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Abstract: We propose in this study a hierarchical method for the problem of scheduling N jobs on M parallel ma-
chines where each machine should be maintained once during the planning horizon. The maintenance tasks should
be continuously executed because the maintenance resources are not sufficient. Our objective is to find a schedule
composed of the jobs and the maintenance tasks in which the total sum of the job’s weighted completion times and
the preventive maintenance cost are simultaneously minimized.
The proposed hierarchical method is essentially based on a linear model and an Evolutionary algorithm. Compu-
tational experiments are performed on randomly generated instances. The results show that the proposed method
is able to produce appropriate solutions for the problem.
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1 Introduction
In most manufacturing and industries shops, the pre-
ventive maintenance operations are necessary to keep
processing equipments in well working conditions.
According to our industry experience, the preventive
maintenance cost of a maintenance task depends on
the start execution time of the maintenance task. It
is considered minimal only if the task is performed
at an instant between two deadlines defined for the
task: the optimistic deadline and the pessimistic dead-
line. When ever the maintenance task begins before
the optimistic deadline or after the pessimistic dead-
line, the preventive maintenance cost associated to the
task increases. Sometimes, the resources ensuring the
maintenance are expensive. Hence, it is not possi-
ble to find more than one example of maintenance
resource ensuring the maintenance of the entire ma-
chines of the shop. In such a situation, when sev-
eral preventive maintenance deadlines arrive, just one
machine should be taken for preventive maintenance
and the remaining machines should continue work-
ing for different time periods without undergoing the
preventive maintenance activities. Generally, this be-
havior provides additional maintenance costs related
to the delayed preventive maintenance tasks. Indeed,
when a preventive maintenance task begins after its
pessimistic deadline, two important facts frequently
occur: The first one is related to the damages that may
affect the machine’s components. As consequence,

the machine performance may decrease and the fail-
ure risk increases. The second fact is related to the
defect products’rate that may quickly rise. The total
damage cost of the maintained machines may be op-
timized by establishing a maintenance plan for which
we define the starting time of each maintenance task.
Because many maintenance plans may exist, it is as-
sociated to each one a specific machines availabili-
ties plan. Hence, to optimize the global solution of
scheduling maintenance tasks and jobs, it is recom-
mended to jointly schedule the maintenance activities
and the jobs. In the literature, few researchers were in-
terested with the problem of jointly schedule jobs and
maintenance activities. Lee et al.[9] treated two cases
for this problem. In the first case, they consider suf-
ficient maintenance resources. In the second case, the
maintenance resources are not sufficient so that just
one machine may be maintained at a time. Both cases
are shown NP-hard and solved by a branch and bound
algorithm based on column generation approach. Re-
sults show that the branch and bound algorithm is
capable to solve optimally medium sized problems
within a reasonable computational time. Graves et al
[5] solved the problem of scheduling a set of jobs on
a single machine using a dynamic programming ap-
proach. The machine should be maintained in certain
intervals and when a job is not completely handled be-
fore the machine is turned off for maintenance, a set
up time is needed before restart the treatment. The
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authors optimize two criteria: the total weighted jobs
completion times and the maximum delay. Aghezzaf
et al [1] are interested with the batch production type
problem. Random failures may affect the production
system and at each maintenance intervention the pro-
duction system is turned off. In their study, they aim to
determine a plan for which the cost of production and
maintenance is minimized. The problem was solved
using a linear programming approach.
In this article we aim to find a schedule composed of
N jobs and M maintenance tasks for which the sum of
the weighted completion times of the jobs and the pre-
ventive maintenance tasks’ cost are minimized. The
preventive maintenance cost corresponds to the total
early-tardy cost of the preventive maintenance tasks.
The tardy cost is the damage cost caused by tardy ex-
ecution of a preventive maintenance operation. Sim-
ilarly, the early cost is the consequence of early exe-
cution of a preventive maintenance activity. In other
words, the early cost corresponds to the part of the
process equipment that is not efficiently used. The re-
mainder of this paper is organized as follows: in sec-
tion 2, a description of the problem and necessary no-
tations are presented. In section 3, we describe the
hierarchical method that is essentially based on a lin-
ear model and an evolutionary algorithm. In section
4, computational results will be discussed. Finally
we conclude by summarizing the main proposals pre-
sented in this paper.

