
Improved Artificial Bee Colony Algorithm for Constrained Problems 
 

           Ivona BRAJEVIC                              Milan TUBA                               Milos SUBOTIC 

       Faculty of Mathematics              Faculty of Computer Science         Faculty of Computer Science 

        University of Belgrade            University Megatrend Belgrade     University Megatrend Belgrade 

            Studentski trg 16                          Bulevar umetnosti 29                    Bulevar umetnosti 29 

                   SERBIA                                         SERBIA                                         SERBIA 

 ivona.brajevic@googlemail.com                tubamilan@ptt.rs                    milos.subotic@gmail.com 
 

 

Abstract: - In this paper an improved version of the Artificial Bee Colony (ABC) algorithm adjusted for 

constrained optimization problems is presented. It has been implemented and tested on several engineering 

benchmarks which contain discrete and continuous variables. Our results were compared to the results obtained 

by Simple Constrained Particle Swarm optimization algorithm (SiC-PSO) which showed a very good 

performance when it was applied to the same problems.  Our results are of the comparable quality with faster 

convergence. 
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1 Introduction 
Constrained Optimization problems have numerous 

applications. Engineering design is one of the 

scientific fields in which constrained optimization 

problems frequently arise [1]. These types of 

problems normally have mixed (continuous and 

discrete) design variables, nonlinear objective 

functions and nonlinear constrains. Constrains are 

very important in engineering design problems, 

since they are usually imposed in the statement of 

the problems and sometimes are very hard to satisfy, 

which makes the search difficult and inefficient. 

Different deterministic as well as stochastic 

algorithms have been developed for solving 

constrained optimization problems. Deterministic 

approaches such as sequential quadratic 

programming methods and generalized reduced 

gradient methods [2] are inflexible to adapt the 

solution algorithm to a given problem. Generally a 

given problem is modelled in such a way that a 

classical algorithm can handle it [3]. This generally 

requires making several assumptions which might 

not be easy to justify in many situations. Therefore 

their applicability is limited. On the other hand, 

stochastic optimization algorithms such as Genetic 

Algorithms, Evolution Strategies, Evolutionary 

Programming and Particle Swarm Optimization 

(PSO) do not make such assumptions and they have 

been successfully applied for solving constrained 

optimization problems during the past few years [1].  

Karaboga has described an Artificial Bee Colony 

(ABC) algorithm based on the foraging behaviour of 

honey bees for numerical optimization problems [4]. 

Karaboga and Basturk have compared the 

performance of the ABC algorithm with the 

performance of other well-known modern heuristic 

algorithms such as Genetic Algorithm (GA), 

Differential Evolution (DE), Particle Swarm 

Optimization (PSO) on unconstrained and 

constrained problems [5[,  [6]. It has been shown 

that the ABC algorithm can be efficiently used for 

solving unconstrained and constrained optimization 

problems. In this work, our approach to the ABC 

algorithm for constrained optimization problems 

called SC-ABC (Simple Constrained ABC) was 

applied to real engineering problems existing in the 

literature and its performance was compared with 

the performance of Simple Constrained Particle 

Swarm Optimizer (SiC-PSO) [1]. SiC-PSO 

algorithm showed a very good performance when it 

was applied to several engineering design 

optimization problems. 

This paper is organized as follows. Section 2 

describes the ABC algorithm for constrained 

problems. Section 3 presents our proposed 

approach. Section 4 describes three benchmark 

problem formulations. Section 5 presents the 

experimental setup adopted and provides an analysis 

of the results obtained from our empirical study. 

Our conclusions and some possible plans for future 

research are provided in Section 6. 

