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Abstract: The selection of independent variables in a regression model is often a challenging problem. 
Ideally, one would like to obtain the most adequate regression model. This task can be tackled with 
techniques such as expert based selection, stepwise regression and stochastic search heuristics, such as 
genetic algorithms (GA). In this study, we investigate the performance of two GAs for regressors selection 
(GARS) and for regressors selection with transformation of the regressors (GARST). We compare the 
performance with stepwise regression for the “Fat Measurement” and the “Cholesterol Measurement” 
datasets and use the AIC, BIC and SIC statistical criteria to quantify the adequacy of the models. The results 
for GARS are superior for all statistical criteria compared to both forward and backward stepwise 
regression, but not always when R2 and RMSE statistics are considered. GARST turns out to be even better 
compared to GARS as variable transformations help to improve results further. Moreover, the type of 
transformations revealed the relationships between dependent and independent variables.  
 
Key-words: regression model, genetic algorithms, stepwise techniques, regressors’ selection and 
transformation. 

 
 

1 Introduction 

Regression analysis is a well-established method in 
data analysis with applications in various fields. Its 
main purpose is to determine the relationship between 
a so-called dependent variable and one or more 
independent variables. Different approaches to 
regression model selection have been proposed, such 
as expert-based selection, stepwise regression and 
stochastic search algorithms. The selection of the 
most adequate regression model can be stated as an 
optimization problem with the objective to select 
those independent variables that maximize the 
adequacy of the model according to a statistical 
criterion. Different statistical criteria, such as AIC, 
BIC or SIC (see section 2.2), have been proposed in 
the literature. Moreover, optimization can be used to 
determine the most appropriate transformation of 
these variables to obtain optimal adequacy.  
A common approach is to use stepwise regression, 
which works in the following way: in each step all 
regression models are built and evaluated that differ 
from the current best regression model in just one 
variable. If the best of these models has a better 
adequacy than the current model, it becomes the 
starting point of the next step and the process is 
repeated, or otherwise the algorithm terminates. This 

approach is a local search process, and its main 
drawback is that it ultimately converges to local 
optima. A promising alternative to tackle optimization 
problems with local optima is to use genetic 
algorithms, since they explore the search space 
simultaneously by a population of candidate solution 
in which solutions compete and recombine. Apart 
from selecting the variables for a regression model, 
GAs can also be used to determine the most 
appropriate transformations of the independent 
variables. 
In this paper, we consider two genetic algorithms for 
regression modelling. The first algorithm called 
GARS tackles the issue of variable selection. Based 
on this approach we developed a new genetic 
algorithm called GARST that selects the variables and 
also determines the most appropriate mathematical 
transformations to obtain optimal adequacy.  
The paper is organised as follows: Section 2 gives a 
formal definition of the regression model selection 
problem, statistical criteria and algorithmic choices. 
Section 3 briefly introduces the main concepts in 
genetic algorithms and describes the two genetic 
algorithms for regression modelling. Section 4 
describes the experimental set up and the 
implementation details. Section 5 reports and 
discusses the empirical results from GARS and 
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GARST, in comparison with the complete model and 
stepwise techniques, in the analysis of two real world 
datasets and section 6 concludes our study. 
 
 
2 Regression Model Selection 

2.1 The Model Selection Problem 
 
Let X ≡ X1, X2 , ..., Xm{ }  the set of m independent 
variables (with n observations) and Y the dependent 
variable in a multivariate regression model. Let’s 
suppose that the model 
 

(1)           Y = β0 + β1 X1 + β2 X2 + ...+ β p
Xp + ε  

 
explains the relationship between the dependent and 
independent variables, where  is the set of the 
p ≤ m independent variables chosen as regressors and 
Β ≡ {β0 ,β1, ...,β p}  is the parameters set. If B is 

estimated as Β̂ ≡ {β̂0 , β̂1, ..., β̂ p}  by using the Ordinary 
Least Square method (OLS), the remaining main task 
is to choose which independent variables should be 
included in  