2 Problem description and notations
The considered problem consists of scheduling a set
of N jobs on M parallel machines where each machine
should be maintained once during the planning hori-
zon. A job i has a processing time pp

i and a weight
wp

i . For each machine j, corresponds a preventive
maintenance task j characterized by a processing time
pm

j , an optimistic deadline dj1, a pessimistic dead-
line dj2, greater or equal to dj1, a tardy weight wm

j ,
an early weight hm

j and a minimal preventive main-
tenance cost Cm

j0. For the reason that the preven-
tive maintenance resources are not sufficient, the run-
ning of the preventive maintenance tasks on the ma-
chines should be continuous during the planning hori-
zon. In fact, when a preventive maintenance task j
begins at an instant from the [dj1 dj2] interval, the
preventive maintenance cost is minimal and equal to
Cm

j0. Otherwise, if the preventive maintenance task
j starts before its optimistic deadline dj1, the result-
ing preventive maintenance cost increases and will be
equal to hm

j (dj1 − tj) + Cm
j0 where tj is the start-

ing time of the task j. Similarly, when the preventive
maintenance task j begins after its pessimistic dead-

line dj2, the preventive maintenance cost will be equal
to wm

j (tj − dj2) + Cm
j0. Our objective in this study

is to provide a schedule composed of the N jobs and
the M preventive maintenance tasks for which the to-
tal weighted completion times of the N jobs and the
preventive maintenance cost are simultaneously mini-
mized.

3 The hierarchical method
In this section we describe our proposed hierarchi-
cal method used to produce an upper bound for
the problem described above. The method consists
of decomposing the original problem into two sub-
problems. The first sub-problem concerns the main-
tenance plan for which the preventive maintenance
cost should be minimized by solving optimally the
early-tardy cost minimization problem on a single ma-
chine (1|dj1dj2|

∑
hiEi +wiTi). The elaborated solution

for this sub-problem should provide all the starting times
of the maintenance tasks allowing a minimal preventive
maintenance cost. In other words, by solving this sub-
problem, the availabilities of the machines on the entire
planning horizon are obtained. Given the availabilities of
the machines, we move to solve the second sub-problem of
scheduling the N jobs on M parallel machines with avail-
abilities constraints (Pm, hj1||

∑
wiCi). The sum of the

two sub-problem solutions gives an upper bound solution
for the original problem.

3.1 Linear model for 1|dj1dj2|
∑
hiEi + wiTi

In this sub-section we present a linear formulation for
the problem of 1|dj1dj2|

∑
wiEi + hiTi. We remain

that the main role of this linear model is to determine
the starting times of the maintenance tasks allowing a
minimal preventive maintenance cost. The proposed
formulation is a time-index formulation. The main idea
on which based this formulation consists of decomposing
the planning horizon, noted T, in time slots where each
time slot starts at time t and ends at time it t+1. According
to J.M. van den Akker [21], the major advantage of using
this time-index formulation is that the linear relaxation
obtained by dropping the constraint of variables integrity
provides generally a strong lower bound which dominates
the linear relaxations of other mixed integer programming
formulations based on other decision variables. A main
disadvantage of this formulation is that its linear relaxation
is sometimes time consuming especially when the planning
horizon is big. For our problem, let xit be a binary variable
taking 1 if the job i starts at time t and 0 Otherwise. Let us
define ti the starting time of the preventive maintenance
task i, Ti the tardiness that can be happen and Ei the ear-
liness that may happen . The proposed linear formulation
for the early-tardy cost minimization on a single machine
problem is:
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Min
M∑
i=1

hiEi + wiTi

Subject to

P−pi+1∑
t=1

xit = 1 ∀i = 1 . . .M (1)

M∑
i=1

t∑
s=Max(t−pi+1,1)

xis ≤ 1 ∀t = 1 . . . P (2)

P−pi+1∑
t=1

txit + Ei ≥ dj1 + 1 ∀i = 1 . . .M (3)

P−pi+1∑
t=1

txit − Ti ≤ dj2 + 1 ∀i = 1 . . .M (4)