 

 

2 The ABC Algorithm for 

Constrained Optimization Problems 
General constrained optimization (CO) problem is 

to find x so as to 

minimize f(x), 
n

n Rxxx  ),...,( 1  where SFx   
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The objective function f  is defined on the search 

space nRS   and the set SF  defines the feasible 

region. The search space S is defined as an n-

dimensional rectangle in nR . The variable domains 

are limited by their lower and upper bounds: 
 

iii uxl  , ni 1  
 

whereas the feasible region SF   is defined by 

a set of m additional constraints ( 0m ): 
 

,0)( xg j  for qj ,...,1  

,0)( xh j  for mqj ,...1  
 

In order to handle the constraints of this problem, 

the ABC algorithm employs Deb’s rules [7], which 

are used instead of the greedy selection employed 

between iv and ix  in the original version of the 

ABC [4]. Deb’s method uses a tournament selection 

operator, where two solutions are compared at a 

time by applying the following criteria:  
 

 Any feasible solution satisfying all constraints is 

preferred to any infeasible solution violating 

any of the constraints 

 Among two feasible solutions, the one having 

better fitness value is preferred 

 Among two infeasible solutions, the one having 

the smaller constraint violation is preferred 
 

Scout phase of the algorithm provides a diversity 

mechanism that allows new and probably infeasible 

individuals to be in the population. Beside of Deb's 

rules, the second change in ABC for CO problems is 

in order to produce a candidate food position from 

the old one in memory. The adapted ABC algorithm 

uses the following expression: 
 

 (1) 

 

instead the expression in ABC algorithm: 
 

    )( kjijijijij xxxv                   (2) 

 

where },...,2,1{ SNk  and },...,2,1{ Dj  are 

randomly chosen indexes where k has to be different 

from i and ij  is a random number between [-1, 1]. 

SN denotes the number of food source positions, D 

is the number of optimization parameters and Rj, 

},...,2,1{ Dj , is a randomly chosen real number in 

the range [0,1]. MR, the modification rate, is a 

control parameter that controls whether the 

parameter ijx  will be modified or not. In adapted  

ABC algorithm, artificial scouts are produced at a 

predetermined period of cycles for discovering new 

food sources randomly. This period is another 

control parameter called scout production period 

(SPP) of the algorithm. At every SPP cycle, it is 

checked if there is an abandoned food source or not. 

If there is, a scout production process is carried out. 

 

 

3 Proposed Algorithm: SC-ABC 
In our proposed approach (called Simple 

Constrained Artificial Bee Colony, or SC-ABC) as 

in the ABC for constrained problems, algorithm 

uses Deb’s rules instead of the greedy selection in 

order to decide what solution will be kept. The 

expression for evaluating probability that an 

onlooker bee goes to the i-th food source 

position ),...,,( 21 iDiii xxxX  , where )( iXF  

refers to the nectar amount of the food source 

located at iX  , is: 

         





SN

k

k

i
i

XF

XF
p

1

)(

)(                         (3) 

 

Equations (2), (3) and the expression for 

initialization new food sources: 
 

 )( iiiij lulx    (4) 

 

where },...,2,1{ Dj , li and ui are the lower and 

upper bound of the parameter ijx  and   is a random 

number in the range [0, 1), remained the same as in 

the version of the ABC proposed for unconstrained 

optimization problems.  

SC-ABC algorithm has changed the initialization 

phase and the scout phase compared to the ABC. In 

the initialization phase only the first initialization of 

food sources is completely random. In other 

initialization phases the first new food source is the 

food source from the previous run of the algorithm 

which has the best fitness value. In other words, the 

runs of the SC-ABC algorithm are not completely 

independent. Therefore, exploitation of the good 

sources was increased. In order to increase the 
exploration the scout bee’s phase was changed. In 

the scout phase the algorithm checks every possible 

solution. If the solution is not feasible, that food 

source is replaced with a new randomly produced 

solution. 

