
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
Since the first case was reported in 1981, the 

infection by the human immunodeficiency virus 

(HIV), which caused AIDS (the acquired 

immunodeficiency syndrome), has been actively 

studied both in the laboratory and with computer 

modeling in order to understand the different 

aspects that regulate the virus-host interaction. In 

recent years, several mathematical models, mainly 

based on sets of ordinary or partial differential 

equations (ODE/PDE), have been developed to 

investigate the dynamics of HIV infection [1-2]. 

However, these approaches are limited in 

describing the spatiotemporal averaged behavior 

and inaccessible to the stochastic properties of 

HIV dynamics. This is because ODE/PDE 

approaches describe the system in terms of the 

average behavior as a whole–body level [3], while 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the interaction between the virus and host’s 

immunological response tends to be characterized 

by geometric communities. For example, after 

HIV enters a human body, the Langheran’s cells 

that reside in the lamina propria subjacent to the 

vaginal epithelium play a key role in both priming 

the initial virus-specific immune response and in 

serving as a carrier for the transport of antigen to 

the nearest lymphoid station. At the primary 

phase, HIV is mostly present in several isolated 

cells and some is exhibited in the germinal centers 

of a lymph node. Moreover; the follicular dendritic 

cell (FDC) network in the germinal centers of a 

lymph node traps and is dominant over the virus in 

the latency period. These phenomena are 

associated with an early dramatic decrease in the 

viral load and replication in the blood 

compartment. In contrast, an increase in these 

events are due to the degeneration of this 
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Abstract: As infection of target immune cells by HIV mainly takes place in the lymphoid tissue, cellular 

automata (CA) models thus represent a significant step of understanding when the infected population is 

dispersed over the tissue. Motivated by these considerations, we have introduced a stochastic CA model 

for HIV dynamics and, particularly, explored its spatiotemporal pattern of infection. In good agreement, 

the model is successful to reproduce the typical evolution of HIV which is observed in the dynamics of 

CD4
+
T cells and infected CD

+
T cells in infected patients. The geographical result illustrates how infected 

cell distributions can be dispersed by spatial community. We have found that pattern formation is based on 

the relationship among cell states, the set of local transition rules, the conditions and the parameters in the 

system. The main finding is that the characteristics of dead cells barriers, which greatly control pattern 

formation in our system, take part in limiting the spread of infection, as well as in bringing the system 

dynamics toward the end phase of the time course of infection. 
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compartment architecture in the later phase of  the 

disease.  

Many articles [4-7] have developed CA 

models to explain the dynamics of HIV infection. 

However, few models successfully describe the 

two time scales and three phase dynamics of HIV 

infection. For instance, the first model that could 

be used to describe the three phase dynamics of 

HIV was presented by Santos et al. [4]. The model 

used a set of 4 different states of CD4 
+
 T cells 

which could be healthy, infected – 1A , infected –

2A and dead. Each state was updated according to 

four simple rules. Although the basic Santos et 

al.’s model produced results that quantitatively 

matched the three-phase HIV dynamics observed 

in clinical data, critics raised one particular issue 

which was that HIVP = 0.05 was too large in 

comparison to clinical findings. Moreover, when 

HIVP  was too much smaller than 0.05, the initial 

infected peak did not occur in the model, and there 

was no distinct first phase dynamics. Then, based 

on the model of Santos et al., Sloot et al. [8] later 

investigated further about the model in order to 

discover the infectious dynamics when the drug 

treatment was performed. Instead of infecting all 

eight neighbors of an infected cell, the number of 

neighbors to be infected was set to N (0 7N≤ ≤ ) 

with the probability respP , and 8N = with the 

probability ( )1 respP−  in this work. The number 

N was used to mimic the drug effectiveness and 

respP represented the capability that the patient 

responds to the treatment. Sloot et al. 

demonstrated that their simulation results showed 

the temporal behavior of the immune system to 

drug treatment which corresponds qualitatively to 

clinical data. They also commented that the value 

0.05HIVP = which was used in their work was too 

large with respect to known clinical data, and 

suggested that a more realistic value should be 

0.05HIVP = instead.  

Moreover, another CA model, based upon 

realistic biological processes, including the virus 

replication cycle and mechanisms of drug 

treatment, was recently proposed by Shi et al. [5]. 

The novel approach of the model was that they 

incorporated the role of latently infected cells in 

sustaining HIV infection and included the effect of 

viral load on the infection rate in the model.  

Although the previous studies have shown 

that the typical evolution of HIV could be 

predicted and examined by CA models, none has 

yet investigated in detail the spatial distributions 

of the spread of infection. It therefore becomes our 

primary objective in this paper to construct a 

combined version of stochastic cellular automata 

models proposed by Santos et al. [4] and Shi et al. 