P =
N∑

i=1

pp
i +

M∑
j=1

pm
j ; xit ∈ {0, 1} ∀i = 1 . . .M (5)

In this model, the equations (1) ensure that each job is pro-
cessed once. The second inequalities are resources con-
straints indicating that at most just one job can be handled
at a time slot. The third and the fourth inequalities decide
for each maintenance task to start early, tardy or on time.
Finally, the fifth constraints are integrity constraints. For
this formulation, the MIP solver ILOG Cplex 10.1 is able
to solve all our small instances with a size less or equal to
5 maintenance tasks in a time period less than 3 seconds.

3.2 An evolutionary algorithm for
Pm, hj1||

∑
wiCi

Evolutionary algorithms are probabilistic algorithms used
to provide excellent solutions in reasonable time for hard
and time complex problems. In a genetic algorithm, many
new solutions are created at each iteration (called also gen-
eration). A new obtained solution (called also a child solu-
tion) emanates from the crossing of two solutions from the
previous generation (called parents solutions). Sometimes,
the child solution may undergo a mutation operation before
it passes for evaluation (fitness). Generally, a genetic algo-
rithm is defined by the correspondingly elements: Initial
population, cross-over operation, mutation operation and
the replacement strategy.
The initial population
The initial population consists of a set of Np initial so-
lutions called individuals or chromosomes. The chromo-
somes of a population are usually randomly generated.
Sometimes they are determined by specific rules. Gener-
ally, the population’s size should not be large to not in-
crease the computational time of obtaining the final solu-
tion. On the other hand, it should not be small to not affect
the quality of the final solution. For our proposed genetic
algorithm, we generate an initial population of size of 100
chromosomes (Np=100). Each chromosome is randomly

generated and represented by a table of size of N genes. A
gene corresponds to a machine on which the job having as
number the index of the gene in the table is executed. The
following figure shows the used chromosome’s representa-
tion:

This chromosome’s representation is translated as follows
in a solution for the problem : We first establish the WSPT
sequence. After that, we test if the first job of the WSPT
sequence (job 1) may be assigned before the maintenance
task of the machine determined by the first gene in the ta-
ble. If it is possible, we assign it. If it is not possible we
assign it on the same machine after the maintenance task.
We repeat the procedure until assigning the task N of the
WSPT sequence.
The crossover operation:
In the cross-over operation, two parents should be selected
from the population of the current generation to generate at
least one child. In our genetic algorithm, only 90% of the
best chromosomes participate in the crossover operation.
At each cross-over operation, two children are produced.
The principle of parent’s selection is as follows: First the
1st parent and the 45th parent are selected. After that, the
second and the 46th parents, etc. . . until the 44th parent and
the 90th parent . After the selection of each two parents, we
randomly generate an integer k from the uniform [1, N].The
first childC1 inherits the subsequence [1,. . . , k] of its genes
from the first parent and its remaining empty genes [k+1,
. . . , N] from the second parent. The second child C2 in-
herits the subsequence [1, . . . , k] of its genes from the sec-
ond parent. After that, we fill its remaining empty genes
[k+1,. . . , N] from the first parent. The cross-over opera-
tor used to generate the children in our genetic algorithm is
called one opts cross-over operator.
The mutation operation:
In the mutation operation, an individual is randomly cho-
sen from the population to undergo a small modification.
In our algorithm, we apply the mutation on ten individuals
randomly chosen from the population. The slight modifi-
cation consists of permutation of two genes randomly se-
lected.
The replacement strategy:
In a genetic algorithm, the number of new solutions in-
creases from a generation to another. Keeping all gener-
ated solutions of the iterations should amplify the popula-
tion size. This fact may increase the computational time for
obtaining the final solution and also the algorithm may be
memory consuming. A replacement strategy that consists
of replacing the individuals (solutions) in the population
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with worst fitness by the new children with better evalua-
tions may be a good solution for a better performance of
the algorithm. In our implementation, we have taken at
each generation all the best 100 chromosomes.

