
 

 

  

Abstract—Spectrum pattern of the same phoneme could be quite 

different for individual speakers due to physical and linguistic 

difference. Without applying appropriate computational technique on 

the frequency axis, the inter-speaker variation will reduce the 

modeling efficiency and result in poor recognition performance. In 

this paper, a formant-driven framework is proposed which is based 

on by modifying formant pattern model in order to compute 

normalization factor of a given speaker. Experiments on GRID 

corpus clearly show the effectiveness of this method. 
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I. INTRODUCTION 

urrent state of art automatic speech recognition (ASR) 

systems has one of the major challenges due to the inter-

speaker variation, context, and environments [1, 2]. But 

only considering inter-speaker variations, physiology 

difference (vocal tract shape and length, etc.) and linguistic 

difference (accent and dialect, etc.) could be the main reasons 

to it. It is also very clear that performances of speaker 

dependent (SD) ASR systems are better than speaker 

independent (SI) ASR systems because of these variations. 

Normally SD ASR systems have the half of error rates in 

compare to SI ASR systems for the same task and it is 

particularly important in SI ASR systems which are designed 

for dealing with any arbitrary unknown speaker in applications 

such as directory assistance [5]. It is reported in [2] that the 

spectrum pattern for the same phoneme of two speakers can be 

very different due to physiology difference and linguistic 

difference. Therefore, fair enough to assume that performance 

of SI ASR systems could be substantially improved if inter-

speaker variations are minimized by applying appropriate 

computational techniques. 

It is well known that speech signal carries information about 

vocal tract length (VTL): for example, formant frequencies of 

vowels decrease as the VTL increases. Vocal Tract Length 
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Normalization (VTLN) is very common in ASR systems in 

order to minimize inter-speaker variations. VTLN is a 

technique which scales the frequency axis of the acoustic 

feature vectors by introducing a warping or normalization 

factor so that the observations are alike across all speakers [2, 

8]. VTLN is able to reduce the inter-speaker variation after 

warping the spectrum and this is especially valuable in gender 

independent systems because on average VTL is 2-3cm shorter 

for female speakers than male speaker, resulting formant 

frequencies of female speakers are 15-20% higher than male 

speakers [2, 3, 8]. 

There are many algorithms available in the literature to 

estimate warp factor or normalization factor in order to reduce 

the inter-speaker variation. These methods can be categorized 

into two classes: model based normalization and feature based 

normalization. The most common method for finding warp 

factors for model based normalization operates on the 

maximum likelihood (ML) criterion to choose a warp factor 

that gives a speaker’s warped observation vectors the highest 

probability [2, 8]. The likelihoods can be computed using the 

recognizer’s phone models. On the other hand, feature based 

normalization predicts warp factors by observing more direct 

parameters of speech acoustics, such as formants (resonant 

frequencies of the vocal tract). The first and second formants 

can be modeled by vowel-specific distributions [2, 8]. 

There are mainly three different warping functions are used: 

linear warping, nonlinear warping and piecewise linear 

warping. In linear warping, one parameter will determine the 

global warping which may not be sufficient to compensate the 

total variation of different speakers [2]. Nonlinear warping and 

piecewise linear warping are proposed to further improve the 

efficiency of the recognizer. But all of these normalization 

methods are essentially maximizing the likelihood of utterance 

given a model [2]. 

In this paper, we are proposing a formant based method in 

order to apply VTLN technique into a large speech corpus 

known as GRID corpus. Normalization factor is computed 

with the robust reliable formant estimation method 

corresponding to a given speaker, the inter-speaker variation 

can be reduced prior to acoustic modeling procedure which 

will increase the modeling efficiency. Experimental results on 

GRID corpus shows the effectiveness of this method. 

The rest of the paper is organized as follows: paper is 

organized as follows: First we describe the experimental 

corpus, then we present the method used to compute 
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normalization factor as well as to perform VTLN by speaker 

adaptive training. Subsequently we present and interpret the 

experimental results, and the final section draws a conclusion.  

