

Abstract—In this paper a driver is created for the HAMEG HM
407 oscilloscope. This equipment is controlled with PC via the

RS232 serial port. This oscilloscope has no driver provided by the
manufacturer, so all the necessary control has been developed
according to the SCPI instructions provided in the datasheet. Due to
the fact that the core microcontroller is relatively old, these

instructions are not so simple and a lot of binary calculations are
needed to make it all work.

Keywords—Communication equipment, control equipment, driver,

oscilloscope, protocol, remote handling, serial port.

I. INTRODUCTION

HIS paper presents the creation of an oscilloscope driver.

To test the driver, the HAMEG HM 407, 40MHz,

100MS/s cathode-ray tube oscilloscope (Fig. 1.) is connected

with the PC to be controlled via the RS232 serial port. The

oscilloscope is an analog/digital oscilloscope. It has an RS232

serial port and a microcontroller with implemented SCPI

(Standard Commands for Programmable Instruments)

commands. Its commands are presented in the product

datasheet. Some commands are quite complicated and need a

lot of binary calculation to make them work. Some of them are

not complete or not well explained and need programming

tricks to make them fully functional. Some commands are

related to other commands. These dependencies are explained

in an other datasheet, so to command this equipment, a lot of

prior study is needed.

The oscilloscope has a quite old microcontroller and this

makes it a little more difficult to program, then other

equipments.

Its commands are not standardized; the commands are

closer to binary code.

This equipment was chosen, because it’s not common

equipment, like the Agilent equipments, which quite really

Manuscript received July 25, 2010.
Roland Szabó is Master student, Faculty of Electronics and

Telecommunications, “Politehnica” University of Timişoara, România, V.

Pârvan Av., no. 2, 300223, Timişoara, România (phone: +40 256 403351; fax:
+40 256 403295; e-mail: roland.szabo@etc.upt.ro).

Aurel Gontean is with Applied Electronics Department, Faculty of

Electronics and Telecommunications, “Politehnica” University of Timişoara,
România, V. Pârvan Av., no. 2, 300223, Timişoara, România (e-mail:

aurel.gontean@etc.upt.ro).

Ioan Lie is with Applied Electronics Department, Faculty of Electronics
and Telecommunications, “Politehnica” University of Timişoara, România, V.

Pârvan Av., no. 2, 300343, Timişoara, România (e-mail: ioan.lie@etc.upt.ro).

Mircea BăbăiŃă is with Applied Electronics Department, Faculty of
Electronics and Telecommunications, “Politehnica” University of Timişoara,

România, V. Pârvan Av., no. 2, 300223, Timişoara, România (e-mail:

mircea.babaita@etc.upt.ro).

simple to program and most of them have drivers for all

common communication ports present on an equipment, like

GPIB, RS232, USB or Ethernet.

II. PROBLEM FORMULATION

The most often used functions needed to be implemented in

the computer interface of this HAMEG HM 407 oscilloscope.

Some functions that are not possible without a computer,

like saving a graph from the oscilloscope, or sending a graph

to the oscilloscope, were the main target.

On the computer interface the buttons needed to have

similar name as those present on the oscilloscope.

III. PROBLEM SOLUTION

A. Programming Language Presentation

The goal was clear, to make a simple, but efficient

computer interface for the oscilloscope via RS232 interface.

The software used for programming was MATLAB. This

software is simple and powerful. MATLAB has also a

graphical interface, which was very useful for our

oscilloscope’s user interface creation. The only inconvenience

is that MATLAB has only Windows style controls, like

sliders, buttons, check boxes and radio buttons. When, for

example, a TIME/DIV. dial is needed, we had to use slider,

not so suggestive, but functional.

Maybe for a better user interface some National

Instrument’s software can be more convenient, like LabVIEW,

LabWindows/CVI or Measurement Studio for Visual Studio,

because these software packages have dials, LEDs, graphs and

other controls and indicators which look like the ones on

electronic equipments.

MATLAB has its own advantages too. The thing that is

very useful in MATLAB graphical interface is that any change

on button makes change immediately a change in the

MATLAB *.m code file. No need for generate callbacks like

in other programming languages like Visual Studio or

LabWindows/CVI. This can be very useful when a

complicated code is made.

B. MATLAB Graphical Interface

MATLAB graphical interface can be accessed when the

“guide” command is introduced at the command prompter.