[5] in order to study the dynamics of HIV 

infection which spreads over the lymphoid tissue 

with parameter values appropriate to the case in 

which the antigens spread among CD4
+
T cells. 

(This idea is supported by the work of Figueirêdo 

et al. [10] which indicates that interaction within 

the lymph node occurs on an effective surface with 

a fractional dimension close to two instead of 

three). This paper aims to explore the 

spatiotemporal pattern formation of the spreading 

population, the knowledge of which may improve 

our understanding of the invasion of HIV in a 

mesh structure and the mechanisms underlying its 

dynamical behavior.  

 

 

2. CA Model and Simulations 
Since a lymphoid tissue, the target and major 

reservoir of HIV [5] has a mesh structure that 

could be viewed approximately as a rough surface 

[11] mostly compound with lymphocytes, we 

focus on a patch of the lymphoid tissue and 

represent it as a 2-demensional square lattice of 

grids. Each grid is the position occupied by one 

state of CD4
+
T cell whose state could be:  healthy 

(T ), infected stage 1 ( 1A ), infected stage 2 ( 2A ), 

latently infected ( 0A ) or dead (D ). The meaning 

of each state is defined as below:  

Healthy cell (T ): a cell that stays an uninfected 

state and is a target of HIV. 

Infected cell stage 1 ( 1A ): a cell that has been 

recently infected. It carries new virus particles and 

has not been recognized by the immune cells. 

Hence, it could infect the healthy easily. 

Infected cell stage 2 ( 2A ): an infected cell that has 

been attacked by the immune cells. This type of 

cell thus could infect the healthy only in case of 

their concentration is above some threshold.  

Latently infected cell ( 0A ): a cell that suddenly 

become a latent state after it has been infected. 

Cells in this state cannot be transmitted to other 

cells. 

Dead cell (D ): the state of an infected cell that is 

killed by immune response. 

To represent the patch of lymphoid tissue 

and avoid the finite size effect, we use the periodic 

boundary condition for the model and set the 

initial condition so that the healthy CD4
+
T cells in 

the system is randomly mixed by a fraction of 
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infected cell stage 1 ( 1A ) with probability HIVP . 

Then, in the process of simulation, we generate the 

entire course of HIV progression by changing the 

state of CD4
+ 
T cells in every time step according 

to the set of local transition rules shown below.  

 

 
 

Description 

 

Parameter 

 

Value/ 

Condition 

 

Boundary condition 

 

- periodic 

Lattice size, L L×  

 
L  100 

Neighboring cells 

 

N  8 

Probability of 

initial 1A cells 
HIVP  0.005 

Probability that a 

T cell becomes 

an 1A cell 

infP  0.999 

Probability that a 

T cell becomes an 

0A cell 

1 infP−  0.001 

Probability that an 

0A  cell is activated 
actP  0.0025 

Probability that a 

D cell position is 

replenished by a 

T cell 

replP  0.99 

Probability that a 

D  cell position is 

replenished by an 

1A  cell 

infecP  - 

Number of 2A cells 

in neighborhood to 

cause the center 

cell to become 

infected 

R  4 

Time delay for an 

1A cell to become 

an 2A cell 

1τ  4 

Time delay during 

with an 0A cell 

stays inactive  

2τ  30 

Simulation time 

 

- 200 

 

Table 1. Model parameters and conditions. 
 

 

Table 1 lists and all the parameters and 

conditions used in our model. Each time step of 

simulation corresponds to one week. The new state 

of a cell is dictated by the state of its neighbors 

with the Moore’s neighborhood with the 

neighborhood of range r  = 1. The number of 

neighbors [5] is ( )
2

2 1 1r + − .  

The results obtained from our simulations 

are shown in Figure 1. We note that although the 

number of free virus particles is seem to be 

playing a crucial role as proposed by Shi et al., we 

have ignored this parameter in our model. 

However, we have assigned it as proportional to 

the number of infected cells as done by Santos et 

al. instead. Also, our model is operated under the 

assumption that the percentage of healthy CD4
+
T 

cells and the percentage of infected CD4
+
T cells in 

our simulation results represent the cell dynamics 

in the lymphoid tissue and could be related 

directly to the trend in CD4
+
T cell count and 

plasma viremia in blood, respectively, of an HIV 

infected patient. 

The updating rules are as follows. 

(1) Rule for Healthy cells 

If a healthy cell (T ) is in contact with at 

least one infected cell stage 1 ( 1A ) or at least 

R cells of infected cell stage 2 ( 2A ), 

(A) The healthy cell becomes an infected cell 

stage 1 ( 1A ) with the probability infP . 

