spring model can
be identified. Certainly, for other x an other model
is valid. The stiffnes k′ depends on x, x depends on
time (t), so we handle k′ as a function of t, which is
determined by the measured F (t) and x(t). In this
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way, for a certain impact speed a set of simple linear
models is determined. After that we have to repeat
this measuring and identifying process at other impact
speeds, but with the same division on the parameter t.
Finally we get a large amount of local models in the
space of the impact velocity (v) and the time (t), with
the same structure of the searched LPV.

A set of linear models means a set of certain val-
ues of the parameter varying k′ at different parameter
values. From these points and using our assumption
about the type of the functional dependence, the func-
tion k′ identified.

Because of the large amount of obtained parame-
ter independent models our system may become very
complex. In order to reduce the complexity of the sys-
tem we apply the introduced tensor product transfor-
mation and higher order singular value decomposition
below.

4.2 Application on Real Crash Test Data
The method described above is executed on real crash
tests data taken from NHTSA. There were three differ-
ent impact velocity, deformation in time and force in
time were measured. From these data sets we obtained
by interpolation the F (t, v) and the x(t, v) functions
which determined the k(t, v) stiffness.

4.3 HOSVD Based Reduction
The computation was carried out with Matlab TPTool-
box ([14]). We applied 108 grid lines in the dimension
of the time and 34 grid lines in the dimension of the
velocity. Computing HOSVD on each dimension we
got 10-10 singular values (which are numerically not
zero). So the maximal model was given by keeping
all of these singular values. Neglecting singular val-
ues step by step we can check the approximation ca-
pability of the reduced model (see Fig. 4), and one can
see model produced by keeping three of the singular
values is practically the same as the measured data.

5 Conclusion
Aplying the LPV-HOSVD paradigm we introduced a
novel method based on real crash test data for mod-
eling the force during the vehicle deformational pro-
cess. This model based on the natural fact that the
stiffness of a vehicle depends on the depth of defor-
mation and on the impact velocity. The applied con-
cept of the stiffness is more complex than the others
used in this field, but gives more better approximation,
and with the HOSVD based reduction the complexity
of the model can be reduced significantly, while the
approximating capability remains acceptable.

Figure 4: Comparison of the measured data and the
reduced models.

Proceedings of the 9th WSEAS International Conference on APPLICATIONS of COMPUTER ENGINEERING

ISSN: 1790-5117 178 ISBN: 978-960-474-166-3



Acknowledgements: The research was sponsored by
OTKA CNK 78168 project and Széchenyi István Uni-
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