X ⊆ X . This task is an optimisation 
problem, where the objective is to select X ⊆ X  such 
that the estimated model: 
 

(2)              Ŷ = β̂0 + β̂1 X1 + β̂2 X2 + ...+ β̂ p
Xp   

 
has optimal adequacy with respect to some statistical 
criteria (see section 2.2). 
Apart from selecting the best subset  

X ⊆ X  of 
independent variables, another task could be to 
determine which mathematical transformations (e.g.: 
exponential, logarithmic) should be applied to the 
independent variables in order to improve the 
adequacy of the model (Cook and Weisberg 1993). In 
this case, the problem consists of selecting the subset 

 
X ⊆ X  and the mathematical transformations 

 f :
Xi → Ti ( Xi )  such that the model 

 Ŷ = β̂0 + β̂1T1( X1 ) + β̂2T2 ( X2 ) + ...+ β̂ pTp ( Xp )  is optimal 
with respect to the used statistical criterion. 
 
 
2.2 Statistical Model Selection Criteria 
 
Different criteria could be chosen to quantify the 
degree of optimality of a regression model. In this 
work, we focus here on three statistical criteria: 

- The Asymptotic Information Criterion (AIC) 
(Akaike, 1973):  

 
(3)             AIC(p) = n log(Sp2 ) + 2p  

 
where n is the number of observations, p is the 
number of independent variables in the regression 

model, Sp2 =
(Ei )

2

i=1

n

∑
n − p −1

 is the variance of the residual 

when the model with p independent variables is 
considered, and Ei are the residuals. 
The AIC provides an estimate of the “distance” 
between the estimated model and the unknown 
mechanism behind the data. The lower the AIC value, 
the better the model. It tends to overestimate the 
number of parameters that should be considered in the 
optimal model. 
 
- The Bayesian Information Criterion (BIC) (Akaike, 

1978)  

(4)  BIC(p) = (n − p) log
nSp

2

n − p
⎛

⎝⎜
⎞

⎠⎟
+ p log n

S0
2 − Sp

2

p
⎛

⎝⎜
⎞

⎠⎟
 

 
where n is the number of observations, p is the 
number of independent variables in the regression 
model, Sp2  is the variance of the residual when the 
model with p independent variables is considered and 
S0
2  is the variance of the n observations of the 

dependent variable. The lower the BIC value, the 
better the model. In comparison with the AIC, it aims 
to consider the variance reduction by estimating a 
model with p covariates.  
 
- The Schwarz Information Criterion (SIC) (Schwartz, 

1978):  

(5)                SIC(p) = log(Sp2 ) +
p
n
log(n)  

  
where n is the number of observations, p is the 
number of independent variables in the regression 
model,  is the variance of the residual when the 
model with p independent variables is considered. The 
lower the SIC value, the better the model. 
 
 
2.3 Techniques for regression model selection 
 
Different approaches to regression model selection 
have been proposed, such as expert-based selection, 
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classical stepwise approaches and stochastic search 
algorithms.  
In expert-based selection, an expert tries to identify 
(manually) which variables should be included, which 
is a process that is often based on a blend of his past 
experience and knowledge of the problem and trial-
and-error. For this, he investigates different models 
and then selects the one that he considers to be the 
most adequate. The main drawback of expert-based 
selection is that it is subjective and not guaranteed to 
yield regression models with optimal adequacy.  
In contrast, classical stepwise regression techniques 
try to find a model that has optimal adequacy with 
respect to a statistical criterion by considering 
alternative models. At each step, all models are tested 
which differ from the currently best model by 
including/excluding of one independent variable. If 
the best of these models turns out to be better, it is 
used as the current best model and the search is 
continued from this point. The algorithm stops when 
no better model can be found that differs in one 
variable. The so-called backward stepwise regression 
method starts from a complete model and with each 
iteration reduces the number of variables, whereas the 
forward stepwise regression method starts by 
considering all the models with just one independent 
variable. Stepwise regression is a local search process 
(steepest-descent/ascent local search) that iteratively 
tries to refine the current solution by proceeding to its 
best neighbour if it is better, or terminates otherwise. 
Ultimately each single run of this process converges 
to a local optimum. Compared to that stochastic 
search heuristics can escape local optima. 
Perhaps the most promising approach to deal with 
multiple local optima in non-linear optimization 
problems is to use population-based stochastic search 
heuristics, such as genetic algorithms (see section 3), 
since they explore the search space simultaneously by 
a population of candidate solution in which solutions 
compete and recombine. Apart from selecting the 
most appropriate variables in a regression model, GAs 
can also easily be used to determine the most 
appropriate transformations of the independent 
variables. 
 
