
Software Economics: Quality-Based Return-on-Investment Model 
 

       Ljubomir Lazić            Nikos E Mastorakis 

Department for Mathematics and Informatics             Technical University of Sofia, 
State University of Novi Pazar  English Language Faculty of Engineering 
                 SERBIA    Industrial Engineering, Sofia, BULGARIA 
llazic@np.ac.rs, http://www.np.ac.rs                       http://www.wseas.org/mastorakis         
     

             
Abstract: - Along with the ever more apparent importance and criticality of software systems for modern 
societies, arises the urgent need to deal efficiently with the quality assurance of these systems. Even though 
the necessity of investments into software quality should not be underestimated, it seems economically unwise 
to invest seemingly random amounts of money into quality assurance. The precise prediction of the costs and 
benefits of various software quality assurance techniques within a particular project allows for economically 
sound decision-making. This article explains the return on investment rate (ROI) of Software Process 
Improvement (SPI), and introduces practical metrics and models for the ROI of SPI. Furthermore an analytical 
idealized model of defect detection techniques is presented. It provides a range of metrics: the ROTI of 
software quality assurance for example. The method of ROTI calculation is exemplified in this paper. In 
conclusion, an overview on the debate when software is purchased, concerning quality and cost ascertaining in 
general will be given. Although today there are a number of techniques to verify the cost-effectiveness of 
quality assurance, the results are thus far often unsatisfactory. More importantly, this article helps sort through 
the seldom and often confusing literature by identifying a small set of practical metrics, models, and examples 
for the ROI of SPI. 
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1 Introduction 
 
Our research [4-6]1 concluded that developing 

software is for most organizations no longer an 
independent software project, but is part of a 
business case which includes all disciplines 
involved. In order to stay competitive, companies 
must deliver high quality products on time and 
within budget. Although the development cost was 
very important, quality, lead-time, and delivery 
precision were considered as the most important 
factors. Therefore, an evaluation of what effect the 
implemented concept had on these factors of 
Quality-Based Return-on-Investment, using Cost 
Benefit Analyses, was of interest. This paper 
satisfies these objectives by designing, constructing, 
and exercising a multi-part methodology consisting 
of a Defect Removal Model, Cost and Benefit Data, 
Return-on-Investment Model, Break Even Point 
Model, and Costs and Benefits of Alternatives, 

                                                 
1 This work was supported in part by the Ministry of 

Science and Technological Development of  the Republic 

of Serbia under Grant No. TR-13018.  

which all lead up to a Cost and Benefit Model (as 
shown in Fig. 1). 

2 Costs and benefits of SPI strategies 

Costs and benefits of Software Process 
Improvement (SPI) strategies will be evaluated by a 
variety of interrelated techniques, starting with the 
Defect Removal Model. The Defect Removal 
Model, as explained later, is a technique for 
evaluating SPI method effectiveness, and once 
economic models are factored in, provides an 
empirically valid approach for comparing the costs 
and benefits of SPI methods. Obviously, existing 
cost and benefit data for SPI methods selected from 
the Literature Survey will be judiciously factored 
into, and drive, each of the individual analytical 
models. A Return-on-Investment (ROI) Model will 
be designed, based on the Defect Removal Model 
and populated by empirical cost and benefit data, in 
order to arrive at quality, productivity, cost, break 
even, and of course, ROI estimates. Eventually, a 
SPI strategy Cost and Benefit Model will be 
constructed from Cost and Benefit Criteria, SPI 
Strategy Alternatives, and Cost and Benefits of 
Alternatives: Buy or Produce Software for 
company’s Information System business tasks. The 
design of the Methodology was significantly 
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influenced by Kan’s [2], Jones’ [7], Rico’s [8] and 

Lazic’s [4-6]  Defect Removal Model-based 
comparisons of SPI costs and benefits. 
 

 
Fig. 1 Methodology for Evaluating and Selecting 
Costs and Benefits 
 
An analysis of SPI costs and benefits also served as 
primary influence for the design of the 
Methodology. Their study, however, was the 
primary influence for two reasons, it is 
comprehensive in nature, and it exhibits a uniquely 
broad range of comparative economic analyses 
between SPI methods. In addition, their study stands 
alone in unlocking economic analyses associated 
with the Clean Room Methodology, Software 
Reuse, and even the Software Inspection Process. 
The study goes even further than that, in creating 
and establishing a valid empirically-based 
methodology for using existing cost and benefit data 
and analyses, for evaluating and selecting SPI 
methods. 
Furthermore, Lazic’s text [4-6] on SPI strategies 
also influenced the design and direction of the 
Methodology, explicitly identifying the Software 
Inspection Process as having an overwhelming 
impact on bottom line organizational performance. 
Thus, his works [4-6] helped justify the creation and 
significance of the ROI Model, which will be 
explained in greater detail later. Kan’s and Lazic’s 
Defect Removal Model-based SPI method 
comparison, however, was the final influence in 
selecting and fully designing the Methodology, 
highlighting the vast economic advantages that one 
SPI strategy may have over another. In fact, Rico’s 
[8] study was the starting point for implementing the 
Methodology, which quickly picked up a lot of 
momentum and took on an entire life of its own. 
After only a few minutes of briefly extending their 

analyses, the results proved mesmerizingly 
phenomenal, and thus the Methodology was 
conceived. In fact, the results of the Methodology, 
and later the data analyses, exceeded all 
expectations. And, just to imagine that the final 
results were preliminarily yielded after only a few 
moments of additional permutations involving 
Jones’, Kan’s and Lazic’s study is truly amazing. 
 