This command will open a window like the one in Fig. 2.

Here the user can drag-and-drop buttons, sliders and other

Windows style controls and indicators needed.

In the oscilloscope interface sliders, Push buttons, pop-up

menus controls and edit text, axe indicators were used.

Creating an Oscilloscope Driver

Roland Szabó, Aurel Gontean, Ioan Lie, Mircea BăbăiŃă

T

Proceedings of the International Conference on Applied Computer Science

220

Fig. 1. HAMEG HM 407 oscilloscope’s front with display and control buttons.

Fig. 2. Front panel creation of the oscilloscope in MATLAB. This window
can be accessed when the “guide” command is introduced to the command

prompter.

As we can see we have a Connect button for connecting the

computer to the oscilloscope. This buttons sends the

command, which puts the equipment in remote mode. During

this time, the physical buttons from the oscilloscope are not

functional, it pressed they make an error beep. An LED

indicator on the oscilloscope indicates that the equipment is in

remote mode and can be commanded just with a computer. On

the graphical interface the status of the oscilloscope is shown

with and edit text indicator, where the information ON or OFF

is shown, depending on the state of the oscilloscope (remote or

local).

To return to local mode, the Autoset button from the

oscilloscope need to be pushed for a few seconds and the

oscilloscope will return in local mode. The Autoset button’s

secondary function is returning the oscilloscope in local mode.

After this operation the oscilloscope will not be commanded

eth the PC, just with the buttons physically present on the

equipment and the remote LED will be turned off. To return

the oscilloscope in local mode, the disconnect button from the

computer interface can be used too.

The Autoset button from the user interface has the same

effect as the Autoset button physically present on the

oscilloscope; it sets the Time/DIV and Volt/DIV parameters

most optimal to the acquisitioned signal.

For setting the horizontal (X-POS.) and vertical (Y-POS. I

and Y-POS. II) positions of the signal, sliders were used. Here

a little trick need to be used, because for positive vertical

position was one command and for negative vertical position

was another command, but only one slider was used, so the

two commands needed to be merged in one.

For setting the timebase (TIME/DIV.) and the amplitude

(VOLTS/DIV. I and VOLTS/DIV.), also sliders were used.

Because sliders, were fuzzy, a more accurate solution was

needed, to set exactly the timebase and the amplitude, this way

pop-up menus were used. For timebase between 1 µs/DIV.

and 0,5 s/DIV., for amplitude between 1 mV/DIV. and 20

V/DIV. The values can be set exactly. For the timebase and

amplitude, both controls are functional, for exact and for fuzzy

setting of the signal.

For saving the signal form the oscilloscope two buttons are

used Read Wavef. I (for CH I) and Read. Wavef. II (for CH

II). The signal will be shown on the axe. The acquisitioned

signal has 256 samples (256 points), for larger signals more

Proceedings of the International Conference on Applied Computer Science

221

samples need to be combined. The serial interface has a buffer

of 512 samples.

For writing a saved waveform from the computer to the

oscilloscope, the Write Wavef. I and Write Wavef. II buttons

were used. The oscilloscope has two memories and this way it

can memorize to signals. The signals are saved in a text file

(signal.txt) as points. This can be used for saving each signal

from each channel to the computer, make some signal

processing and after that send it back to the equipment. In the

signal.txt file also is a signal with 256 samples (256 points).

Here also a little trick is needed to make it work, the

oscilloscope need to be put in STOR. MODE, so the REF bit

has to be put on “1” logic by software, otherwise it will not

work. This is very important to be done, because otherwise if

the REF bit is not activated manually on the oscilloscope, the

saving of a signal will not work and an error beep will be

received.

C. The Code behind the buttons

In this section the code behind the buttons is explained.

Every SCPI command needs to be ended with carriage

return (CR, 0Dh or 13d). There are exceptions too, some of

them needs only CR and other CR and LF, depends on the

SCPI command.

TABLE I shows the used SCPI commands.

TABLE I

USED SCPI COMMANDS

Command Description

AUTOSET AUTO SET function will be carried out

YzPOS=w Sets Y 1/2 POSITION settings

XPOS=w Sets X-POSITION settings

CHz=b Sets CH1/2 settings (like amplitude)

TBA=b Sets TIMEBASE A/B settings

STRMODE=b Delivers STORE MODE

RDWFMz:ww READ WAVE FORM 1/2

WRREFz:ww WRITE REFERENZ 1/2

RM0 Exit REMOTE mode

The functions used for write and read data from the serial

port are fwrite and fread.