In this paper, we present two different genetic 
algorithms for regression modelling. The GARS (see 
section 3.1) tries to select the model variables that 
allow the optimal adequacy, whereas the GARST (see 
section 3.2) not only identifies the model variables, 
but also determines the most appropriate 
mathematical transformations for these variables to 
obtain optimal adequacy. 
 

3 Genetic Algorithms for Regression 
Models 

Genetic algorithms have been used in many different 
fields including statistics (see for a review Chatterjee 
et al 1996) for a variety of problems, such as time 
series analysis (Baragona et al 2004), AR/ARMA 
model selection (Minerva and Poli 2001), outliers 
detection (Baragona et al. 2001), graphical model 
selection (Poli and Roverato 1998, Roverato and 
Paterlini 2004), and clustering (Paterlini and Minerva 
2003). 
 
In this work, we consider two genetic algorithms: 
Genetic Algorithm for Regressors’ Selection (GARS) 
and Genetic Algorithm for Regressors’ Selection and 
Transformation (GARST).  
GARS (see section 3.1), which has been proposed by 
Minerva and Paterlini (2002), aims to select which 
independent variables should be considered in the 
optimal linear regression model, where the optimality 
is determined with respect to the AIC, BIC or SIC 
criteria.  
GARST (see section 3.2), which we propose here for 
the first time, aims not only to select the independent 
variables to be included in the regression model, but 
also to determine how such variables should be 
mathematically transformed by functions such as 
power, logarithm and exponential. Transforming the 
dependent variables and then estimating the 
parameters can in fact help improving the goodness of 
the model and pointing out the existence of nonlinear 
relationships. On the other hand, transformations may 
lead to complex models which the researcher could 
find difficult to interpret.  
 
 
3.1 Genetic Algorithm for Regressors’ Selection 
(GARS) 
 
GARS (Genetic Algorithm for Regressors’ Selection) 
uses binary encoding to identify which independent 
variables should be included in the model. No 
transformation is applied to the independent variables 
before including them. 
Each GA individual consists of a string of m binary 
cells: if the i-th cell (i=1,...,m) has value 1, then Xi is 
included in the model, otherwise not.  
Every candidate solution is then evaluated with 
respect to a fitness function. The AIC, BIC and SIC 
criteria (see section 2.2) have been considered as 
possible fitness functions. After randomly initialising 
the population and evaluating the population with 
respect to the chosen fitness function, the population 
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is evolved through generations using stochastic 
uniform sampling selection scheme, single point 
crossover with pc=0.8, uniform mutation with 
pm=1/NBITS and direct reinsertion of the best 
recorded candidate solution. The algorithm stops 
when the population has been evolved for MAXGEN 
generations. The best solution is then reported.  
Section 5 reports the empirical results in the analysis 
of the Body Fat Measurement and Cholesterol 
Measurement datasets in comparison with the 
complete model and the backward and forward 
stepwise methods. 
 
