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Abstract: In this paper, we briefly review some recent work on Hypercircle inequality for data error (Hide)
measured with square loss. We provide it in the case that the unit ball B is replaced by δB where δ is any positive
number. We study the problem in learning the value of a function in reproducing kernel Hilbert space (RKHS) by
using the available material fromHidewith different values of δ.Moreover, we compare our numerical experiment
to the method of regularization, which is the standard method for learning problem. We also discuss the effect of
the values of δ on the learning task under consideration.
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1 Introduction
In this paper, we briefly review some recent work
on Hypercircle inequality for data error (Hide) mea-
sured with square loss. We provide it in the case that
the unit ball B is replaced by δB where δ is any pos-
itive number. We study the problem in learning the
value of a function in reproducing kernel Hilbert space
(RKHS) by using the available material from Hide
with different values of δ. Moreover, we compare our
numerical experiment to the method of regularization,
which is the standard method for learning problem.
We also discuss the effect of the values of δ on the
learning task under consideration.

Given an input-output examples {(tj , dj) : j ∈
Nn} ⊆ T ×R where T is an input set, and we use the
notation Nn = {1, 2, ..., n}. The basic idea in learn-
ing problem is to determine a functional representa-
tion from data. Let the hypothesis space H be a re-
producing kernel Hilbert space (RKHS) of real value
function on a set T . That is, f : T → R is the func-
tional in the hypothesis space H, and dj is a data rep-
resentation of f(tj) for all j ∈ Nn. The real function
K of t and s in T is called a reproducing kernel ofH
if the following property is satisfied for every t ∈ T
and every f ∈ H

f(t) = 〈f,Kt〉

where Kt is the function of s ∈ T and Kt(s) =
K(t, s). The Aronszajn and Moore theorem [1] states
that a function K : T × T −→ R is a reproduc-

ing kernel for some RKHS if and only if for any in-
puts T = {tj : j ∈ Nn} ⊆ T the n × n ma-
trix G = (K(ti, tj) : i, j ∈ Nn) is a positive semi-
definite. Moreover, for any kernel K there is a unique
RKHS withK as its reproducing kernel. These impor-
tant and useful facts allow us to specify a hypothesis
space by choosing K.

Alternatively, we consider here the following
point of view. Given t0 ∈ T , we want to estimate
f(t0) knowing that ||f ||K ≤ δ and |d − Qf |22 ≤ ε
where Qf := (f(ti) = 〈f,Kti〉 : i ∈ Nn) and | · |2
is a euclidean norm on Rn. The standard method for
learning f(t0) is the method of regularization. Given
ρ > 0, we choose the function which minimizes the
Rρ functional defined for f ∈ H as

Rρ := |d−Qf |22 + ρ||f ||2K . (1)

According to the Representer Theorem [4, 10, 11, 14],
the function which minimizes (1) has the form

fρ(t) =
∑
j∈Nn

cρ(j)K(tj , t), t ∈ T (2)

for some real vector cρ = (G + ρI)−1d where I is
n×n identity matrix andG = (K(ti, tj) : i, j ∈ Nn).
We choose fρ(t0) as our estimator. Consequently, we
let ε2ρ := |d−Qfρ|22 and δ2ρ := ||fρ||2K . Next, we want
to compare this method to the midpoint algorithm. We
then define the interval of uncertainty

I(t0, ερ, δρ) = {f(t0) : |d−Qf |2 ≤ ερ, ||f ||K ≤ δρ}.
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Hence, the best choice for this number is a function
whose values at t0 is the midpoint of the interval
I(t0, ερ, δρ). To compare both methods, regularization
method and midpoint algorithm, we need to show that
the regularization estimator fρ(t0) can be viewed as
an element in the interval I(t0, ερ, δρ). According to
our previous work, we found that there is only one el-
ement, namely, fρ(t0) in I(t0, ερ, δρ). Therefore, our
strategy to compare the regularization and midpoint
estimator is to consider a bigger value of ε(ρ) and
δ(ρ). For this reason, we shall discuss and continue
to report some results from numerical experiments of
learning the value of a function in RKHS by midpoint
algorithm with different values of δ in section 3. In
section 2, we briefly review Hypercircle inequality for
data error measured with square loss and discuss what
we need for section 3.