2.1 Cost and Benefit Criteria  
Three cost criteria and five benefit criteria for a total 
of eight criteria were chosen with which to evaluate, 
assess, and analyze SPI alternatives: Training Hours, 
Training Cost, Effort, Cycle Time, Productivity, 
Quality, Return-on-Investment, and Break Even 
Hours. These criteria were chosen because of their 
commonality and availability as exhibited by Table 
1. Reclassification of 487 Metrics for Software 
Process Improvement (SPI) [2,4,7], Citation 
Frequency of Metrics for Software Process 
Improvement(SPI) [4-7], Survey of Software 
Process Improvement (SPI) Costs and Benefits is 
given in Table 1 [1,7]. 
 
Table 1 Criteria for Evaluating Software Process 
Improvement (SPI) Alternatives 

 
 
Survey of Metrics for Software Process 
Improvement (SPI), showed 74 broad metric classes 
and 487 individual software metrics. However, 
Citation Frequency of Metrics for Software Process 
Improvement (SPI), reclassified the 74 classes of 
487 metrics into 11 classes: Productivity (22%), 
Design (18%), Quality (15%), Effort (14%), Cycle 
Time (9%), Size (8%), Cost (6%), Change (4%), 
Customer (2%), Performance (1%), and Reuse (1%). 
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This helped influence the selection of the eight 
criteria for SPI cost/benefit analysis, since later 
quantitative analyses will be based on the existence 
and abundance of software metrics and 
measurement data available in published sources. 
But, availability is not the only reason these eight 
criteria were chosen. These eight criteria were 
chosen because it is believed that these are the most 
meaningful indicators of both Software Process and 
Software Process Improvement (SPI) performance, 
especially, Effort, Cycle Time, Productivity, 
Quality, Return-on-Investment (ROI), and Break 
Even Hours. Effort simply refers to cost, Cycle 
Time refers to duration, Productivity refers to 
number of units produced, Quality refers to number 
of defects removed, ROI refers to cost saved, and 
Break Even refers to length of time to achieve ROI 
[1-4,7,8]. Quality software measurement data will 
prove to be a central part of this analysis and the 
direct basis for a Return-on-Investment (ROI) model 
that will act as the foundation for computing ROI 
itself. Thus, the Quality criterion is an instrumental 
factor, and it is fortunate that SPI literature has so 
abundantly and clearly reported Quality metric and 
measurement data, despite Quality’s controversial 
and uncommon usage in management and 
measurement practice [1,7]. The SEI reports that 
approximately 95.7% of software organizations are 
below CMM Level 4. CMM Level 4 is where 
software quality measurement is required. It is safe 
to assert that 95.7% of software organizations do not 
use or collect software quality measures. 
While, Kan’s [2] seminal masterpiece gives a much 
greater scholarly portrait of sophisticated metrics 
and models for software quality engineering, Lazic 
breaks Defect Density down into its most practical 
terms, Appraisal to Failure Ratio. Lazic has 
demonstrated that an optimal Appraisal to Failure 
Ratio of 2:1must be achieved in order to manage 
software development to the peak of efficiency. 
While, Kan encourages the use of Rayleigh 
equations to model defect removal curves, Lazic 
presents us with the practical saw-tooth form, two 
parts defects removed before test and one part 
during test, resulting in very near zero defect levels 
in finished software products. Since, defects found 
in test cost 10 times more than defects found before 
test, and 100 times more after release to customers, 
Lazic has found that finding 67% of defects before 
test leads to optimal process performance, minimal 
process cost, and optimal final software product 
quality. The other common argument against the use 
of Defect Density metrics is that they seem to be 
rather limited in scope, ignoring other more 
encompassing software life cycle measurements. 

Again, Lazic’s Defect Density Metrics Appraisal to 
Failure Ratio-based methodology [4-6] has proven 
that metrics need not be inundating, overwhelming, 
all encompassing, and sophisticated. This is merely 
a common confusion between product desirability 
and Quality. Customer satisfaction and market share 
measurement is a better form of measuring product 
desirability while Defect Density is an excellent 
form of measuring software Quality. Kan [2] gives 
an excellent exposition of over 35 software metrics 
for measuring many aspects of software Quality, 
including customer satisfaction measurement, while 
reinforcing the strategic nature of Defect Density 
metrics for measuring software quality associated 
with SPI. 
 

2.2 Return-on-Investment Model (ROI) 
 
Since very little ROI data is reported [1,8], 
available, and known for SPI methods, it became 
necessary to design a new ROI model in order to act 
as an original source of ROI data, and establish a 
fundamental framework and methodology for 
evaluating SPI methods (see Table 2). This original 
software quality-based ROI model is a direct 
extension of an earlier work by Rico [8], that was 
designed for the express purpose of evaluating ROI. 
  
Table 2 Basic Quality-Based Return-on-lnvestment 
(ROI) Model 
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It is a seemingly simple, though intricately complex 
composite of multiple sub-models, simulating the 
effects of several SPI methods on efficiency, 
productivity, quality, cost, break-even points, and 
ROI. Some of the sub-models represented include a 
defect removal model and multiple empirical 
statistical parametric linear and log-linear software 
cost models. The defect removal model or defect 
containment analysis model is an experimentally, 
scientifically, empirically, and commercially 
validated software quality-based approach to 
examining SPI method effectiveness and ROI, 
introduced and used extensively by several major 
studies [1-4,7,8].  
 The method involves estimating software defect 
populations, estimating the efficiency of SPI 
methods for eliminating software defects, estimating 
the residual software defect population after 
applying a particular SPI method, and estimating the 
cost of eliminating the residual software defect 
population delivered to customers. 
 