II. SPEECH MATERIALS 

Speech data has been taken from GRID corpus for this 

experiment which is a large multi talker audio visual sentence 

corpus to support joint computational-behavioral studies in 

speech perception and automatic speech recognition [4]. It 

contains a total of 34,000 sentences of high quality audio and 

video (facial) recordings, 1000 sentences spoken by each of 34 

speakers (18 male speakers, 16 female speakers). All speak 

British English as their first language. All but three 

participants had spent most of their lives in England and 

together encompassed a range of English accents [4]. Two 

speakers grew up in Scotland and one was born in Jamaica. 

Grid provides a greater variety and is large enough to meet the 

training requirements of ASR systems. 

III. VOCAL TRACT LENGTH NORMALIZATION 

It can be noted that model based normalization such as ML 

approach is computationally expensive where we focused on 

feature based normalization approach which is 

computationally economic and based on the fixed formant 

pattern model. 

A. Formant Pattern Model 

The fixed formant pattern model is very simple; a single 

parameter for each formant and a single scalar value related to 

the individual speaker’s formants to those of the population 

[9]. Mathematically, the formant pattern model is given by, 

 
v
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Where, v is the vowel type, i is the individual speaker, 
i

vλ is 

the wavelengths of the formant vector of the individual speaker 

for vowel v, 
v

refλ is the wavelengths of the average formant 

vector of the entire population for the vowel v,  the scalar ia  

is the length of individual speaker’s vocal tract with respect to 

the average of the population. 

B. Warping Factor Estimation 

Warping factor is estimated based on the fixed formant pattern 

model by the following way. 

According to the fixed formant pattern model, 
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Where, F1 and F2 are the first two formants for the 

reference speaker, and the individual speaker, i of the vowel 

type, v. And iα  is the normalization factor of the individual 

speaker, i. 

Now the Euclidean distance for the vowel type, v between 

the vowel points of the reference speaker and the individual 

speaker after applying VTLN is given by, 

22 )22()11( iirefiiref FFFFd αα −+−=  

cbad ii +−=⇒ αα 222
                                                (4) 

Where, 

22 )2()1( ii FFa +=                                                         (5) 

irefrefi FFFFb 2211 +=                                               (6) 

22 )2()1( refref FFc +=                                                   (7) 

Normalization factor iα  is given at the minimum distance 

between the vowel points. Therefore differentiating (5) with 

respect to iα  yields, 

)(2*2 ' badd i −= α                                                        (8) 

a
b

i =⇒α                                                                         (9) 

Substituting, 0'
=d  into (6). 

Equation (7) gives the normalization factor for a specific 

vowel type, v of a specific speaker, i. Then for each vowel of 

the specific speaker, normalization factor is computed. Ideally, 

all normalization factors should be same but in practice, 

deviation exists mainly due to the difficulties of formant 

estimation. That is why mean of these normalization factors is 

taken as the normalization factor of the specific speaker. 

C. Speaker Adaptive Training & Testing 

Speaker Adaptive Training (SAT) is a technique used to 

train SI acoustic models that integrates normalization factor. 

We applied VTLN in both during training and testing phase 

which have been performed by the following steps, 

1. Firstly, training and testing have has been carried out 
by the non-normalized features. We labeled this 
procedure as the baseline system. 

2. Then normalization factor has been computed 
through by the reliable formant frequencies and 
training and subsequently, testing has been carried 
out, and labeled as VTLN by reliable formants. 

3. Finally, normalization factor has been computed 
through the parametric approach by the highly 
reliable formant frequencies and subsequently, 
training and testing has been carried out and labeled 
as VTLN by highly reliable formants. 
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IV. EXPERIMENTAL RESULTS 

A. Formant Measurements 

Formant frequencies have been estimated for the entire 

GRID corpus by three widely used fully automatic formant 

tracking algorithms (classical LPC method, burg algorithm 

implemented in popular and widely used software PRAAT, 

and Auto Regressive method). Then reliable formants (RF) 

and highly reliable formants (HRF) are determined by 

comparison with formant frequencies provided by Detering [6] 

and Hawkins [7]. Robust reliable and highly reliable formant 

estimation technique is based on a data refinement algorithm 

where the algorithm chose the most likely formants estimated 

by these three widely used algorithms. Figure 1 shows the 

vowel space of highly reliable formants and ellipse has been 

drawn by their standard deviation around the average formant 

frequencies of the entire population. 
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Fig 1. vowel space for highly reliable formants in comparison to Hawkins [7] 