For example the Autoset button has the following code:

function autos_Callback(hObject,

eventdata, handles)

cmdb=double('AUTOSET');
b=[13 10];

fwrite(handles.obj1,[cmdb b]);

b1=fread(handles.obj1,3);

Every button has similar code to this example, obj1 is set to

COM1, the first serial port installed on the computer, but it

can be set to any COM port desired with the following

command:

handles.obj1=serial('COM1');

The information is sent decimal. Comments are generated

automatically by MATLAB, which can be cleared. Here the

SCPI command is: AUTOSET. The command need to be

ended with carriage return (CR, 0Dh or 13d) and line feed (LF

0Ah or 10d) too. The AUTOSET command is concatenated

with the carriage return and line feed bits. The number 3from

the fread function is the number of bits read.

Modifying this function we can make the functions for all

buttons, just by reading the specific SCPI command from

datasheet and being attentive to some bits.

The Connect button has a similar function, but no SCPI

commands are used, only sending the 20h (32d) and the CR

termination character. The serial port is opened with the fopen

and closed with fclose functions and set to its default values:

baud rate: 9600, data bits: 8, parity: none, stop bits: 1, flow

control: none:

fopen(handles.obj1);

...

fclose(handles.obj1);

The serial port is activated with the following command:

set(handles.obj1,'FlowControl','hardware
');

The ON/OFF indicator is commanded, where needed, with

the following commands:

set(handles.sts, 'String', 'ON');
...

set(handles.sts, 'String', 'OFF');

Where sts is the indicator’s identifier and String is the

parameter that is changed and after that is the value: ON or

OFF. With this command almost every parameter can be

changed, like size or position.

The whole initialization program is the following:

function HM407_OpeningFcn(hObject,
eventdata, handles, varargin)
handles.obj1=serial('COM1');

handles.output = hObject;

guidata(hObject, handles);

function varargout =
HM407_OutputFcn(hObject, eventdata,

handles)

varargout{1} = handles.output;

function axes1_CreateFcn(hObject,

eventdata, handles)

function con_Callback(hObject,

eventdata, handles)
fopen(handles.obj1);
set(handles.obj1,'FlowControl','hardwa

re');
a=[32 13];

fwrite(handles.obj1,a);
a1=fread(handles.obj1,3);

set(handles.sts, 'String', 'ON');

Proceedings of the International Conference on Applied Computer Science

222

The Disconnect button is made similar, but it uses the RM0

(remote 0) SCPI command and the serial port is closed with

the fclose function:

function discon_Callback(hObject,

eventdata, handles)

cmdz=double('RM0');

z=[13 10];

fwrite(handles.obj1,[cmdz z]);
z1=fread(handles.obj1,3);

set(handles.sts, 'String', 'OFF');
fclose(handles.obj1);

For the horizontal position setting first we read the value of

the slider with the following command:

yp1=get(hObject,'Value');

Then we use the YzPOS=w SCPI command, where z is the

number of channel, 1or 2 and w is the distance in word. The

only problem is that the oscilloscope is like a coordinate

system and it has positive and negative position. The goal was

to change the position with only one button, so a little trick

was needed.

The program that does the trick is the following:

function ypos1_Callback(hObject,

eventdata, handles)
yp1=get(hObject,'Value');
cmdc=double('Y1POS=');

if (yp1>15)
 cyp1=yp1-15;

end
if (yp1<=15)

 cyp1=yp1+240;

end
c=[160 cyp1 13];

fwrite(handles.obj1,[cmdc c]);
c1=fread(handles.obj1,3);

As we can see the program is similar, but with if statement

insertion. The whole idea is that the information that we have

to send is 16 bits long, so we need two decimal numbers. The

slider is set to the value of 15 and the minimum value to 0 and

maximum to 30.

The whole screen height is FF0h (4080d), the inserted string

is the LF (0Ah), so this way we have FF0Ah. We split the

word in two bytes and get FFh and 0Ah, we reverse them and

get FFh (255d) and A0h (160d), and these need to be sent in

reversed orders.