 

The pseudo code of the SC-ABC algorithm is: 
 

otherwise

MRRif

x

xxx
v

j

ij

kjijijij
ij







 


,

,)(
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1. Initialize the population solutions ijx , 

SNi ,...,2,1 , Dj ,...,2,1  by  Eq. (4)  for the 

first run. For every other run, if exists, jx1 , 

},...,2,1{ Dj  is the best solution from previous 

run and ijx , i = 2,...,SN, j = 1,...,D are randomly 

produced solutions by Eq. (4) 

2. Evaluate  fitness  value of the population 

3. cycle = 1 

4. repeat 

5. Produce new solutions ijv  for the employed 

bees by using Eq. (2) and evaluate them 

6. Apply selection process based on Deb’s method 

7. Calculate the probability values ijP for the 

solutions ijx by Eq. (3) 

8. Produce the new solutions ijv  for the onlookers 

from the solutions ijx  selected depending on 

ijP and evaluate their fitness value 

9. Apply selection process based on Deb’s method 

10. Determine the abandoned feasible solution for 

the scout, if exists, and replace it with a new 

randomly produced solution ijx  by Eq. (4) 

11. Every infeasible solution replace with randomly 

produced solution ijx  by Eq. (4) 

12. Memorize the best solution achieved so far 

13. cycle = cycle + 1 

14. until cycle = MCN  
 

The original ABC can be applied only to the 

continuous problems. However, the method can also 

be expanded to the discrete problems using discrete 

numbers. The state variables were treated in the SC-

ABC as follows: for continuous variables, initial 

values were generated randomly between upper and 

lower bounds of the specification values. The value 

was also modified in the employed and onlooker 

bee’s phases between the bounds. For discrete 

variables, they could be handled in Equations (2) 

and (4) with a small modification, i.e., as though 

they were continuous with nearest available discrete 

values then being chosen. In that way, both 

continuous and discrete numbers can be handled by 

the algorithm with no inconsistency. 

 

4 Benchmark Problems 
Proposed approach to Artificial Bee Colony 

Algorithm for constrained optimization problems 

(SC-ABC) was applied to three numerical examples, 

pressure vessel design optimization problem, 

tension/compression spring design optimization 

problem and speed reducer design optimization 

problem [1]. These non-linear engineering design 

problems have discrete and continuous variables. 

These problems represent optimization situations 

involving discrete and continuous variables that are 

similar to those encountered in everyday mechanical 
engineering design tasks. 
 

 

4.1 Pressure Vessel design optimization 

problem 
This example is to design a compressed air storage 

tank with a working pressure of 3000 psi and a 

minimum volume of 750 ft
3
. A cylindrical vessel 

(Fig.1) is capped at both ends by hemispherical 

heads. Using rolled steel plate, the shell is made in 

two halves that are joined by the longitudinal welds 

to form a cylinder. The objective is to minimize the 

total cost, including the cost of the materials 

forming the welding. The design variables 1x - the 

spherical head thickness and 2x  - the shell 

thickness have to be integer multiples of 0.0625 

inch which are the available thickness of rolled steel 

plates. The radius 3x  and the length of the shell 4x  

are continuous variables. 
 

  
 

Fig.1: Pressure Vessel design 
 

The mathematical model of the problem is: 

 

Minimize

 

4
2

1
3

32

3
2

1431

1661.37781.1

84.196224.0)(

xxxx

xxxxxXf




     (5) 

 

subject to: 
 

00193.0)( 311  xxxc  

00954.0)( 322  xxxc

01296000
3

4
)( 3

34
2

33  xxxxc 

0240)( 44  xxc  
 

where the bounds are: 0625.0990625.01 1  x , 

0625.0990625.01 2  x and 200,10 43  xx  

 

Best solution is 714335.6059*)( xf , where 

)636596.176,098446.42,4375.0,8125.0(*x . 
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4.2 Tension/compression spring design 

optimization problem 
This problem minimizes the weight of a 

tension/compression spring, subject to constraints of 

minimum deflection, shear stress, surge frequency, 

and limits on outside diameter and on design 

variables. There are three continuous variables: the 

wire diameter 1x , the mean coil diameter 2x , and 

the number of active coils 3x . The schematic of a 

pressure vessel is shown in Fig.2. 
 