2 Hypercircle inequality for data er-
ror

In this section we begin with a Hilbert space H over
the real numbers with inner product 〈·, ·〉. We choose
a finite set of linearly independent elements X =
{xj : j ∈ Nn} in H . We shall denote by M the
n−dimensional linear subspace of H spanned by the
vectors in X . Let Q : H → Rn be a linear operator
from H onto Rn, which is defined for any x ∈ H as

Qx = (〈x, xj〉 : j ∈ Nn). (3)

Alternatively, the adjoint map QT : Rn −→ H is
given at a = (aj : j ∈ Nn) ∈ Rn as

QTa =
∑
j∈Nn

ajxj (4)

and the Gram matrix of the vectors in X is

G = QQT = (〈xj , xl〉 : j, l ∈ Nn) (5)

which is symmetric and positive definite. Now, let us
describe Hypercircle inequality for data error (Hide).
We provide it in the case that the data error is mea-
sured with the euclidean norm. We refer the readers
to the paper [7] for more information about the proof
of Hide measured with any norm on Rn.

Definition 1 Let H be the Hilbert space over the real
numbers and X = {xj : j ∈ Nn} be a finite set of
linearly independent elements in H. Let E = {e : e ∈
Rn, |e|2 ≤ ε} where | · |2 : Rn → R+ is a euclidean
norm on Rn and ε is some prescribed positive number.
Let d be a given vector in Rn, and δ be a positive

number. The hyperellipse, H2(d|E(δ)), is the subset
of H, which is defined by

H2(d|E(δ)) = {x : x ∈ δB,Qx− d ∈ E}.

Thus, we begin this section by discussing when
H2(d|E(δ)) 6= ∅.

Lemma 2 H2(d|E(δ)) 6= ∅ if and only if

min
|e|2≤1

(d+ εe,G−1(d+ εe)) ≤ δ (6)

where (·, ·) is a euclidean inner product on Rn.

Next, we want to find the best estimator to op-
timally estimate one feature of an x ∈ H2(d|E(δ))
when we define a feature of x ∈ H as the
value of a linear functional Fx0 defined at x as
Fx0(x) = 〈x, x0〉. We then define the uncertainty set
by I(x0, d|E(δ)) = {Fx0(x) : x ∈ H2(d|E(δ))}.
Since H2(d|E(δ)) is a convex subset of H which is
sequentially compact in the weak topology on H, we
obtain the uncertainty set that is a closed and bounded
interval in R. Consequently, we have

I(x0, d|E(δ)) = [m−(x0, d|E(δ)),m+(x0, d|E(δ))]

where

m+(x0, d|E(δ)) = max{Fx0(x) : x ∈ H2(d|E(δ))}

and

m−(x0, d|E(δ)) = min{Fx0(x) : x ∈ H2(d|E(δ))}.

Hence, the best estimator is the midpoint of this inter-
val. Next, we observe that

m−(x0, d|E(δ)) = −m+(x0,−d|E(δ)).

Then, we only need to evaluate the two numbers
m+(x0,±d | E((δ))) and then compute the midpoint
mδ(x0, d|E) = 1

2(m+(x0, d | E(δ)) −m+(x0,−d |
E(δ)).

Next, we will describe a duality formula for the
right hand side of the interval of uncertainty. We start
out by introducing the convex function Vδ : Rn → R
defined for c ∈ Rn

Vδ(c) := δ||x0 −QT c||+ ε|c|2 + (c, d). (7)

In our theorem below, we shall provide the conditions
such that the function Vδ achieves its minimum at 0.

Theorem 3 If x0 6= 0 then the following statement
are equivalent:
(i) 0 = arg min{Vδ(c) : c ∈ Rn}.

(ii)
δx0

||x0||
∈ H2(d|E(δ)).

(iii)
δx0

||x0||
= arg max{〈x, x0〉 : x ∈ H2(d|E(δ))}.
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Now we are ready to state the sufficient condition on
H2(d|E(δ)) which ensures that the nonzero minimum
c∗ ∈ Rn is the unique solution of the function Vδ.