 
3.2 Genetic Encoding for Regressors’ Selection and 
Trasformation  
 
GARST (Genetic Algorithm for Regressors' Selection 
and Transformation) uses binary encoding. Binary 
strings are then converted to integers values that 
determine whether a variable should be included and 
which transformation shall be applied. 
For each of the m independent variables, we encode 
two integers ti and expi. Thus each candidate solution 
consists of a binary encoding of 2m integer 
parameters. 
Each ti determines if variable i shall be included and, 
if yes, whether the power, logarithm, or exponential 
function shall be applied for transformation, whereas 
expi specifies the power exponent of the 
transformation if variable i is included. More 
specifically, , expi ∈ -6,-4,-2,-1,1,2,4,6{ }  
)is such that: 
 
if  ti  = 1: Ti(Xi)=0, variable not included,  

if  ti  = 2: Ti(Xi)=  

if  ti  = 3: Ti(Xi) =   

if  ti  = 4: Ti(Xi) =   

 
Note that such an encoding allows specifying all the 
models that GARS can explore. For example the 
string with all integer values equal to 2, selects the 
linear regression model with all the m independent 
variables without any transformation. The size of the 
search space is then (4*8)m. 
The algorithm starts by randomly generating the 
population. Every GA individual is then evaluated 
with respect to the AIC, BIC or SIC criterion. The 
population is evolved using a stochastic uniform 
sampling selection scheme, single point crossover 
with pc=0.8, uniform bitflip mutation with 
pm=1/NBITS, reinsertion of the best recorded 

individual (elite of size 1). The algorithm terminates 
when the population has been evolved for MAXGEN 
generations and reports best found solution.  
 
 
4 Experimental Set-Up 

4.1 Real World Data 
 
GARS and GARST have been tested considering two 
real world datasets: the “Body Fat Measurement” 
dataset (Johnson 1996 - FAT) and the “Cholesterol 
Measurement” dataset (Purdie et al. 1992 -  
CHOLES).  
The “Body Fat Measurement” dataset (n=252, m=16) 
consists of 252 observations of 16 independent 
variables: age, weight, height, density, net body 
weight and ten measurements of body circumferences 
of an individual. The dependent variable is the 
percentage of fat in the body. 
The “Cholesterol Measurement” dataset (n=264, 
m=21) consists of 264 observations of 21 independent 
variables which are measures of optical absorption of 
blood samples with different frequencies. The 
dependent variable is the level of cholesterol in the 
blood. 
The empirical results for GARS have been compared 
with the ones obtained for the complete model, 
backward and forward stepwise techniques, and 
GARST. AIC, BIC and SIC criteria have been 
considered with forecasting aims in order to select the 
most appropriate model. Each sample dataset has been 
partitioned in three disjoint (consecutive) subsets: a 
training set (first 40% of the data), a validation set 
(following 40% of the data) and a test set (remaining 
20% of the data).  
The regression parameters B̂ = {β̂0 , β̂1, ..., β̂ p}  were 
estimated using the training set while the AIC, BIC 
and SIC values were computed for the validation set 
in order to improve the robustness of the variable 
selection mechanism. R2 and the Residual Mean 
Squared Error (RMSE) statistics were computed with 
respect to the test set. The R2 statistics refer to a 
simple linear regression model with intercept, where 
the dependent variable is the Y on the test set and the 
independent variable is the estimated 

 Ŷ = β̂0 + β̂1 X1 + β̂2 X2 + ...+ β̂ p
Xp  on the test set with B̂  

estimated on the training set. The Residual Mean 
Squared Error has been computed as 

RMSE = (Yi − Ŷi )
2

i=1

k

∑ / k  , where k is the length of the 

test set. 
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4.2 Implementation Details 
 
Both GARS and GARST use the same genetic 
operators: stochastic uniform selection, single-point 
crossover with pc=0.8, uniform mutation with 
pm=1/NBITS, reinsertion of the best recorded solution 
at each generation (elitism size=1). The number of 
individuals NIND is set equal to 100 and the 
algorithms terminate after 1000 generations 
(MAXGEN). Thirty runs have been performed for 
GARS and GARST for each dataset.  The set of 
possible transformations considered for the 
“Cholesterol Measurement” dataset does not include 
the logarithmic operator, since some data are equal to 
zero, i.e., the set of feasible transformation includes 
only the exponential and power functions.  
 