 
 

Fig.2: Tension/Compression Spring 
 

The mathematical model of the problem is: 
 

Minimize  

2
2

13 )2()( xxxXf           (6) 

subject to: 

0
7178

1)(
4

1

3
3

2
1 

x

xx
xc  

01
5108

1

12566

4
)(

14
1

23
1

21
2

2
2 






xxxx

xxx
xc  

 

0
45.140

1)(

3
2

2

1
3 

xx

x
xc  

 

01
5.1

)( 21
4 




xx
xc  

 

where the bounds are: 0.205.0 1x , 

3.125.0 2  x  and  3.10.2 3  x  
 

Best solution is 012665.0*)( xf , where 

)287126.11,356750.0,051690.0(*x . 

 

 

4.3 Speed Reducer design optimization 

problem 
The design of the speed reducer shown in Fig.3, is 

considered with the face width 1x , module of teeth 

2x , number of teeth on pinion 3x , length of the 

first shaft between bearings 4x , length of the 

second shaft between bearings 5x , diameter of the 

first shaft 6x , and diameter of the first shaft 7x . All 

variables are continuous except 3x  that is integer. 

The weight of the speed reducer is to be minimized 

subject to constraints on bending stress of the gear 

teeth, surface stress, transverse deflections of the 

shafts and stresses in the shaft. 

 
 

Fig.3: Speed Reducer 
 

The mathematical model of the problem is:  
 

Minimize  

)(78054.0

)(4777.7)(508.1

)0934.439334.14

3333.3(7854.0)(

2
75

2
64

2
7

2
6

2
7

2
61

3

2
3

2
21

xxxx

xxxxx

x

xxxXf









 (7) 

 

subject to: 
 

01
27

)(

3
2

21

1 
xxx

xc  

 

01
5.397

)(
2

3
2

21

2 
xxx

xc  

 

01
93.1

)(
4

632

3
4

3 
xxx

x
xc  

 

01
93.1

)(
4

732

3
5

4 
xxx

x
xc  

 

01109.16
0.750

110

0.1
)( 6

2

32

4

3
6

5 














xx

x

x
xc  

 

01105.157
0.750

85

0.1
)( 6

2

32

5

3
7

6 














xx

x

x
xc  

 

01
40

)( 32
7 

xx
xc  

 

01
5

)(
1

2
8 

x

x
xc  

 

01
12

)(
2

1
9 

x

x
xc  
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01
9.15.1

)(
4

6
10 




x

x
xc  

 

01
9.11.1

)(
5

7
11 




x

x
xc  

 

where the bounds are: 6.36.2 1x , 8.07.0 2  x  

, 2817 3  x , 3.83.7 4  x , 3.88.7 5  x , 

9.39.2 6  x , and 5.50.5 7  x  
 

Best solution is 348165.2996*)( xf , where 

)286683.5,350214.3,8.7,3.7,17,7.0,5.3(*x . 

 

 

5 Parameter settings, results and 

discussion 
Control parameters of the ABC algorithm are: 

swarm size, limit, number of employed bees, 

number of onlookers, number of scouts and 

maximum number of cycles [4]. In these 
experiments, the colony size was taken 40 and 
the maximum number of cycles was taken 4000. So, 

the total objective function evaluation number is 

240000. Each experiment was repeated 60 runs. The 

percentages of onlooker bees and employed bees 

were 50% of the colony and the number of scout 

bees was changeable, as it was described in previous 

section. The value of "limit" is equal )12( DSN  

where SN is the number of possible solutions and D 

is the dimension of the problem. The performance 

of the algorithm was considered in terms of the best 

and average optimum values, and the best solutions 

were recorded. Our approach to ABC algorithm has 

been implemented in Java programming language 

and run on a Pentium Core2Duo, 1.40-GHz personal 

computer with 2 GB RAM memory. 

Parameters adopted for SC-ABC algorithm are 

given in Table 1. 
 

Control parameters for SC-ABC algorithm 

swarm size 40 

limit SN*(2D+1) 

number of onlookers 50% of the swarm 

number of onlookers 50% of the swarm 

number of scouts changeable 
 

Table 1. Control parameters adopted for SC-ABC 

algorithm 
Tables 2, 3 and 4 show the solution vectors of the 

best solution reached by our approach to ABC 

algorithm and the values of the constrains for each 

of the problems tested. 