3.3 Lower bound forPm, hj1||
∑
wiCi

The proposed lower bound is based on a Lagrangian relax-
ation technique where Lagrangian multipliers are identified
by a multiplier adjustment algorithm. The main principle is
that the maintenance tasks will be considered as new jobs
for which the weights should be computed and the process-
ing times are the maintenance tasks’ durations. By comput-
ing a good quality lower bound for this new problem and
subtracting the sum of the weighted completion times of
the maintenance tasks computed in the first sub-problem,
we obtain a lower bound value for Pm, hj1||

∑
wiCi

Definition 1 Let consider P1 the problem of scheduling N
jobs on M parallel machines. Each job i (i = 1. . . N) has
a processing time pp

i and a weight wp
i while each machine

j is not available during the time period [Tj1Tj2] for the
reason of preventive maintenance.

Definition 2 Let P2 denotes the problem of scheduling
N+M tasks on M parallel machines available all the time.
The N tasks correspond to the N jobs of P1 while the M
tasks (N+1,. . . ,N+M) are the maintenance tasks with pro-
cessing times equal to the unavailability periods of the
machines (pm

N+j = Tj2 − Tj1) and with weights wm
N+j

(j=1,. . . ,M) to be determined. Let W be the weights vector
of the new M jobs (W = (wm

N+1, . . . , w
m
N+M )).

Lemma 3 If γ(P2(W )) be a lower bound for the problem
P2 (Pm||

∑
wiCi), therefore the following expression is a

lower bound for P1: LB(W)=γ(P2(W ))-
∑M

j=1 wjTj2.

This bound has been introduced for the single machine
problem by Kacem and Chu[6]. Many lower bounds
exist in the literature for the problem P2. In this ar-
ticle we will use the lower bound proposed by East-
man et al. [3]. It is computed by the following ex-
pression: γ(P2(W )) = 1

M (
∑N

i=1 w
p
iC

p
i (WSPT ) +∑M

j=1 w
m
N+jC

m
N+j(WSPT )) + M−1

2M (
∑N

i=1 w
p
i p

p
i (P2) +∑M

j=1 w
m
N+jp

m
N+j(P2)) where Cp

j (WSPT ) is the com-
pletion time of the job j in the WSPT sequence and
Cm

j (WSPT )is the completion time of the maintenance
task j in the same WSPT sequence. According to Lower
bound formula, we first need to identify the Lagrangian
multiplier vector W. After that, we should determine the
WSPT order of the N+M jobs. Finally, we compute the
γ(P2(W )) value from which we subtract

∑M
j=1 wjTj2 to

obtain the lower bound value of our second sub-problem .
Many algorithms exist in the literature used to compute the
best value of W allowing a good quality lower bound for
P2. The most known methods are the sub-gradient method
and the multiplier adjustment method. In our implementa-
tion, we have used a multiplier adjustment method.

Identification of Lagrangian multipliers:
The identification of Lagrangian multipliers is an essential
step in a lower bound’s computation process. To obtain
a satisfactory quality lower bound, it is important to iden-
tify interesting values for the Lagrangian multipliers vector
W which maximize the lower bound function. Therefore,
to maximize LB(W), we need a sequence composed of the
(M+N) jobs for which the W vector provides a γ(P2(W ))
value as maximum as possible. The computed Lagrangian
multipliers should also satisfy, for each maintenance task i,
the conditions of the WSPT order. In other words, the ratio
pm

i

wm
i

of a maintenance tasks i should not exceed the ratio
pp

k

wp
k

of the first job k after the maintenance task i and should

not be less than the ratio
pp

k
′

wp

k
′

of the first job that precedes

the maintenance task i. By these restrictions, the Dual La-
grangian problem of the relaxed problem can be written as
follows:

MaxZ =
1
M

M∑
i=1

wm
i C

m
j (WSPT ) +

M − 1
2M

M∑
i=1

wm
i p

m
j

Subject to

wm
i ≥

pm
i w

p
k

pp
k

∀i = 1 . . .M (6)

wm
i ≤

pm
i w

p

k′

pp

k′
∀i = 1 . . .M (7)

wm
i ≥ 0 ∀i = 1 . . .M (8)

Cm
i corresponds to the completion time of the maintenance

task i in the WSPT sequence.