5 Empirical Results and Discussion 

Section 5.1 reports the comparison of GARS results 
for thirty runs for the three statistical criteria (AIC, 
BIC and SIC), with the ones reported by backward 
and forward stepwise regression methods and the 
complete model, i.e., the model that includes all the 
regressors. Section 5.2 reports the comparison 
between GARS and GARST results after 30 runs for 
each statistical criterion. 
 
 

5.1 GARS Empirical Results 
 
Table 1 shows the empirical results when the “Body 
Fat Measurement” dataset is considered. Column 1 
reports the model selection scheme, columns 2 and 3 
the statistical criterion used and the corresponding 
value for the best models identified by each 
algorithm, columns 4 and 5 the R2 and Residual Mean 
Squared Error (RMSE) statistics computed on the test 
set, columns 6 and 7 the number of regressors of the 
best selected models and the ordinal number of the 
selected regressors. The recorded minimum values of 
the statistical criteria are marked in bold, while the 
maximum R2 and the minimum RMSE are underlined 
and in italics. 
In this experiment, GARS selects always the models 
with smaller AIC, BIC and SIC values than the 
complete model and the ones selected by the 
backward and forward stepwise regression. In fact, as 
already mentioned, stepwise regression converges to 
local optima. By exhaustive search, we checked that 
the models identified by GARS correspond to the 
global optima in correspondence of the different 
criteria. The analysis of the “Body Fat Measurement” 
dataset shows that GARS is robust and can explore 
effectively the search space. Thus GARS could be 
useful in the analysis of complex dataset, when the 
number of regression variables is not small. 
Furthermore our investigation shows that even if 
GARS properly converges towards the smallest AIC, 
BIC and SIC values, the selected models are not the 