 

 Best solution 

x1       0.812500 

x2       0.437500 

x3     42.098187 

x4   176.640750 

c1(x)     -4.988451 

c2(x)     -0.035883 

c3(x)      -5.297613 

c4(x)     -63.359250 

f(x)  6059.768058 
 

Table 2. ABC solution vector for pressure vessel 

design optimization problem 

 

 Best solution 

x1   0.051871 

x2   0.361108 

x3 11.036860 

c1(x) -1.634E-7 

c2(x) -4.383E-5 

c3(x) -4.062131 

c4(x) -0.724680 

f(x)   0.012667 
 

Table 3. ABC solution vector for tension / 

compression spring design optimization problem 
 

 

 Best solution 

x1  3.500000 

x2  0.700000 

x3  17 

x4  7.300000 

x5  7.800000 

x6  3.350215 

x7  5.286683 

c1(x)  -0.073915 

c2(x)  -0.197996 

c3(x)  -0.499172 

c4(x)  -0.90147 

c5(x)  -2.220E-16 

c6(x)  -3.331E-16 

c7(x)  -0.702500 

c8(x)   0.000000 

c9(x)  -0.583333 

c10(x)  -0.051326 

c11(x)  -0.010852 

f(x) 2996.348165 
 

Table 4. ABC solution vector for speed reducer 

design optimization problem 
 

From Tables 2, 3 and 4 can be concluded that the 

SC-ABC reached for the first two tested problems 

almost the best known values, and for the third 

tested problem the best known value. It is important 
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to mention that for the first and second tested 

problems the program in the most of executions 

found solution at value between 6060 and 6061 and 

at value 0.01269, respectively. For the problem 

Speed reducer, SC-ABC reached the best known 

value in every run of the program execution. 

Our results were compared to the results reached 

by Simple Constrained Particle Swarm optimization 

algorithm (SiC-PSO) [2]. Tables 6 and 7 show best, 

average fitness values and standard deviation for 

each of the problems tested. 
 

Prob. Optimal SC-ABC SiC-PSO 

Ex. 1 6059.714335 6059.768058 6059.714335 

Ex. 2       0.012665      0.012667       0.012665 

Ex. 3 NA 2996.348165 2996.348165 
 

Table 6. Best results obtained by SC-ABC 

and SiC-PSO 

 

 Average St. Dev. 

Prob. SC-ABC SiC-PSO SC-ABC SiC-PSO 

Ex. 1 6060.2097 6092.0498 0.0069 12.1725 

Ex. 2 0.0127 0.0131 2.4 E-07 4.1 E-04 

Ex. 3 2996.3482 2996.3482 0.0000 0.0000 
 

Table 7. Average and Standard Deviations for the 

results obtained 
 

The results from Table 6 and 7 show that the 

average values reached by SC-ABC, for each 

problem tested, are better than the average values 

reached by SiC-PSO. But the SiC-PSO reached the 

best known values for each problem tested. It can be 

seen that the SC-ABC can converge very quickly 

towards the global optimum. To have better results 

the SC-ABC algorithm needs to be modified in 

some way to avoid the algorithm to trap at some 

local attractors.  

 

 

6 Conclusion 
In this paper, we present an improved ABC 

algorithm for constrained problems (SC-ABC). The 

SC-ABC was tested on three constrained 

optimization problems which contain discrete and 

continuous variables. The algorithm showed a good 

performance. We compared our results to the results 

reached by Simple Constrained Particle Swarm 
optimization algorithm (SiC-PSO) which showed a 

very good performance when it was applied to the 

same problems. Although our algorithm did not 

obtain the optimal values for each tested problem, 

the average values reached by SC-ABC are better. 

We can conclude that the SC-ABC can quickly 

search toward the global optimum and can be a 

promising alternative for solving this sort of 

problems due to its simplicity and reliability. As 

part of our future work, we are interested to perform 

a more detailed statistical analysis of the 

performance of our proposed approach and to 

improve the new algorithm's ability to escape the 

local attractors. 
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