(B) The healthy cell becomes a latently infected 

cell ( 0A ) with the probability1 infP− . 

(2)  Rule for infected cells stage 1 

 If an infected cell stage 1 ( 1A ) has lived in 

the system for longer than 1τ  time steps ( 1t τ> ), 

the infected cell stage 1 ( 1A ) becomes an infected 

stage 2 cell ( 2A ). 

Otherwise, it remains the same state. 

(3) Rule for infected cells stage 2 

  An infected cell stage 2 ( 2A ) becomes a 

dead cell (D ) at the following step. 

(4) Rule for dead cells 

 A dead cell (D ) is replaced by a healthy cell 

(T ) with the probability replP  . 

Otherwise it remains unchanged with the 

probability1 replP− .  

 (5) Rule for latently infected cells 

 If a latently infected cell ( 0A ) has lived in 

the system for longer than 2τ  ( 2t τ> ) time steps, 

the latently infected cell ( 0A ) becomes an 

infected cell stage 1 ( 1A ) with the probability actP . 

Otherwise, it stays unchanged.   
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Figure 1. The natural course of HIV dynamics. 

The results obtained from our simulation averaged 

over 200 samples and the correlating standard 

error of the mean (SEM) with 100L = , 

0.05HIVP = , 0.999infP = , 0.0025actP = , 

0.99replP = , 2 4AR = , 1 4τ = , 2 30τ = . The orange 

curve corresponds to healthy cells ( )T , light blue 

the infected cells ( 1 2)A A+ , red the dead cells (D ) 

and violet the latently infected cells ( 0)A . The 

typical evolution of HIV is represented in two time 

scales (weeks and years) and divided into three 

phases, distinguished by the color shaded areas.  

 

   

3. Results and Discussion 
The simulation results are divided into three 

sections – Phase 1, Phase 2 and Phase 3 according 

to the three phases in the dynamics of HIV 

infection. 

Phase 1 – the acute phase of infection 

(corresponding to the time period from 1t to 

3t in Figure 1 and to the spatiotemporal patterns 

seen in Figures 2A-2C) 

The beginning configuration (week 1) 

corresponding to time 1t  depicts a square lattice 

sheet of healthy CD4
+
T cells which is randomly 

mixed by a fraction of infected CD4
+
T cells stage 

1 ( 1A ) with HIVP = 0.005 (Figure 2A).  Then, the 

initial 1A  cells are going to spread the virus to 

their healthy neighbors. We could observe the 

healthy cells surrounding the initial 1A cell 

transforming  into an infected cell stage 1, before 

the initial 1A  cells becoming weak and 

transforming into infected cells stage 2 ( 2A ) 

(after 1τ  steps) which characterizes the effect of 

human immunity to the antigens, dead state (D ), 

and then are replaced by the newly healthy cell in 

a step by step fashion. These events would give 

rise to each initial 1A cell generating a quadratic 
band of infected cells, of width ( 1 1τ + ), 

propagating in all directions in the subsequent 
time steps, and would lead to a rapid increase in 

the infected cell population ( ( 1 2)A A+ ) generally 

due to a high replication of HIV causing a rapid 

decrease in the number of healthy cells (T ). 

Figure 2. The lattice snapshots. Each grid in the 

lattice represents one CD4
+
 T cell position. The 

orange grid is a healthy (T ) position, the blue 

infected cell stage 1 ( 1A ), the green infected cell 

stage 2 ( 2A ), the violet latently infected stage 

( 0A ) and the red dead cell position (D ).  
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In our model, the distribution of initial 1A  

cells is randomized. We found that if the initial 

1A  cell coordinates are closer together, the 1A  

cells would continually propagate to infect the 

healthy neighbour cells with each time step, 
and the outer rings of infected cells ( 1 2)A A+  

would overlap with each other. The occurrence 
of these intersections would put a limit on the 

increment in infected population and confine the 

level of infected cells ( 1 2A A+ ) at the initial peak 

( 1c ), when 2 1t τ= . 

We have found that, for a fixed initial 

concentration HIVP of well distributed 1A  cells, in 

order for the infection dynamics to attain the 

highest initial infection peak ( 1c ), the mean 

distance between initial 1A  cells, d , should be 

not less than
1

HIVP
.  

With our model, the well distributed initial 

configuration attains the highest initial infection 

peak when the mean distance between two 

initial 1A cells is at least 14.14d ≈ . The eventual 

pattern of infection is then completely clustered 

and no overlapping occurs. 