3 Software quality practices and tools 
 
There are many practices and tools that a software 
vendor can employ [2,7]. There does exist a general 
framework for understanding how these practices 
and tools influence the outcomes of software 
projects, and from which one can determine the 
potential benefits. 
 The smart implementation of software quality 
practices can result in: 
• A reduction in software project costs (i.e., an 
increase in productivity) either directly or through 
reducing rework. 
• The delivery of higher quality software and 
consequently reducing the customer's cost of 
ownership 
• Reducing time to market (i.e., shorter delivery 
schedules) 
 
 This paper is based on research demonstrating 
that for specific quality improvement practices and 
tools, the above benefits can be quantified. Figure 1 
shows the chain of effects that follow from the 
implementation of quality improvement practices 
and tools. The direct consequence of these practices 
and tools is increased reuse of software and an 
improvement in delivered quality. 
 Increased reuse will lead to higher productivity. 
Higher quality will lead to lower rework. Increased 
reuse can also influence quality. There is some 
earlier evidence showing that quality improves by 
reusing pre-existing artifacts [7]. More recently, one 
study found that object-oriented classes tend to have 

a lower defect density than classes that were new or 
reused with modification [2]. In general, it was 
found that reuse reduced the amount of rework. Of 
course, if rework is reduced, then productivity 
increases as well. 
 An improvement in delivered software quality 
reduces the total cost of ownership of the software 
by the customer. Therefore, quality practices have a 
direct impact on the ongoing costs that are incurred 
by the customer while operating the software. 
It is not atypical that 50% or more of a project's cost 
can be rework [5]. Rework means fixing defects. If 
the quality of the software is higher then less effort 
will be spent on rework since fewer defects need to 
be fixed. Higher development productivity and 
lower rework result in reduced overall software 
project costs. And, lower total costs mean less effort 
by the project staff. Higher productivity also 
translates into a reduction in overall project 
schedule. 
 In the remainder of this paper we will explain 
how these mechanisms operate and provide 
examples. 
 

3.1  Quality and The Cost of Ownership 
 
In this section we will present a model for 
calculating the relationship between software quality 
and the cost of ownership of software. Through a 
number of examples, it will be demonstrated that 
low quality software can be quite expensive for the 
customer. 
 
A Definition of Customer Costs 

 
When software is purchased, the customer costs 
consist of three elements: 
1. Pre-purchase costs constitute the resources 
expended by the customer to investigate different 
software companies and products. 
2. Installation costs constitute the resources invested 
in installing and verifying the operation of new 
software beyond that which is covered in the 
purchase contract (i.e., as part of the purchase price). 
3. Post-purchase costs constitute the resources to 
deal with software failures, including consultants 
and the maintenance of redundant or parallel 
systems. 
 For our purposes we will focus mainly on the 
latter two cost categories as being the most relevant. 
Both cost categories increase when there are defects 
in the software. 

Installation defects typically are due to interface 
problems with legacy systems or interoperability 
with pre-installed software. For commercial (shrink-
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wrapped) software, installation problems are usually 
minimal. However, if there are problems during 
installation, the customer bears the cost of trying to 
figure out the problem and making support calls to 
the developers. For customized software there are 
greater chances of installation difficulties. Dealing 
with them may entail expenditures on consultants 
and third party integrators. Additional cost 
components here are those of lost productivity due 
to the software not being installed on time, and lost 
sales or revenue due to the unavailability of an 
operational system. 
 

Post-purchase costs occur because the customer 
has to deal with failures of the software or lower 
performance than expected. This entails interacting 
with the vendor to describe and recreate the 
problem, and implementing workaround procedures 
(which may be inefficient) while waiting for the fix. 
Bugs may result in the loss of data and the need to 
re-enter them, and may result in capital costs being 
incurred due to early retirement of new but 
ineffective systems. Another cost of failures is that 
of operating redundant or parallel systems at the 
same time as the new software until the new 
software is fully functional with no quality 
problems. 

These costs tend to be different depending on 
whether the customer company is small or large. 
Small companies tend to incur relatively larger costs 
due to software defects because [3]: 

 
• Smaller companies are less likely to have internal 
support staff who can help troubleshoot and correct 
errors. This means that the customer has to go back 
to the vendor, which takes longer. The consequence 
is that the disruptive effects of defects last longer. 
• Larger corporations tend to get higher priority 
from the software vendors. 

Therefore their requests for fixes, patches, and 
workarounds get more immediate attention than 
smaller companies. Also, large companies are more 
likely to have internal support staff. Therefore the 
disruptions from discovering problems are 
minimized. 

For instance, in the manufacturing sector in USA 
it has been estimated that the software defect costs 
per employee varies from US$1466.1 to US$2141.4 
for small companies (less than 500 employees), and 
from US$128.9 to $277.8 for large companies (more 
than 500 employees) [3]. For a 100 person company 
that translates to US$146,614 to US$214,138, and 
for a 10,000 employee company that makes 
US$1,289,167 to US$2,777,868 per year. 