With the implemented algorithm we will be able to change

the vertical position in brute values (changing the MSB). In

binary the positive values for the second byte are between

00000000b – 00001111b (00h – 0Fh, 0d – 15d) and the

negative values between 11110000 – 11111111 (F0h – FFh,

240d – 255d), the negative values are in the complement of 2,

so the lowest value is FFh (255d) and the highest is F0h

(240d).

A same program can be made to the channel 2, but using

Y2POS=w SCPI command and for horizontal position with the

XPOS=w SCPI command.

For the amplitude the used SCPI command is CHz=b,

where z in the number of channel, 1 or 2 and b is the value in

byte. There are 4 bytes for other settings to the channel and 4

bytes for setting the amplitude. D7 = GND, D6 = AC, D5 =

INV, D4 = ON, D4 ÷ D0 are the setting for amplitude between

0000b – 1101b (0d – 13d). All bits can be “0” logic, but the

ON bit must be at “1” logic, so the number we need to send

are between 10000b – 11101b (16d – 29d). This way the

slider’s value is set to 22 and the minimum value to 16 and the

maximum value to 28.

The same thing can be made for the channel 2, but with the

CH2=b SCPI command and a similar function will work for

the timebase, but with the TBA=b SCPI command, where A is

the A timebase, because this model has no B timebase.

The program for the amplitude is the following:

function vdiv1_Callback(hObject,
eventdata, handles)

vold1=get(hObject,'Value');
cmdf=double('CH1=');

f=[round(vold1) 13];
fwrite(handles.obj1,[cmdf f]);
f1=fread(handles.obj1,3);

The program for the timebase is the following:

function tdiv_Callback(hObject,

eventdata, handles)
timed=get(hObject,'Value');

cmdh=double('TBA=');
h=[round(timed) 13];
fwrite(handles.obj1,[cmdh h]);

h1=fread(handles.obj1,3);

For pop-up menu the programming is a little more

complicated, because we ne exact amplitude and timebase. For

amplitude, we have 14 values between 1 mV/DIV. and 20

V/DIV, this way 1 mV/DIV. means 1, but we need to send 16,

and 20 V/DIV. means 14, but we need to send 29, so we have

to add 15 to every value. Same thing for TIME/DIV. but we

have 26, values between 1 µs/DIV. and 0,5 s/DIV., so we need

to add 3 to every value.

Maybe a little more complicated is the reading of the

waveforms, the used SCPI command is RDWFMz:ww, where

z is the number of channels, 1 or 2 and the first w word is the

offset and the second is the length. The offset we will set to 0,

so the first two bytes are 00h and 00h. The length we will set

to 256 samples (256 points), the serial has a 512 sample

buffer. 256 = 0100h, we split the word in two bytes and we get

01h and 00h, after all we need to send it in reversed order, so

00h and 01h. All the numbers from the offset and length in

reversed order, in decimal and with CR termination character

is: 0 0 0 1 13.

Proceedings of the International Conference on Applied Computer Science

223

Where we plot the information from the 12th sample,

because these samples in the start are information about the

waveform, but the waveform data starts from 12 and ends at

267.

For this signal acquisition to work we have to be careful

with the STOR. MODE bits using the STRMODE=b SCPI

command. D7 = REF2, D6 = REF1, D5 ÷ D3 = PRE

TRIGGER (011 = 0%) and D2÷D1 STOR MODE (000 =

REF). This way for signal acquisition we need no reference

memory, so we have 11000b (24d), for sending signals to

reference memory 1 we will have 1011000b (88d) and for

reference memory 2 we will have 10011000b (152d). This

way we don’t need to push the reference button manually all

the time and stop the program.

After it we need to lot de received data to the axe, so the

program section will be:

function rdwf1_Callback(hObject,

eventdata, handles)
cmdi=double('STRMODE=');

i=[16 13];
fwrite(handles.obj1,[cmdi i]);
i1=fread(handles.obj1,3);

cmdj=double('RDWFM1:');
j=[0 0 0 1 13];

fwrite(handles.obj1,[cmdj j]);
j1=fread(handles.obj1,267);
l=1;

for k=12:267
 V(l)=j1(k);

 l=l+1;
end
plot(V)

For writing a signal to the memory is quite similar to

reading it. The used SCPI command is WRREFz:ww, where z

is the number of channels, 1 or 2 and the first w word is the

offset and the second is the length. The signal is written by

some numbers in one colon in the signal.txt file.