Type of Model 
Selection 

Stat. 
Criterion 

Best Stat. 
Criterion 

Value 
R2 RMSE 

Number of 
Independent 

Variables 

Selected 
Independent 

Variables 

AIC 1.042 0.956 0.264 16 1,2,...,16 

BIC 1.941 0.956 0.264 16 1,2,...,16 Complete Model 

SIC 1.456 0.956 0.264 16 1,2,...,16 
AIC 0.826 0.960 0.253 8 2,3,5,6,8,9,11,15 
BIC 1.24 0.956 0.266 7 2 ,3,5,6,8,11,15 

Backward 
Stepwise 
Regression SIC 1.012 0.956 0.266 7 2,3,5,6,8,11,15 

AIC 0.693 0.970 0.219 5 3,4,6,9,11 
BIC 0.866 0.966 0.231 3 3,6,9 

Forward 
Stepwise 
Regression SIC 0.801 0.967 0.229 4 3,4,6,9 

AIC 0.632 0.967 0.231 5 3,5,6,9,14 
BIC 0.803 0.964 0.241 2 3,6  GARS 
SIC 0.762 0.967 0.230 5 3,5,6,9,14 

 
Table 1: “Body Fat Measurement Dataset”. Comparison of different approaches for model selection 
(Complete, Backward Stepwise, Forward Stepwise, GARS) for linear regression model when the Body Fat 
Dataset is considered. For each approach, three statistical criteria are considered (AIC, BIC and SIC).  
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best ones in explaining and forecasting the dependent 
variable with respect to the test set. In fact, looking at 
table 1, one should note that the model with the 
largest R2 (=0.970) and the smallest RMSE (=0.219) 
is the one identified by the forward stepwise 
regression scheme for AIC criterion, when the third, 
fourth, sixth, ninth and eleventh variables are 
considered.  
Column 7 in Table 1 reports which independent 
variables have been included in the linear regression 
model. The models found by the forward stepwise 
regression and GARS use a smaller number of 
independent variables than the models identified by 
the backward stepwise regression. The third and sixth 
variables are always selected by all the approaches 
and the ninth by all the approaches except GARS for 
the BIC criterion. The models obtained by GARS and 
by the forward stepwise approach are quite similar.   
The “Cholesterol Measurement” dataset consists of 
264 observations of 21 independent variables. The 
size of the search space is equal to 221. 
Even for a bigger search space, GARS is still capable 
of selecting the models with smaller AIC, BIC and 
SIC values (Table 2, column 3, numbers in bold) than 
the ones selected by the backward and the forward 
stepwise methods and the complete model.  
As for the “Fat Measurement” dataset, none of the 
models selected by GARS for AIC, BIC and SIC 
(AIC-R2=0.739, BIC-R2=0.747, SIC-R2=0.717) has 

the largest R2 among all the reported models. The 
backward stepwise method for the AIC criteria selects 
the model with the largest R2, which is equal to 0.761 
(column 4 underlined in italics). However, this model 
has inferior forecasting capabilities in terms of RMSE 
(=7.612) than all the other reported models. The 
model with the smallest RMSE is the one with 
minimum AIC selected by GARS (RMSE=5.186).  
In contrast to the first dataset, the set of selected 
variables varies greatly for the different algorithms 
and for different statistical criteria. When we further 
investigated the “Cholesterol Measurement” dataset, 
it turned out that all the dependent variables are 
strongly correlated: the minimum correlation 
coefficient among all the ones is in fact 0.8623. 
Hence, the selection of the regressors and the model 
selection are negatively influenced by it. 
The forward stepwise regression and GARS for BIC 
and SIC values select parsimonious models with only 
two regressors. Moreover, the forward stepwise 
regression always selects the first variable, and then 
the seventeenth in correspondence of AIC and SIC 
criteria and the fourteenth in correspondence of BIC 
criterion. The inclusion of the first variable in all the 
three models but its exclusion in all the models 
selected by the other approaches might be because of 
stagnation at a local optimum. GARS selects the 
fourth and the thirteen for AIC and the tenth and the 
twelveth for SIC.  

Type of Model 
Selection 

Stat. 
Criterion 

Best Stat. 
Criterion 

Value 
R2 RMSE 

Number of 
Independent 

Variables 

Selected Independent 
Variables 

AIC 7.284 0.757 7.533 21 1,2,3,...,21 
BIC 9.205 0.757 7.533 21 1,2,3,...,21 Complete Model 

SIC 7.812 0.757 7.533 21 1,2,3,...,21 

AIC 6.938 0.761 7.612 16 2,3,4,6,7,8,9,11,12,13,
14,15,16,18,20,21 

BIC 6.947 0.731 5.500 3 3,4,14 
Backward Stepwise 
Regression 

SIC 6.670 0.728 5.603 5 2,8,9,11,20 
AIC 6.662 0.734 5.241 2 1,17 
BIC 6.828 0.731 5.218 2 1,14 Forward Stepwise 

Regression 
SIC 6.713 0.734 5.241 2 1,17 

AIC 6.480 0.739 5.186 6 5,8,10,11,15,19 

BIC 6.734 0.747 5.509 2 4,13 GARS 

SIC 6.601 0.717 6.267 2 10,12 
 
Table 2: “Cholesterol Measurement” dataset. Comparison of different approaches for model selection 
(Complete, Backward Stepwise, Forward Stepwise, GARS) for linear regression model when the Cholesterol 
Measurement Dataset is considered. 
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Finally, the results could serve as a starting point for 
further expert-based selection. For instance, if the 
expert is interested in selecting a parsimonious model, 
then models selected by GARS for BIC and SIC and 
the models selected by the forward stepwise method 
could be a good starting point for further 
investigation. In case that the expert is interested in a 
model with good forecasting capabilities, the model 
selected by GARS for AIC and the models selected by 
the forward stepwise methods should be considered 
first.  
 