Theorem 4 If H2(d|E(δ)) contains more than one
point, x0 /∈M, and δx0

‖x0‖ /∈ H2(d|E(δ)) then

m+(x0, d|E(δ)) = min
c∈Rn

δ||x0−QT c||+ε|c|2+(c, d).

3 Numerical Experiments
In this section, we shall continue to report some re-
sults from numerical experiments in learning the value
of a function in RKHS by the midpoint algorithm with
different values of δ. Let H be a reproducing kernel
Hilbert space over real numbers (RKHS). Given any
set of points T = {tj : j ∈ Nn} ⊆ T where T is an
input set, the vector {xj : j ∈ Nn} appearing in sec-
tion 2 is identified with the function {Ktj : j ∈ Nn}
where Ktj (t) = K(tj , t), j ∈ Nn, t ∈ T . The Gram
matrix of the function {Ktj : j ∈ Nn} is given as
G = (K(ti, tj))i,j∈Nn .

Next, we choose the exact function g ∈ H and
then compute the vector Dg := (g(tj) : j ∈ Nn).
Then, we corrupt the data by additive noise. Thus, we
define d = Dg + e. Indeed, our problem becomes
as follows. Given t0 ∈ T , we want to estimate f(t0)
knowing that ||f ||K ≤ δ and |d − Qf |22 ≤ ε where
Qf := (f(tj) =< K(tj , ·), f >: j ∈ Nn) and | · |2
is a euclidean norm on Rn. As we briefly described
the regularization method in section 1, we give ρ >
0 and we choose the function which minimizes this
functional over H on the following

|d−Qf |22 + ρ||f ||2K .

Then, we obtain the minimizer function

fρ(t) =
∑
j∈Nn

c(ρ)K(t, tj), t ∈ T

where (G+ ρI)c(ρ) = d. We define

ε2ρ = |d−Qf |22 =
∑
j∈Nn

(1− λj
ρ+ λj

)2γ2
j

and

δ2ρ = ‖fρ‖2K =
∑
j∈Nn

λjγ
2
j

(ρ+ λj)2

where 0 ≤ λ1 ≤ ... ≤ λn are the eigenvalues of the
Gram matrix G corresponding to the orthonormal
eigenvectors uj : j ∈ Nn and d =

∑
j∈Nn

γju
j .

As we want to compare this method to the mid-
point algorithm, we then define the interval of uncer-
tainty

I(t0, ερ, δρ) = {f(t0) : |d−Qf |2 ≤ ερ, ||f ||K ≤ δρ}.

Since there is only one fρ(t0) in I(t0, ερ, δρ), our
strategy in comparing the regularization and midpoint
estimator, is to consider a bigger value of ε(ρ) and
δ(ρ). We choose ε = ε(ρ) and δ = αδ(ρ) where
α is in A = {1.5, 3, 6, 12, 24}. Moreover, we desire
here not only to estimate the value of function f at
one t0 but also we estimate the value of function f
at t−j ∈ T0 where T0 = {t−j : j ∈ Nk} for some
k ∈ N and T0 ⊆ T \T. To compare both methods for
any point t−j ∈ T0, we then compute a sum square
error between exact function g at the point t−j and
the function learned by using regularization method
fρ(t−j) and midpoint algorithm mδ(t−j) with differ-
ent values of δ. That is, we define the sum square error
of the regularization estimator by

Eρ(T0) =
∑
j∈Nk

|g(t−j)− fρ(t−j)|2

and the sum square error of the midpoint estimator by

em(T0, d|E(δ)) =
∑
j∈Nk

|g(t−j)−mδ(t−j)|2

and

Em(T0) = max
α∈A

em(T0, d|E(αδ(ρ)).

For the computation m+(x0,±d|E(δ)), we use
the program fminunc in the optimization tool box of
MATLAB 7.3.0. The results of sum square error are
shown in Tables 1 and 2 for both of the learning ap-
proaches.