3.2 Savings From Higher Quality Software 
 
We can derive a model to estimate the savings to the 
customer from purchasing higher quality software. 
The scenario is that of a customer choosing between 
two products from two vendors. The products are to 
perform the same functions. 
To develop a model that is actionable and where 
sufficient benchmark data is available that can be 
used, certain assumptions need to be made. The 
approach that we take is to make assumptions that 
are conservative. That means we will make 
assumptions which result in the estimate of savings 
from better quality being underestimated rather than 
being exaggerated. This way we develop a lower 
bound model. The installation and post-purchase 
costs for a customer who has bought a software 
product are given by: 

                        (1) 
Where: 
Q  The quality of the product defined in terms of 
defect density. Defect density is total defects found 
after release per one thousand lines of code. 
S This is the size of the product in thousands of 
lines of code or Function Points (or some other size 
measure). 
C The cost per defect for the customer. This is due 
to installation and post-purchase problems. 
P The proportion of defects that the customer finds. 
It is defined as the fraction of all of the defects in the 
software that a single customer is likely to find. For 
example, if it is 0.01, it means that any single 
customer is likely to experience 1% of all of the 
detectable defects in the software. 
 

Let us assume that we have two software 
products, A and B, that have the same functionality 
(i.e., say the Function Points count is the same). Let 
us also say that A has higher quality than B (i.e., it 
has a lower defect density). These two products are 
of the same size and will be used the same way. A 
customer can choose between these two products. 
The percentage cost savings to the customer from 
using product A as opposed to product B would be:  

  (2) 
For example, if the percentage saving is 20%, then 
this means that the specific cost to the customer of 
owning product A (the installation and post-
purchase costs) is 20% less than that of owning 
product B. We can easily make the assumption that 
the sizes for A and B are the same since we are 
talking about the same system functionality. 
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Therefore, the percentage savings equation 
becomes: 

 
We can simplify this to:  

 
Let: 
PA The proportion of defects that the customer 
finds in program A. 
PB The proportion of defects that the customer 
finds in program B. 
And, since B has more defects than A, we would 
also expect to see: 

 
Then, it is clear that:  

                            
Therefore, if we use the following equation, we are 
actually calculating a lower bound on the percentage 
saving:  

              
The component of the above equation (cost per 
defect) has two elements: mitigation costs which are 
the costs that the customers incur in response to 
defects actually manifesting themselves, and 
avoidance costs such as installation costs and 
redundant system costs. There is evidence that the 
mitigation costs of the customers are linearly 
proportional to the reduction in defects [3]. This 
means that as the number of defects detected 
decreases, the customer costs decrease 
proportionally. Therefore, for these mitigation costs, 
we can treat as a constant (i.e.,).However, the 
avoidance costs decrease non-linearly with defects 
[3]. In fact, in many instances the benefits of 
reduced defects do not really accrue until the defect 
counts approach zero. For example, redundant 
systems have to be kept in place even if one defect 
remains because one defect is sufficient to bring 
down the whole system, which would then require 
the redundant system to kick in. Similarly, some of 
the customer costs will not disappear even if the 
software did have zero defects. For instance, there 
will always be installation costs even for perfect 
software because some of the legacy applications 
that the new software integrates with may have 
defects. Therefore, for these avoidance costs we 
make the conservative assumption that a reduction 
in defects will have no impact on the customer since 
in most cases the true defect density will be unlikely 

to approach zero. In terms of our model, this means 
that the component in the above equation consists 
only of the mitigation costs. Based on the recent 
data collected in [3], we can make another 
conservative assumption that 75% of the post-
purchase customer costs are mitigation costs, and 
the remaining 25% are avoidance costs. This means 
that if the defect content of the software went all the 
way to zero, 25% of the current post-purchase costs 
would still be incurred. To demonstrate the 
conservatism in this assumption, the NIST report [3] 
notes that the cost per defect in the manufacturing 
sector is on averageUS$4,018,588. The total of 
installation, acceptance, maintenance, and redundant 
system costs per firm is US$258,213.6. If, on 
average a firm experiencing defects has 40 major 
ones per year, then the mitigation costs can actually 
be quite large compared to avoidance costs 
according to these numbers. Therefore, if we say 
that 75% of the customer costs are mitigation costs 
that decrease proportionally to defect reduction, then 
the above equation becomes:  

 (3) 
 

Which gives a lower bound on the post-purchase 
cost savings from improved quality. 
There are two interesting things to note about Eqn.  
(3). First, in practice it is quite easy to get 
comparative values for QA and QB. Even if QA and 
QB are not readily available, there are reliable ways 
to estimate their ratio using black-box testing 
techniques. Therefore, it provides us with a very 
actionable model. Second, the excessive 
conservatism that we have emphasized in deriving 
our assumptions, as you will see, do not dilute the 
strong conclusions that can be drawn about the cost 
of quality to the customer. We now look at a number 
of examples to illustrate the benefit of better quality 
software from the customer perspective using 
benchmark data. 

3.3 Benchmarking Customer Costs 

The following examples are based on published data 
and illustrate the savings to the customer under a 
diverse set of scenarios. The savings are calculated 
according to Eqn. (3). 

SW-CMM Example 

Jones [7] has published the defect density of 
software from companies at different maturity levels 
as measured on the Capability Maturity Model for 
Software. If we consider the average values, we can 
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construct Table 3, which shows the reduction in the 
customer's cost as the maturity of the supplier 
increases. For instance, software from companies at 
ML3 is 27.75% cheaper from the customer’s 
perspective compared to software from an ML1 
company. We can also see that there are dramatic 
reductions in the customer cost as the maturity of 
the supplier reaches the higher levels. 
 