B. Warping Factor Estimation 

A VTL warping factor for each speaker has been estimated 

by applying equation (7) using reliable formants and highly 

reliable formants of all vowels. For each vowel independently, 

average formant frequencies for F1, and F2 are computed for 

the entire population in order to provide the reference point for 

formant frequency warping. A normalization factor is applied 

to each formant which provides the minimum distance between 

formant frequencies of an individual speaker and the reference 

speaker. The average of the normalization factor calculated 

over all vowels is taken as the normalization factor of the 

specific speaker.  
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Fig 2. warping factor for each speaker in the GRID corpus estimated from the 

highly reliable formants which are obtained in comparison to Hawkins [7] 

 

Figure 2 shows normalization factor of each speaker of the 

GRID corpus plotted against speaker number. Separation 

between the male speakers and female speakers could be easily 

identified. It could be noted that reference speaker has a 

warping factor of one. 

C. Vowel Normalization 

Figure 3 shows the normalized vowel space after applying 

VTLN to each speaker of the GRID corpus. Vocal tract length 

geometry is different between adult male speakers and adult 

female speakers. Therefore, it results a scatter distribution of 

formant frequencies when both type of speakers are present in 

the data set. But if vocal tract shapes are normalized to a 

reference speaker, a compact distribution of formant 

frequencies would also result. It is clear from Figure 5 that the 

formant frequency distribution is compact. 
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Fig 3. normalized vowel after applying VTLN 

D. Speech Recognition Experiment 

Figure 4 shows the performance of the baseline system 

(without normalization), applying VTLN where warping factor 

is estimated by reliable formant frequencies determined by in 

comparison to Deterding [6] and Hawkins [7], and applying 

VTLN where warping factor is estimated by highly reliable 

formant frequencies determined by in comparison to Deterding 

[6] and Hawkins [7]. This figure only shows the recognition 

rate of all the phonemes when testing is carried out in a 

speaker independent manner.  

TABLE I.  RECOGNTION RATE OF BASELINE SYSTEM, AND AFTER 

APPLYING VTLN  FOR SI ASR AND GD ASR 

VTLN 

By Reliable 

Formants 

By Highly Reliable 

Formants 

 Baseline 

RF [7] RF [8] HRF 

[7] 

HRF 

[8] 

SI 77.94 79.30 79.33 79.21 79.52 

Male 79.49 80.02 79.93 80.04 79.97  

 

GD Female 82.97 83.18 83.12 83.46 83.32 

 

For Speaker Independent (SI) ASR, Baseline system has a 

recognition rate of 77.94%. Recognition rate is improved by 

1.4% when VTLN is applied and normalization factor is 

estimated by reliable formant frequencies. On the other hand, 

when normalization factor is estimated by highly reliable 
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formant frequencies recognition rate is improved by 1.7% in 

the best case. GRID is a very large speech corpus and an 

improvement of 1.7% is not negligible. Moreover, a 

substantial difference in recognition rate does not exist in 

terms of computing normalization factor by reliable formant 

frequencies and highly reliable formant frequencies. 

For Gender Dependent (GD) ASR, Baseline system has a 

recognition rate of 79.49% for male speakers and 82.97% for 

female speakers. Recognition rate is improved about 0.50% for 

both kinds of speakers after applying VTLN. Though GD ASR 

outperformed SI ASR in each case but it is fair enough to say 

that there is no noticeable improvement in recognition rate in 

GD ASR systems after applying VTLN. It is because there 

would be little variation in the VTL pattern among male 

speakers as well as among female speakers. 

V. CONCLUSION 

In this paper, we presented a feature based normalization 

approach to robust VTLN in order to reduce inter-speaker 

variation that takes advantage of the first two formant 

frequencies in order to compute warping factor of each 

speaker. Reliable formant frequencies and highly reliable 

formant frequencies are also taken into consideration to 

compute warping factor. Though VTLN improves the 

recognition rate in compare to baseline system but we found 

that there is no substantial difference in recognition rate when 

normalization factor is computed by reliable formant 

frequencies and highly reliable formant frequencies. This 

method could be applied as it reduces the computational 

requirements. 
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