 
5.2 GARST Empirical Results 
 
As mentioned earlier, GARST not only identifies 
which variables should be included in the model, but 
also which transformations (from a given set of 
mathematical functions) should be applied before 
being included in the model such that the selected 
regression models have optimal AIC, BIC and SIC 
values. 
Table 5 reports the empirical results from the analysis 
of the “Fat Measurement” dataset (2nd-7th rows) and 
of the “Cholesterol Measurement” dataset (8th-13rd 
rows) of GARS (cells in white) and GARST (cells in 
grey) algorithms in 30 runs. For each approach, as 
reported in column 2, three statistical criteria were 
considered (AIC, BIC and SIC). The values of the 
statistical criteria for the best selected model is 
reported in column 3, the R2 and the Return Mean 
Squared Error (RMSE) respectively in columns 4 and 

5, the number and the ordinal identification of the 
regressors included respectively in columns 6 and 7. 
The best fitness values are reported in bold, while the 
biggest R2 and the smaller RMSE are in italics and 
underlined. 
GARST always selects models with smaller fitness 
values than the ones selected by GARS in 
correspondence of all the three criteria (AIC, BIC and 
SIC).  The fitness values of the best recorded models 
are much smaller for the “Fat Measurement” dataset, 
while the decrease in the fitness values is quite small 
for the “Cholesterol Measurement” dataset. As Table 
5 reports, GARST does not always converge to the 
same fitness value for all the thirty simulations. It is 
important to notice that, for the “Fat Measurement” 
dataset, the maximum fitness values are always much 
smaller than the ones in correspondence of the 
optimal models selected by GARS, while this is not 
true when the “Cholesterol Measurement” dataset is 
considered.  
The results from the analysis of the “Fat 
Measurement” dataset show that the optimal models 
selected by GARST for three criteria (AIC, BIC and 
SIC) still include the third and the sixth variables. R2 
values (=0.973 for AIC, BIC and SIC) are always 
larger than the ones previously computed for GARS, 
while RMSE is smaller only for the BIC criterion 
(RMSE=0.228). While the R2 is larger than the best 
one reported in Table 1 (i.e.: Forward Stepwise 
Regression – AIC R2=0.970), the smaller RMSE 
reported in Table 5 (i.e.: GARST-BIC=0.228) is not 

  
Stat. Criterion 

Best Stat. 
Criterion 

Value 
R2 RMSE 

Number of 
Independent 

Variables 

Selected 
Independent 

Variables 

AIC-GARS 0.632 0.967 0.231 5 3,5,6,9,14 
AIC-GARST -2.484 0.973 0.233 5 2,3,4,6,16 
BIC- GARS 0.803 0.964 0.241 2 3,6 
BIC- GARST -2.573 0.973 0.228 3 3,4,6 
SIC- GARS 0.762 0.967 0.230 5 3,5,6,9,14 

FAT 

SIC- GARST -2.380 0.973 0.232 4 2,3,6,16 
AIC- GARS 6.480 0.739 5.186 6 5,8,10,11,15,19 
AIC- GARST 6.405 0.800 3.985 7 3,6,7,14,17,19,20 

BIC- GARS 6.734 0.747 5.509 2 4,13 

BIC- GARST 6.699 0.725 5.225 2 4,11 

SIC- GARS 6.601 0.717 6.267 2 10,12 

CHOLES  

SIC- GARST 6.538 0.754 4.603 4 4,8,9,11 
 
Table 3: “Fat Measurement” and “Cholesterol Measurement” datasets. Comparison of GARS (cells in white) 
and GARST (cell in grey) approaches for model selection for regression models. For each approach, three 
statistical criteria are considered (AIC, BIC and SIC). 
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smaller than the best result reported in Table 1 (i.e.: 
Forward Stepwise Regression – AIC RMSE=0.219).  
Using the three criteria leads to select quite similar 
models. The best model identified by GARST in 
correspondence of AIC, BIC and SIC criteria are 
reported below. Note that the third and sixth variables 
are included in all the three models after being 
mathematically transformed in the same way. 
Moreover, the BIC and SIC models are all sub-models 
of the best one identified in correspondence of the 
AIC.  
 