The function should be the following:

function wtwf1_Callback(hObject,

eventdata, handles)

cmdm=double('STRMODE=');
m=[88 13];

fwrite(handles.obj1,[cmdm m]);
m1=fread(handles.obj1,3);

load signal.txt -ascii;

cmdn=double('WRREF1:');

n=[0 4 0 1 signal' 13];

fwrite(handles.obj1,[cmdn n]);

n1=fread(handles.obj1,3);

 The signal it’s transposed with signal’, it is more simple to

write values in a colon in a *.txt file than in a row. The file

must contain exactly 256 values (Fig. 3.).

Fig. 3. The signal.txt file with some random numbers forming a random

signal.

IV. CONCLUSION

These days the instruments have simple SCPI commands,

where no need for binary calculation is. Some instrument’s

vendors provide even drivers, where some functions gather the

SCPI commands with the binary values and the user just calls

the functions and enter decimal values.

As we saw almost any instrument can be programmed as

the user wants and in any programming language. The

datasheet needs to be analyzed well and with a little binary

calculation and some programming trick almost everything

can be done.

The goal was achieved. We wanted to program an

instrument and we needed some functions that are not possible

without a computer, like signal sending to the oscilloscope or

saving from it.

Further enhancements would be to make a button for every

setting on the oscilloscope, maybe try program it in other

programming language, like C, and make an official driver

with all function of the oscilloscope, so this way programmers

will not have to do so many binary calculations and read all

the datasheets.

The whole idea of this oscilloscope programming is that we

wanted to see if we are capable of programming an

oscilloscope with complicated SCPI commands with binary

calculations. With this knowledge now we are capable

communicating with almost any equipment. It’s an old

equipment, but it still needs to be connected to the computer

and it still needed to be programmed. As mentioned in the

introduction these older equipments are still needed. On the

other hand, somebody needs to make drivers for the

instruments for simpler programming. This paper’s goal is to

show how to interpret the SCPI commands and this way to

make an instrument driver. This paper is just an example how

to program more complicated instruments. With this

knowledge we hope that the communication with instruments

will not be a problem.

In Fig. 4. we can see the graphical user interface running

and acquisitioning a square waveform.

Proceedings of the International Conference on Applied Computer Science

224

Fig. 4. The graphical user interface for the HAMEG HM 407oscilloscope

running when acquisitioning a square signal.

REFERENCES

[1] N. Sulaiman, N. A. Mahmud, “Designing the PC-Based 4-Channel
Digital Storage Oscilloscope by using DSP Techniques,” Research and

Development, 2007. SCOReD 2007. 5th Student Conference, 2007, pp.

1–7.
[2] Tew Yiqi, Goi Bok-Min, “Oscilloscope: A PC-based Real Time

Oscilloscope,” Innovative Technologies in Intelligent Systems and

Industrial Applications, 2008. CITISIA 2008. IEEE Conference, 2008,
pp. 92–97.

[3] R. Lincke, I. Bull, A. Trutia, B. Logofatu, “PC-based oscilloscope,”

Semiconductor Conference, 1995. CAS'95 Proceedings, 1995
International, 1995, pp. 229–232.

[4] M. O. Hagler, D. Mehrl, “A PC with sound card as an audio waveform

generator, a two-channel digital oscilloscope and a spectrum analyzer,”
Education, IEEE Transactions, vol. 44. 2001.

[5] C. Bhunia, S. Giri, S. Kar, S. Haldar, P. Purkait, “A low-cost PC-based

virtual oscilloscope,” Education, IEEE Transactions, vol. 47, 2004, pp.
295–299.

[6] S. A. Chickamenahalli, A. Hall, “Interfacing a digital oscilloscope to a

personal computer using GPIB,” Frontiers in Education Conference,
1997. 27th Annual Conference. 'Teaching and Learning in an Era of

Change'. Proceedings, vol. 2, 1997.

[7] MATLAB – Creating Graphical User Interfaces
[8] MATLAB – Instrument Control Toolbox 2 User’s Guide

[9] HAMEG Instruments – Description of Interface Commands

Roland Szabó is a Master student in the Faculty of Electronics and

Telecommunications, “Politehnica” University of Timişoara, România. He
was born in Timişoara, România, in April 14, 1986. He is an electrical

engineer since 2009, with LabVIEW Basics I & II Certificate from National

Instruments Hungary – 2009, with Software Quality Engineer certificate from
Continental Automotive România – 2009.