Table 3 Percentage reduction in ownership costs due 
to improved quality from the customer’s perspective 

 

Customer Savings By Industry, Country, and 

Platform 

We can also compare the customer cost when 
buying software from average companies in their 
domain versus best-in-class ones. Jones [7] 
identifies delivered defects per Function Point for 
average and best-in-class companies in a number of 
different business domains. Best-in-class are the top 
performers in their domain (defined as the top 10%). 
Using those numbers we can determine the cost 
savings to a customer from buying software from an 
average company compared to a best-in-class 
company. These results are shown in Table 4. As is 
obvious, there are quite dramatic benefits to the 
customer from buying software from a best-in-class 
company that delivers high quality software.  
 
Table 4 The percentage customer cost reduction 
between the average and best-in-class companies in 
each business sector at the three project sizes.  

 
 
Data are from MIS and commercial projects, a small 
project is 100 FP, a medium project is 1000 FP, and 
a large project is 10000FP. For systems software 
and military projects, a small project is1000FP, a 
medium project is 10000FP, and a large project is 
100000FP. This data is derived from [7]. 

The savings in ownership costs can be quite large 
compared to average producers (assuming a bell 
curve, one can make the reasonable assumption that 
at least half of the vendors in each category are at or 
below average). Based on defect density data 
collected during the most recent ISBSG benchmark 
we can evaluate the difference to the customer in 
acquiring software from best-in-class companies (in 
the top 10% as measured by delivered defect 
density) and average performers. We also compare 
best-in-class to worst performers (bottom 10% as 
measured by delivered defect density). 
 
Table 5 Cost savings to the customer in terms of 
buying software from the best performers vs. 
average and worst performers within each of these 
countries.  

 
 Data from table means that, for example, if an 
Australian customer buys software from a company 
that delivers best-in-class projects, then their post-
purchase costs would be about 70% cheaper 
compared to if they buy it from a worst performer 
and over 50% better compared to if they buy it from 
an average performer. 
 
Table 6 Cost savings to the customer in terms of 
buying soft-ware from the best performers vs. 
average and worst performers within each of these 
business areas.  
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This table shows the cost savings to the customer in 
terms of buying software from the best performers 
vs. average and worst performers within each of 
these target platforms. This means that, for example, 
if a mainframe customer buys software from a 
company that delivers best-in-class projects, then 
their post-purchase costs would be over 70% 
cheaper compared to if they buy it from a worst 
performer and around 64% better compared to if 
they buy it from an average performer. 

4 Economics Of Software Quality  

Cost of quality represents any and all costs that 
organization incurs from having to repeat a process 
more than once in order to complete the work 
correctly. Cost of developing software Quality 
(CoSQ) is useful to enable our understanding of the 
economic trade-offs involved in delivering good-
quality software. Commonly used in manufacturing, 
its adaptation to software offers the promise of 
preventing poor quality but, unfortunately, has seen 
little use to date. Different authors and researcher 
have used different ways to classify components for 
quality cost [2-8], if we look carefully their 
understanding about various components are 
approximately the same as shown in Fig.2. 

 

Fig. 2 Model of Cost of software Quality (CoSQ) 

4.1 Statement Of the Problem 
 

A key metric for measuring and benchmarking the 
software testing efficacy is by measuring the 
percentage of possible defects removed from the 
product at any point in time. Both a project and 
process metric – can measure effectiveness of 
quality activities of a all over project by: 
 

DRE = E/(E+D)                            (4) 

Where E is the number of errors found before 
delivery to the end user, and D is the number of 
errors found after delivery. The goal is to have DRE 
close to 100%. The same approach is applied to 
every test phase denoted with i as shown on Fig. 3: 
 

DREi = Ei / (Ei + Ei+1)     (5) 
 

Where Ei is the number of errors found in a software 
engineering activity i, and Ei+1 is the number of 
errors that were traceable to errors that were not 
discovered in software engineering activity i.  

The goal is to have this DREi approach to 100% 
as well i.e., errors are filtered out before they reach 
the next activity. Projects that use the same team and 
the same development processes can reasonably 
expect that the DRE from one project to the next are 
similar. For example, if on the previous project, you 
removed 80% of the possible requirements defects 
using inspections, then you can expect to remove 
~80% on the next project. Or if you know that your 
historical data shows that you typically remove 90% 
before shipment, and for this project, you’ve used 
the same process, met the same kind of release 
criteria,  and have found 400 defects so far, then 
there probably are ~50 defects that you will find 
after you release. How to combine Defect Detection 
Technique (DDT) to achieve high DRE, let say 
>85%, as a threshold for SPI required effectiveness 
[4-6] which describe optimum combination of 
software defect detection techniques choices. 
 Note that the defects discussed in this section 
include all severity levels, ranging from severity 1: 
activity stoppers, down to severity 4. Obviously, it is 
important to measure defect severity levels as well 
as recording numbers of defects. 

 
Fig. 3 Fault Injection and Fixing Model 
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4.2 The Real Cost Of Software Defects  

 
It is obvious that the longer a defective application 
evolves the more costly it is to repair. But how 
much more?  The answer might surprise you. 
According to the collected metrics of one software 
development organization, a bug that costs $1 to fix 
on the programmer’s desktop costs $100 to fix once 
it is incorporated into a complete program, and 
many thousands of dollars if it is identified after the 
software has been deployed in the field [7], as 
described on Fig. 4. Several studies [2-6] has 
published over nearly three decades that 
demonstrate how the cost for removing a software 
defect grows exponentially for each downstream 
phase of the development lifecycle in which it 
remains undiscovered.  

