
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 
Many systems exhibit impulsive jumps or drops in 

one or more state variables. For example, 

predator-prey systems with periodic harvesting, 

pest management practice where natural enemies 

are released periodically to control insect pest, 

cancer growth under pulsatile effects of drug 

treatments, or physiological control systems such 

as bone remodeling process impacted by periodic 

hormone supplement protocols. Such external 

disturbances can stimulate irregular responses that 

may become difficult to control. Therefore, the 

stability and permanence of such systems are of 

great interest in the clinical point of view.  

The skeleton undergoes changes 

continuously and never attains a permanent state 

[1]. Loss of bone mass together with progressive 

architectural alterations continues throughout life, 

while the rate of alteration increasing with age. 

The severe loss of bone and the spontaneous 

fracturing of the remaining bone characterizes the 

condition called osteoporosis [2], a major disorder 

characterized by low bone mineral density, 

deterioration of bone tissue, and consequently 

resulting in bone fragility and susceptibility to 

fracture.  

 Bone plays an important role in the human 

body. It provides mechanical integrity and 

protection. Moreover, it is the major calcium of 

the body reservoir since over 99% of the total 

body calcium is stored in the skeleton. Prevention 

and  reversal of  bone  loss  require an   in depth  

construct to simulate the entire course of the HIV 

infection.  

In recent years, cellular automata (CA) 

models have been used in modeling HIV infection 

model in the lymph node [1, 2]. In 2001, a simple 

CA model was used to model the evolution of HIV 

infection in the lymph node by Zorenon dos 

Santos et al. [1]. The result of their model was 

capable of simulating the three phase pattern of 

HIV dynamics observed in critical data. Later, 

Sloot et al. [2] proposed a CA model to study the 

dynamics of drug therapy for HIV infection. The 

CA model was a modification of Zorenon dos 

Santos’ CA model. Recently, Veronica Shi et al. 

[3] also formulated a CA model based on Zorenon 

dos Santos’ CA model for HIV dynamics and drug 

treatment. Viral load, its effect on infection rate in 

the lymph node was included in the CA model.  

Most of these CA models only considered  

 

 

 

understanding of the remodeling process, namely 

bone resorption and formation including the action 

of hormones such as estrogen and parathyroid 

hormone (PTH).  

  The dynamical system of the bone tissue can be 

explained by the levels of the osteoclastic cells, 

which resorp bone, and osteoblastic cells which 

refill the resorption cavities created by the 

osteoclastic cells. In 2003, Rattanakul et al. [3] 

proposed and analyzed a mathematical model of 

the bone remodeling process consisting of the 

following nonlinear differential equations. 
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where P is the level of the parathyroid hormone 

above the basal level at time t , C is the density of 

the active osteoclastic cells at time t , and B is the 

density of  the active osteoblastic cells at time t. 

The first term on the right of Equation (1) is the 

rate of increase of PTH which is inhibited by the 

osteoclastic cells. The first term on the right of 

Equation (2) is the rate of osteoclastic production 

which is initially stimulated by PTH at low levels 

of the hormone, but is eventually inhibited at 

higher levels of PTH, hence the square term in the 

denominator of this term. The first term on the 
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right of Equation (3) is the rate of osteoblastic 

production stimulated by PTH, while the second 

term here is the rate of osteoblastic cells which 

saturates at higher level of PTH. The last terms in 

all these three equations are the respective removal 

rates of the corresponding state variables. More 

detail of the derivation of the above model may be 

found in the work of Rattanakul et al. [3]. 

It has been observed that PTH has a very 

fast dynamics [3 - 5] so that it equilibrates 

relatively quickly to the level where 0
dP

dt
= , at 

which point 

1

1 1( )

c
P

d k C
=

+
   (4) 

We may also assume that the zero order 

stimulation of osteoclastic production in the 

absence of hormonal or osteoblastic stimulations is 

neglegible, so that a2 = 0. 

 We suggest an impulsive system to model 

the process subject to periodic PTH supplements 

and first investigate the bounded property of the 

model solutions in the next section. Then, the 

periodic behavior asymptotic stability of the 

system solutions at vanishing level of active 

osteoclastic cells density are investigated in 

Section 3. The conditions are then given in Section 

4. under which the state variables remain bounded 

and non-vanishing and as such the system remains 

permanent. Supercritical periodic solutions are 

shown to exist under appropriate conditions on the 

system parameters. Numerical simulations are 

given in support of the theoretical predictions in 

the discussion and conclusion section. 

 

 

2. Impulsive System 

As reported by Prank et al. [5, 6] pulsatile 

hormone secretion is observed in almost every 

hormonal system. The frequency of episodic 

hormone release ranges from approximately 10 to 

100 pulses in 24 hours. This temporal mode of 

secretion is an important feature of intercellular 

information transfer in addition to a dose-response 

dependent regulation. We thus incorporate the 

pulsatile hormone stimulus, such as that due 

periodic PTH supplements. This can result in an 

abrupt drop in C in proportion to its level at the 

moment, and an abrupt jump in B in the form of a 

constant increment.                    

 Letting 1x C= , 2x B= , for convenience, we 

are then led to the following system, where 

positive decreasing function 1( )f x  is used for the 

effect of the level of 1 2,  on x x . 
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where   

   1 1 1 2 2 2( ) ( ) ( ), (t) = ( ) ( )x t x t x t x x t x t+ +∆ = − ∆ −  

p is the fraction of osteoclasts inhibited by PTH 

supplements, 0 1,p< < and 0µ > is the increment 

in osteoblasts due to hormone supplements. The 

function 1( )f x  may be any non-increasing 

function of 1x . From Equation (4) in our bone 

model [3] the function is taken to be 
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we need the following definition. 