3.1 Experiment 1

For the first experiment, we use the gaussian kernel on
R. Specifically, we choose

K(t, s) = Ks(t) = exp(−(t− s)2

50
) t, s ∈ R (8)

and the function g is chosen to be

g(t) = K0(t) + 15K2.7(t)−K4.7(t). (9)

The set T consists of 20 equally spaced points given
by the formulae t1 = −5.0, tj+1 = tj +0.5 and t11 =
0.5, tj+11 = t10+j + 0.5, for all j ∈ N9. We then
generate the data vector d = (dj : j ∈ N20) by setting
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dj = g(tj) + ej , j ∈ N20, where the error vector e is
generated randomly from a uniform distribution and
given by the formulae e1+j = (−1)j0.00207, e2+j =
(−1)j0.00607, e3+j = (−1)j0.0063, e4+j =
(−1)j0.0037, e5+j = (−1)j0.00575, j = 0, 5, 10, 15.

Next, we choose the set T0 which consists of 25
equally spaced points given by the formula t−1 =
−5.3, t−j−1 = t−j + 0.44 for all j ∈ N24. We
shall estimate the value of the function f(t−j) when
f ∈ H2(d|E(δ)) and for any t−j ∈ T0.

ρ
Sum Square Error

Eρ(T0) Em(T0, d|E(δ))
10−5 0.0310 0.0278
10−4 0.0585 0.4343
10−3 0.1577 0.0397
10−2 0.6382 0.0579
10−1 5.4352 0.2309

1 146.4015 8.0028
5 1.0456e+003 735.4432
10 1.7518e+003 1.5720e+003

Table 1: The sum square error obtained from Gaus-
sian kernel for two methods for different values of the
regularization parameter ρ.

Our computation above shows each of these quan-
tities as the values of ρ in the first column and the sum
square errors of regularization estimator in the sec-
ond column and those of the midpoint estimator in the
third column. Table 1 presents the sum square errors
between the exact function and the function learned
from the regularization method and the midpoint al-
gorithm.

Our computation indicates that the midpoint es-
timator for almost all the range of the regularization
parameter is better than the regularization estimator
although we pick up Em, which is the largest sum
square error of the midpoint estimator with the value
of δ = αδ(ρ) for all α ∈ A = {1.5, 3, 6, 12, 24}.

3.2 Experiment 2

In our second experiment, we choose the exact func-
tion

g(t) = K0(t)−
1
2
K 1

2
(t)−K− 1

3
(t) (10)

where

K(t, s) = Ks(t) =
1

1− ts
t, s ∈ (−1, 1) (11)

is the rational kernel on (−1, 1).

The set up is similar to that in Experiment 1. Data
dj are set as dj = g(tj) + ej , j ∈ N20 with ej are
similar to that in Experiment 1. Points tj are the point
of exact values in T = {tj : j ∈ N20}. The set of
T consists of 20 equally spaced points given by the
formulae t1 = −0.99, tj+1 = tj + 0.99 and t11 =
0.01, tj+11 = t10+j + 0.1, for all j ∈ N9. In this
experiment, we choose the set of T0 which consists of
14 equally spaced points given by the formula t−1 =
−0.97, t−j−1 = t−j + 0.15 for all j ∈ N13.

ρ
Sum Square Error

Eρ(T0) Em(T0, d|E(δ))
10−5 0.0192 0.0112
10−4 0.0030 0.0050
10−3 0.0087 0.0076
10−2 3.8727e-004 0.0055
10−1 2.6605e-004 2.4927e-004

1 0.0117 0.0082
5 0.1466 0.0030
10 0.4198 0.1306

Table 2: The sum square error obtained from ratio-
nal kernel for two methods for different values of the
regularization parameter ρ.

Table 2 depicts the sum square error evaluated on
14 data points for the regularization method and the
midpoint algorithm. Our computation again indicates
that the midpoint algorithm provides, at least in this
numerical experiment, better result than the regular-
ization method.

4 Conclusion
In this paper, we have provided some basic facts
about the Hypercircle inequality and discussed what
we need for section 3, which is the major theme of
this paper. In section 3, we discussed some results of
our numerical experiments of learning the value of a
function in RKHS. All our computation indicated that
the midpoint algorithm on the learning tasks provided,
at least in our computational numerical experiments,
better results than the regularization approach.
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