 
Fig. 4 Engineering Rules for Cost Of Defect 
Removal [3] 
 
 Further, another major research project 
conducted recently by the United States Department 
of Commerce, National Institute of Standards and 
Technology (NIST) [3] showed that in a typical 
software development project, fully 80% of software 
development dollars are spent correcting software 
defects. The same  NIST study also estimated that 
software defects cost the U.S. economy, alone, $60 
billion per year. Many organizations view the 
software development lifecycle, in a Conventional 
way, as a linear process with discrete functions: 
design, develop, test and deploy. In reality, the 
software development lifecycle is a cyclical function 
with interdependent phases. Quality assurance has a 
role in every phase of that lifecycle, from 
requirements review and test planning, to code 
development and functional testing, to performance 
testing and on into production. It was unanimously 
agreed that quality and quality assurance is more 
than strictly testing at the end of the development 

process. Starting quality initiatives early and paying 
attention to quality throughout the development, 
deployment and production effort is key in order to 
achieve a baseline goal of zero-defect software. 
 

4.3  Software Testing Economics 

4.3.1 Techniques To Analyze Return On The 

Testing Investment (ROTI) 

The ROTI model compares the development cost for 
a conventional  project  with  the  development  cost  
for  a project that uses Test Driven Development 
(TDD) as depicted on Fig. 5. The investment cost is 
the additional effort necessary to complete the TDD 
project as compared to the conventional project.  
The life cycle benefit is captured by the difference 
in quality measured by the number of defects that 
the TDD team finds and fixes, but the conventional 
project does not. This defect difference is 
transformed into a monetary value using the 
additional developer effort corresponding to finding 
and fixing these defects in the conventional project.  
The concepts of the life cycle benefit and the 
investment cost in our context are depicted in Fig. 
10. The upper horizontal line corresponds to the 
conventional project with additional quality 
assurance phase! The lower horizontal line 
corresponds to the TDD project. Our model captures 
the return on investment for an experienced TDD 
team in software testing process improvement (SPI). 
 

 
Fig. 5 Overview of benefit cost ratio calculation 
 

4.3.2 Financial ROI 

From a developer’s perspective, there are two types 
of benefits that can accrue from the implementation 
of good software quality practices and tools: money 
and time. A financial ROTI looks at cost savings 
and the schedule ROTI than looks at schedule 
savings. Direct financial ROTI is expressed in terms 
of effort since this is the largest cost on a software 
project. There are a number of different models that 
can be used to evaluate financial ROTI for software 
quality.  
 The first is the most common ROI model. We 
will show that this model is not appropriate because 
it does not accurately account for the benefits of 
investments in software projects. This does not 
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mean that that model is not useful (for instance, 
accountants that we speak with do prefer the 
traditional model of ROI), only that we will not 
emphasize it in our calculations. 
 Methods for return on investment (ROI) include 
benefit, cost, benefit/cost ratio, ROI, net present 
value, and breakeven point are given in Fig. 6. ROI 
methods in general are quite easy, indispensable, 
powerfully simplistic, and absolutely necessary in 
the field of software process improvement (SPI). It 
is ironic that ROI methods are not in common 
practice. The literature does not abound with ROI 
methods for SPI. The ROI literature that does exist 
is very hard to locate, appears infrequently, and is 
often confusing. 

 

Fig. 6 ROI metrics showing simplicity of  ROI 
formulas and their order of application 

We also look at ROI at the project level, specially 
on return on the testing investment (ROTI), rather 
than at the enterprise level. ROI at the enterprise 
level (or across multiple projects) requires a slightly 
different approach which we will not address 
directly here. 

The most common ROI model, and that has been 
used more often than not in software engineering, 
we use for ROTI calculation is: 

InvestmentTest

InvestmentTestSavedCoQTotal
ROTI

⋅

⋅−⋅⋅
=1

   (6) 

This ROTI model gives how much the Total Cost of 
Quality (CoQ) savings gained from the project were 
compared to the initial investment. Let us look at a 
couple of examples to show how this model works. 
We will use a hypothetical case study to illustrate 
the use of this cost of quality technique to analyze 

return on the testing investment. Suppose we have a 
software product in the field, with one new release 
every quarter. On average, each release contains 
1,000 “must-fix” bugs—unacceptable defects—
which we identify and repair over the life of the 
release. Currently, developers find and fix 250 of 
those bugs during development, while the customers 
find the rest. Suppose that you have analyzed the 
costs of internal and external failure. Bugs found by 
programmers costs $10 to fix. Bugs found by 
customers cost $1,000 to fix. We analyze three cases 
of software development and testing process which 
provide Low Quality, Good Quality and High 
Quality Results. 

 
Case 1: Low Quality Results 

Case 1 is assumed to be a fairly small systems 
software project of 251 function points in size. 
Defect potentials are derived by raising the function 
point total of the application to the 1.25 power, 
which results in a total of 1,000 defects or 4 defects 
per function point [2]. Defect removal efficiency is 
assumed to be 75% overall.  The development team 
is assumed to be below level 1 on the CMM scale in  
Software Development Process (SDP) which is 
unpredictable and poorly controlled i.e. Ad hoc 
level.  

As shown in the “Case 1 Testing” column in Fig. 
7, our cost of quality is three-quarters of a million 
dollars. It’s not like this $750,000 expenditure is 
buying us anything, either. Given that 750 bugs 
escape to the field, it’s a safe bet that customers are 
mad! 
 