Definition 1. We denote by  1 2( , )=F F F  the 

map defined by the right hand side of the system  

(5)-(6) and let 
2: .V R R R+ + +× →

0Then,  is said to belong to class  ifV V  
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2. V is locally Lipschitzian in X. 
2

0Suppose . Then, for ( , ) ( ,( 1) ] ,

the upper right derivative of  ( , ) with respect to 

the (5)-(8) is defined by
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1
( , ) limsup [ ( , ( , )) ( , )]

h

V t X V t h X hF t X V t X
h+→

= + + −+D   

 We assume that the solution of (5)-(8), denoted by 

( )X t  = (x1(t), x2(t)) is continuous on 

( ,( 1) ],   and  nT n T n Z++ ∈ lim ( ) ( )
t nT

X t X nT
+

+

→
=  

exists. Then the global existence and uniqueness 

of solutions to (5) – (8) is guaranteed by the 
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smoothness properties of F. It is straight forward 

to prove the following result and thus it will be 

stated without proof. 

Lemma 1.  Suppose (x1(t), x2(t)) is a solution of 

(5) – (8) with xi (0
+
) > 0. Then xi (t) > 0 for all t > 

0.  

In what follows, we suppose 1 1( )x f x is bounded 

so that 

1 1 1 2 1sup ( ), sup ( )

   

M x f x M f x= =    
 

We then state and prove the following. 

 

Lemma 2.  There exists a constant M > 0 such 

that, for t large enough, 

, 1, 2,  provided    ix M i≤ =  

3 1
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By Lemma 2.2 in the work of Lui et al. [7], 
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So, v(t) is uniformly ultimately bounded. Hence, 

by the definition of v(t), there exists a constant M 

> 0 such that  

 , 1,2.    ix M i≤ =  

for large t. 

 

 

3. Stability at Vanishing Active   

    Osteoblasts  

1Putting 0,  we have a reduced systemx =
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Assuming A > 0, a positive periodic solution of 

(10) – (11) is 
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For ( ,( 1) )t kT k T∈ + . Thus, we have the 

following result. 

 
Lemma 3. System (5) – (6) has a periodic solution 

and for every solution ( )x t
ɶ

 = (x1(t), x2(t)) of (5) – 

(6) we have  
2( ) (0, ( )) as x t x t t→ → ∞ɶ

ɶ
  

Now, we let 

     3

2

2

(0)

(0)

a f

k f
≡

+
C             (13) 

and state a result on the asymptotic behavior of the 

solutions ( )x t
ɶ

 of (5) – (6). 
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Theorem 1. Suppose 
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Consider a small perturbation from the point 
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According to the Floquet theory, the stability of  

2(0, ( ))x tɶ  depends on the eigenvalues  of 
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4. Sustained Oscillation  
It is now more convenient to exchange the state 

variables and consider instead the following 

system.    
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Relying on the notations used by Lakmeche and 

Arino [8], we let 
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where 0τ  is the root of  0d ′ = 0. We see that 0d ′ > 0 
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provided  
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4 2

3 (0)

a k
a

k f
<
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Thus, * 0 and * * 0C B C> < , and, by Lakmeche 

and Arino [8], we are thus able to prove the 

following result. 

 

Theorem 3. The system (1.1)-1.3) has a positive 

periodic solution which is supercritical provided 

(9), (14), (15), (19) hold and T > Tmin. 

 

 

5. Conclusion 
We have investigated the boundedness and 

permanence of the bone remodeling process under 

impulsive external interferences. The case where 

active osteoclastic cells level may entirely vanish 

has also been investigated. We found that 

oscillatory behavior in the active osteoblastic cells 

density can still be observed provided the period 

and strength of the hormone supplementary 

impulses satisfy certain control conditions. 

Figure 1. shows the sustained oscillations in 

both state variables in the case that the system is 

permanent, system parameters chosen to satisfy 

the conditions given in Theorem 3. Here, the 

period of hormone supplements is T = 200 > 

min 8.005T = . The solution trajectory is seen in 

Figure 2(b) to approach a stable limit cycle as time 

passes. 

 

 

FIGURE 1. Numerical simulation of Equations 

(5) – (8) showing the solution trajectory 

approaching  the limit cycle as time progresses. 

Here, a1 := 0.05; a3 := 0.0675;   a4 := 0.009;   a5 := 

0.0045;   b1 := 0.1;   b2 := 0.03; b3 := 0.009;   k1 := 

0.1;   k2 := 0.5;   k3 := 0.025;    p := 0.9; ( )1 0x = 

0.1, ( )2 0x = 0.135, T = 200, µ  = 0.5, p = 0.9.  

 
 

Thus, we  see that it is possible to control 

the system’s dynamic behavior by fine tuning the 

period T of the impulsive inputs, or the impulse 

strength p or µ . According to Prank et al. [5], 

recent evidence links osteoporosis, a disease 

characterized by loss of bone mass and structure, 

to changes in the dynamics of pulsatile parathyroid 

(PTH) secretion. Our investigation is therefore 

expected to contribute to the better understanding 

of the different dynamic behavior which could be 

expected in the system under investigation, as well 

as assist in the decision making process on the 

choice of treatment protocols for its management 

and control. 
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