AIC    Ŷ = β̂0 + β̂1
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GARST allows to identify models with better AIC, 
BIC and SIC values. The identification of appropriate 
transformations of the variables could also help in 
revealing non-linear relationships between variables, 
even if the interpretation of the results could be more 
difficult.  
The results from the analysis of the “Cholesterol 
Measurement” dataset shows better fitness values in 
correspondence of the selected optimal models from 
GARST, but the improvement in the fitness value is 
relatively small compared to the values reported by 
GARS analysis. The models selected by GARST are 
quite different from each other for the three criteria 
and from the ones previously identified by GARS. As 
mentioned earlier, one of the possible reasons could 
be that all the independent variables in the 
“Cholesterol Measurement” dataset are strongly 
correlated with each other.  
 
Regarding the AIC criterion, GARST selects the 
model with both larger R2 (=0.800) value and smaller 
RMSE (=3.985) than all other models obtained by 
GARS for BIC and SIC criteria and the backward and 
forward stepwise methods. Such model, reported 
below suggests a nonlinear relationship between the 
dependent and independent variables.  
 

AIC    Ŷ = β̂0 + β̂1
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BIC    Ŷ = β̂0 + β̂1
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SIC    Ŷ = β̂0 + β̂1
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6 Conclusions 

Genetic algorithms are a promising approach to tackle 
the regression model selection problem. In this paper, 
we compare two genetic algorithms for regressors’ 
selection (GARS) and regressors’ selection and 
transformation (GARST) with stepwise regression in 
the analysis of two real world datasets (“Fat 
Measurement” and “Cholesterol Measurement” 
datasets), for three different statistical criteria (AIC, 
BIC and SIC). The experiments showed that results 
obtained with stepwise regression were inferior 
compared to GARS for all statistical criteria regarding 
the “Cholesterol Measurement” dataset and that 
GARS converges to the global optimum when 
considering the “Fat Measurement”dataset. The 
models selected by GARS are superior in term of 
AIC, BIC and SIC but not always when R2 and RMSE 
statistics are considered. 
The empirical results from analysing the “Cholesterol 
Measurement” dataset with GARS shows that it is not 
possible, as in the analysis of “Fat Measurement” 
dataset, to identify some independent variables that 
are included in all or most of the selected optimal 
models in correspondence of the three statistical 
criteria. The presence of highly correlated 
independent variables might partially explain this 
result.  
 GARS can be a valuable alternative to stepwise 
regression and help in suggesting new models that 
could be worthy to examine further.  
GARST allows not only selecting which dependent 
variables should be considered but also which 
mathematically transformations should be applied to 
improve the adequacy of the model. The models 
obtained with GARST are better compared to those 
obtained with GARS with respect to AIC, BIC and 
SIC criteria. The results related to the “Fat 
Measurement” dataset seem to suggest that 
mathematical transformations of dependent variables 
already included in GARS optimal models should be 
considered, indicating the possible existence of non-
linear relationships. The models that we obtained with 
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GARST for the “Cholesterol Measurement” dataset 
had better adequacy than the ones identified by 
GARS, but the improvement was small and the 
GARST models were more complex.  
The empirical results show that GARST can indeed be 
useful in selecting model variables and proposing 
transformations that link them with the dependent 
variable. Both GARS and GARST are useful tools 
that can provide the researcher with useful 
information that could not be obtained from classical 
stepwise regression. 
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