Case 2: Good Quality Results 

Case 2 is exactly the same size and the same class of 
software as Case 1. The project management 
decided to improve software testing process (STP) 
and invested in testing staff  $60,000 and test 
infrastructure $10,000 as shown in the “Case 2 
Testing” column in Fig. 7. 
 The development team is assumed to be level 1 
on the CMM scale. Defect removal efficiency is 
assumed to be 85% overall.  Defect removal 
operations consist of six test stages:  1) unit test, 2) 
new function test, 3) regression test, 4) integration 
test, 5) system test, and 6) external Beta test. 
 
Case 3: High Quality Results 

Case 3 is exactly the same size and the same class of 
software as Case 1.  The development team is 
assumed to be higher than level 3 on the CMM 
scale.  By means of more effective defect prevention 
such as Quality Function Deployment (QFD) and 
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Six-Sigma the defect potentials are lower. Defect 
removal efficiency is assumed to be 95%.  Defect 
removal operations consist of nine stages:  1) design 
inspections; 2) code inspections; 3) unit test, 4) new 
function test, 5) regression test, 6) integration test, 
7) performance test, 8) system test, 9) external Beta 
test. 
To clarify the differences between the three case 
studies, note that both examples are exactly the 
same size, but differ in these key elements: 
• CMM levels 
• Defect prevention 
• Defect potentials 
• Defect removal efficiency 
• Development schedules 
• Development effort 
• Development costs 
 

 

Fig. 7 Using Cost of Quality to Analyze two ways of 
Return on Investment calculation 

Suppose we calculate that bugs found by testers 
would cost $100 to fix. This is one-tenth what a bug 
costs if it escapes to our customers. So, we invest 
$70,000 per quarterly release in a Case 2 testing 
process. The “Case 2 Testing” column shows how 
profitable this investment is. The testers find 600 

bugs before the release, which cuts almost in 80% 
the number of bugs found by customers. This 
certainly will make the customers happier. This 
process improvement will also make the Chief 
Financial Officer happier, too: Our total cost of 
quality has dropped to about half a million dollars 
and we enjoy a nice fat 571% return on our $70,000 
investment. 
 In some cases, we can do even better. For 
example, suppose that we invest $12,500 in test 
automation tools and Inspection activities (see in the 
“Case 3” column in Fig. 7). Let’s assume we intend 
to recapture a return on that investment across the 
next twelve quarterly releases. Would we be happy 
if that investment in test automation helped us find 
about 67% more bugs? 
 Finding 350 bugs in development phases and 600 
bugs in the test process would lower the overall 
customer bug find count for each release to 50. 
Deployment of  more formal and rigorous STP in 
which 950 bugs out of 1000 were removed, i.e. 
Total DRE 95%. Certainly, customers would be 
much happier to have the more-thoroughly tested 
system. In addition, cost of quality would fall to a 
little under $200,000, a 575% return on investment 
(ROI). 
 

4.4 The Life Cycle Benefit model parameters 

formulas  for calculations 
 
This  section  describes  those  formulas  of  our 
OptimalSQM  metrics  model [6] which are 
necessary to understand the break-even and ROTI 
analysis if the investment of described STP 
improvements in previous sections pays off. 

Calculating the return on investment ROI means 
to add up all the benefits of the investment, subtract 
the cost, and then compute the ratio of the cost 
according the equation (6) in Section 4.3.2 Financial 
ROI. If the investment in STP improvement pays 
off, the ROTI1 is positive, otherwise negative.  In 
our evaluation of TDD we focus on the benefit cost 
ratio BCR which is easily derived from the return on 
investment. 
 
BCR  =  LifeCycleBenefit/Investment = ROTI1 + 1 

 

Studying the BCR instead of the ROTI1 makes the 
break-even analysis much simpler, see below. 
 
4.4.1 Investment Cost 

We first look at the investment cost.  For the 
conventional project, the development phase 
includes design, implementation and test.  The 
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development phase of the TDD project is comprised 
only of test-driven development. 
As first empirical evidence suggests, we assume that 
the  TDD  project  lasts  longer  than  the  
conventional project. We call the ratio of the project 
durations the test-speed-disadvantage  (TSD). 
 
TSD  =  TimeConv/TimeTDD 

  
Since  we  assume  that  the  development  phase  is 
shorter  for  the  conventional  project, because 
include small number of test activities,  the  test-
speed-disadvantage ranges between 0 and 1:0 < 
TSD < 1. 
 Using productivity figures to explain the 
difference in elapsed  development  time  between  
the  two  kinds  of project, the TDD development is  
(1 − TSD) × 100 % less productive than the 
conventional project. Finally, the investment is the 
difference between the development cost of the 
TDD project and the conventional project as 
depicted in Fig. 5. 
 
4.4.2 Life Cycle Benefit 

 
Now,  we  consider  the  benefit.    Each  
development process is characterized by a distinct 
defect-removal-efficiency - DRE (recall the section 
4.1).   The  defect-removal-efficiency  denotes  the  
percentage  of  defects  a  developer  eliminates  
during  development.   Initially,  a  developer  
inserts  a  fixed  amount  of  defects  per  thousands  
lines of code (initial-defect-density, IDD), but he 
eliminates DRE × 100 % of the defects during the 
development process. From the increased reliability 
assumed for TDD,we have: 
 

0 < DRE Conv  < DRE TDD  < 1. 
 