The key point of this report is that the wall 

of dead cells, which we have named a dead cell 

barrier, occurs midway between the infected 

cells and the new T  cell population in every step 

(see Figure 2C). Due to the Moore’s 

neighborhood with the neighborhood of range r  = 

1, we emphasize the observation that this dead 

cell barrier would cause the 1A  cells to infect 

only the T  cells which are located around their 

outer boundary (outer zone), but definitely could 

not contaminate the new T  cells enclosed inside 

the inner zone. 

 Our simulated time course thus  shows 

the decrease in infected cells and the regain of T  
cells that mimic the initial HIV-specific immune 

responses, particularly due to HIV specific 

cytotoxic T lymphocytes (CTLs) [29-32] in real 
observations. 
 

Phase 2 – the latency/chronic phase of infection 

(corresponding to the time period 4t to 9t in 

Figure 1 and to the spatiotemporal patterns in 

Figures 2D-2J) 

The beginning of phase 2 is marked by the 

point in time when T  cells and infected cells 

( 1 2A A+ ) intersect, evolving to time 4t  (see 

also Figure 2D). The broadening of a dead cell 

barrier is associated with the regain of T  cells, 

while the infected cells are shrinking and are soon 

cleared out from the lattice. We note that the 

infected source which originates the wave 

structure in such a fashion (increase of 

infected cells, followed by a rapid clearing out) 

is called “an acute source”. This is because it has 

the same wave structure which is dominant in 

phase 1. Then, the lattice is left as only a field of 

healthy cells sparsely mixed with a few latently 

infected cells ( 0A ) (Figure 2E). The lattice would 

return to a completely healthy state if there is no 

latent state in this model). The configuration 

corresponds to time 5t  in the Figure 1 which 

represented the highest level of T  cells (or the 

highest period), of which percentage varies 

as infP .  

 

Phase 3 – on set of AIDS (corresponding to 10t  in 

Figure 1 and to the spatiotemporal patterns in 

Figures 2K-2L) 
Figure 2K shows the infectious pattern at the 

time when the number of T  cells has dropped 

lower than 20% of the total number of cells in 
lattice. We mark this threshold as the beginning of 

phase 3 or the onset of AIDS, evolving to time 10t . 

The infectious pattern appears like an invasive 

wave that eventually covers the entire lattice in 

such a way that, at every ( 1 3τ + ) time steps, it 

would launch a propagating wave front of 

infected cells of width 1 1τ + . Then, the invasive 

wave covers the whole lattice (see also Figure 
2L). The steady state is reached, in which the 

percentages of each cell state are kept relatively 

fixed and distribution patterns are unchanged.  
 

 

4. Conclusion 
Because cellular automata (CA) are discrete model 

that could successfully describe the two time 

scales (short scale in weeks, long scale in years) 
and reproduce the three distinctive phases of the 

HIV infection, we thus have studied the stochastic 

CA model for HIV dynamics with respect to the 

spatiotemporal pattern formation of CD4
+
T cells. 

From our investigation, we have found the 
pattern formation is based on the relationship 

among the cell states, the set of local transition 
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rules, the conditions and the parameters in the 

system. Due to the Moore’s neighborhood with the 

neighborhood of range 1r = , we have observed 

that the pattern of infectious wave which 

propagates in all directions is quadratic. We also 
have found that the probability of initial 1A cells, 

HIVP , and their distribution effect the percentage 

of infected cells at the initial peak ( 1c ). A large 

HIVP  would affect a higher level of infected cells 

at 1c than a smaller HIVP . However, for one 

HIVP value, the system in which the initial 

1A cells are well distributed at the first 

configuration would provide a more completely 

clustered configuration of infection, or a less 

overlapping one. This would lead to a higher 

initial infection peak ( 1c ) in the system than the 

one in which the seed distributions are crowded.  
Moreover, we have found the dead cell 

barrier is the major control factor in the cells 

dynamics in our simulations. We have noted 

that the wall of dead cells would divide the healthy 

cells (T ) into two zones: inner and outer zones 

of infectious clusters. The outer zone is bounded 
by infected cells and would be infected at each 

time step, while the T  cells located in the inner 

zone is bounded by the wall of dead cells and 
could not be infected. This event causes the 

accumulation of T  cells within the wall of dead 

cells constantly over time. Specifically, this 
spatiotemporal pattern formation would cause the 

rebounding of healthy cells at the early phase of 

infection in our simulations (and probably so 
too in those of Santos et. al.) which resembles the 

initial immune response specific to the antigen 

after the primary attack from HIV. 
The knowledge gained from our study may 

improve our understanding about the invasion of 

HIV in a mesh structure and the underlying 

mechanisms which could provide a valuable guide 

for future research to discover new measures for 

the prevention and treatment of HIV infection. 
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