4 Computational results
To define a problem, we first need to identify the number
of jobs N and the number of machines M that corresponds
to the number of maintenance tasks. In our implementa-
tion, the number of jobs N ∈ {50 , 100 , 150 , 200 , 300}
while the number of machines M ∈ {1 , 2 , 3 , 4}. For the
jobs, the weights are randomly generated from the discrete
uniform distribution [1,. . . ,10] and the processing times
are randomly chosen from the discrete uniform distribu-
tion [1,. . . ,50]. To generate a maintenance task i, two
parameters are needed: the range factor R and the tardi-
ness factor T. By using these parameters, the optimistic
deadlines di1 are generated from the uniform distribution
[dmin,. . . ,dmin + Pmean], where dmin = max{0, x(T −
R
2 )} and Pm

mean =
∑M

i=1
pm

i

M . The pessimistic deadlines di1

are generated from the uniform distribution [di1, . . . , di1 +
Pmean]. The processing times for each maintenance task i,
are randomly determined from the discrete uniform distri-
bution [0.5P p

mean,. . . ,2P p
mean ] where P p

mean corresponds

to mean of the job’s processing times (
∑N

i=1
pp

i
+
∑M

i=1
pm

i

N ).
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Finally the earliness and the tardiness penalties are drawn
from the uniform distribution [1,. . . ,10]. 5 instances have
been generated for each combination of N, M, T and R. The
algorithms were coded in C language and implemented on
a Pentium IV-500 personal computer using concert tech-
nology technique with Cplex 10.1 to solve the Dual La-
grangian model of the proposed lower bound.
Table 1. Mean gaps value between the Genetic Algorithm
and the lower bound

M N Mean Gap (%) Max Gap(%) Min Gap(%)
2 50 0.4158 1,97 0,08

100 0,1257 0,47 0,03
200 0,0401 0,18 0,01

3 50 0,9977 2,22 0,40
100 0,3508 1,05 0,15
200 0,1266 0,29 0,06

4 50 1,7388 3,33 0,81
100 0,6775 1,41 0,33
200 0,2647 0,50 0,10

5 50 2,7841 5,24 1,36
100 1,0929 1,78 0,59
200 0,4460 0,88 0,23

The first column of table 1 represents the machine num-
ber M. The second column represents the jobs number N.
The third, the fourth and the fifth columns are respectively
the average gap between the solution of the genetic algo-
rithm and the based Lagrangian lower bound, the maximum
found gap and the minimum found gap.
From column 3, we can observe that for all produced upper
bounds, the average gap decreases when the job number
increases. From column 4 and 5, the maximum observable
gap is equal to 5,24% while the minimum gap is equal to
0,01%. Hence, we can conclude that both proposed genetic
algorithm and lower bound produce good quality upper and
lower bounds values for the second sub-problem for all in-
stances.
Table 2. Mean computational time for obtaining
a Genetic Algorithm solution

M N Time (s)
2 50 0,174

100 0,288
200 0,592

3 50 0,202
100 0,363
200 0,707

4 50 0,218
100 0,392
200 0,782

5 50 0,236
100 0,427
200 0,826

According to this table, we observe that for all generated
instances, the maximum mean computational time does not

exceed 1 second. Hence, we can confirm that the proposed
genetic algorithm is efficient in terms of quality solution
and computational time.

5 Conclusion
In this paper we have proposed an upper bound for the
problem of scheduling N jobs on M parallel machines
where each machine should be maintained once during the
planning horizon. We have simultaneously minimized the
total sum of the job’s weighted completion times and the
preventive maintenance cost. The proposed upper bound
solution is obtained by a hierarchical method that consists
of decomposing the problem into two sub-problems: The
first sub-problem is called earliness-tardiness minimization
problem with a particular framework costs. The second
sub-problem is the problem of scheduling jobs on paral-
lel machines. For the first sub-problem, we have proposed
a linear model that allows the availabilities of the machines
during the planning horizon with a minimal maintenance
cost. For the second sub-problem, a Genetic algorithm and
lower bound were proposed. Computational results show
that the genetic algorithm and the lower bound for the sec-
ond subproblem of the hierarchical method produce excel-
lent initial solutions that may be used to perform the B&B
algorithm.
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