 He is a Hardware Engineer at Continental Automotive România located in

Timişoara. He is research laboratory responsible in the Faculty of Electronics
and Telecommunications, “Politehnica” University of Timişoara, România.

He had summer job also in Alcatel-Lucent located in Timişoara, Romania. He

has 5 papers. Areas of interest: robots, creating computer interfaces for
electronic equipments, servers, web programming.

 Eng. Roland Szabó is a Hardware Engineer at Continental Automotive

România.

Aurel Gontean is professor and vicedean in the Faculty of Electronics and

Telecommunications, “Politehnica” University of Timişoara, România. He
was born in June 26, 1961. He had 3 months scholarship at Central Lancashire

University, Preston, England, VLSI Design oriented – 1996, a 3 months

scholarship at Fachhochschule Wiesbaden, Germany, Programmable Logic
Design oriented – 1995, a 3 days FPGA Workshop, Texas Instruments,

Germany – 1993. He is an IEEE member since 1999.

 Activities: Invited Professor, DH Loerrach, Germany, EU Expert –
appointed grant reviewer in Bulgaria, Initiates the Remote Access Electronic

Lab in Electronics Faculty Timişoara, România, International Program

Committee member, Programmable Devices and Systems conferences, IFAC,
National reviewer for Romanian grants, Workshops and trainings dedicated to

Digital Electronics Fundamentals and Microcontrollers at Solectron,
Timişoara, Workshops and trainings dedicated to Digital Electronics

Fundamentals and Microcontrollers at Siemens VDO, Timişoara, IEEE

Member, 1994 - Member in the π - TEAM (research team), Texas
Instruments, Europe, 1993 Appointed lecturer for Texas Instruments FPGA

Workshops and Seminars in Romania. He has over 70 papers, 5 books and

over 20 grants. Interests: VHDL, FPGA, C.NET programming.
Prof. Aurel Gontean, PhD is a PhD advisor in the Faculty of Electronics

and Telecommunications, “Politehnica” University of Timişoara, România.

Ioan Lie is associate professor in the Faculty of Electronics and

Telecommunications, “Politehnica” University of Timişoara, România. He

was born in Recea, Braşov, România in October 28, 1961. Other jobs:
Engineer at “Electrotimis” Ltd. Timişoara, Timteh Electronics Ltd. Company

(Timişoara, România), The direct customers of Timteh Ltd. was Rada

Electronic Industries, Tel Aviv, Israel and Elbit Systems Ltd. Haifa, Israel.
Activities: development and implementation of software for testing Boeing

737, Boeing 777, DC-10 and Concorde airplane electronics units on the

specific Automatic Test Equipment (ATE), development and implementation
of hardware for digital video recorder, collaboration with Metrys Gmbh,

Germany, regarding Hardware and Software solutions for: Water Meters, Heat

Costs Allocators, Transit-Time Ultrasonic Liquid Flow Meters, AMR
(Automatic Meter Reading) and RFID. He has over 30 papers, 2 books and 8

grants. Interests: Electronic Design Automation, Methods and

Implementations for Ultrasonic Measurement and Testing, Programmable
Logic, Microcontrollers and Microprocessors, Automatic Test Equipments,

Software for applications

Assoc. Prof. Ioan Lie, PhD is at Applied Electronics Department, Faculty
of Electronics and Telecommunications, “Politehnica” University of

Timişoara, România.

Mircea BăbăiŃă is lecturer in the Faculty of Electronics and

Telecommunications, “Politehnica” University of Timişoara, România. He

was born in Orăştie, Hunedoara, România in July 18, 1964. He had 6 weeks
scholarship at University of Strathclyde, Glasgow, Scotland – 2000, 2 weeks

scholarship at University of Mannheim, Germany – 2002.

Activities: development and implementation of hardware and software for
regarding DSP Utilization for MCC Motor Drives, development and

implementation of hardware and software for E-learning Distance Interactive

Practical Education in Power Electronics. He has over 50, 6 books and over
20 grants. Interests: Digital Logic, Microcontrollers and Microprocessors,

Power Electronics, Motor Drives, Fuzzy Logic.

Lect. Mircea BăbăiŃă is at Applied Electronics Department, Faculty of
Electronics and Telecommunications, “Politehnica” University of Timişoara,

România.

Proceedings of the International Conference on Applied Computer Science

225