The  additional  quality  assurance  (QA)  phase  of  
the conventional  project  compensates  for  the  
reduced defect-removal-efficiency  of  the  
conventional  process. The only purpose of the 
Comprehensive QA plan phase is to remove all 
those defects found by TDD but not by the 
conventional process (recall the Case 3 in section 
4.3.2).  The amount of defects to be removed in the 
Comprehensive QA plan phase is mainly 
characterized by: 
 

△DRE = DRE TDD  − DRE Conv . 

 
The benefit of TDD is equal to the cost of the 
Comprehensive QA plan phase for the conventional 
project.  The benefit depends on the effort 

(measured in developer months) for repairing one 
line of code during QA, which is characterized by 

WT

IDDDRT *
QAEffort =  

QAEffort depends on the following: 
•  The defect removal time DRT.   It describes the 
developer effort in hours for detecting (finding) and 
removing one defect. 
•  The initial defect density IDD. The number of de- 
facts per line of code inserted during development. 
•  The working time WT.   The working hours per 
month of a developer. The reciprocal of QAEffort is a 
measure for the productivity during the QA phase. 
 
4.4.3 Benefit Cost Ratio 

The benefit cost ratio is the ratio of the benefit and  
the investment.  Substituting the detailed formulas 
given in [6] of our model, the benefit cost ratio 
becomes: 

)1(

** Prod*
BCR

TSD

TSDDREQAEffort

−

∆
=              (7) 

Where, Prod  is  the  productivity  of  the  
conventional project during the development phase 
measured in lines of code per month.  Values larger 
than 1 for the BCR mean a monetary gain from 
TDD, values smaller than 1 a loss. 
 

4.4.4 Break Even 

 
Setting the benefit cost ratio equal to 1, we get a 
relation between the test-speed-disadvantage of 
TDD and the reliability gain of TDD: 
 

1*

1
TSD

+∆
=

DREc
, or 

TSDc

TSD
DRE

*

1−
=∆ , where c=QAEffort*Prod 

 
As an example, we examine the benefit cost ratio of 
the following scenario. 
Factor    Value 

DRT 10 h/defect 
IDD 0.1 defects/LOC 
WT 135 h/month 
Prod 350 LOC/month 
 

Let  TSD  and △DRE  vary.    Figure 8  shows  the 
benefit  cost  ratio  plane  spanned  by  the  test-
speed-disadvantage  TSD  and  the  defect-removal-

efficiency difference △DRE. Values larger than 4 
are cut off. 
For large values of the test-speed-disadvantage 
(TSD > 0.9) the TDD project performs almost 
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always better than the conventional project, even for 
a small defect-removal-efficiency  difference.   On  
the  other  hand,  if the test-speed-disadvantage is 
very small (TSD < 0.2), TDD does not produce any 
benefit regardless how large the defect-removal-
efficiency difference is. 

 

Fig. 8 Benefit cost ratio dependent on TSD and △DRE  
 
The TSD can be estimated with formula (10) for 
∆SCED in next Section. The relationship between 
cost savings defined by ROTI2 and schedule 
reduction is shown in Fig. 10 in the same Section. 

4.4.5 Schedule Benefits 

If software quality actions are taken to reduce 
development cost, then this will also lead to a 
reduction in development schedule. We can easily 
calculate the reductions in the development schedule 
as a consequence of reductions in overall effort. In 
this section we will outline the schedule benefits of 
quality improvements. To do so we will use the 
schedule estimation model from COCOMO [2]. 

It is instructive to understand the relationship 
between project size and schedule as expressed in 
the COCOMO II model [2]. This is illustrated in 
Fig. 9. Here we see economies of scale for project 
schedule. This means that as the project size 
increases, the schedule does not increase as fast. The 
three lines indicate the schedule for projects 
employing different levels of practices. The lower 
risk and good practice projects tend to have a lower 
schedule. 

Another way to formulate the ROTI model in Eqn. 6 
which will prove to be handy is: 

CoQTotalOriginal

CoQTotalNewCoQTotalOriginal
ROTI

⋅⋅

⋅⋅−⋅⋅
=2

  (8) 

The New Total CoQ is defined as the total cost of 
software quality the project delivered after 

implementing the quality improvement practices or 
tools as in our Case 2 and Case 3. This includes the 
cost of the investment itself. Let us look at some 
examples. For Case 2 we have: 

%6262.0
500,752$

500,282$500,752$
2 ==

−
=ROTI  

This means that in Case 2 project, the investment 
only saved 62% of overall project cost. 

 
Fig. 9 Relationship between project size and 
schedule in COCOMO II. 
 
Now for Case 3 we have: 

%7474.0
500,752$

000,196$500,752$
2 ==

−
=ROTI  , i.e. the 

same investment saved 74% of overall project cost. 

We can then formulate the New Total CoQ as 
follows: 
 

)1( 2ROTICoQTotalOriginalCoQTotalNew −⋅⋅⋅=⋅⋅

 

Now, we can formulate the schedule reduction 
(∆SCED or SCEDRED) as a fraction (or 
percentage) of the original schedule as follows: 

ScheduleOriginal

ScheduleNewScheduleOriginal
SCED

⋅

⋅−⋅
=∆   (9) 

By substituting the COCOMO equation for 
schedule, we now have: 

)002.0(28.0

)002.0(28.0)002.0(28.0

5

1

5

1

5

1

∑

∑
−

∑

=∆

=

==

⋅×⋅+

⋅×⋅+⋅×⋅+

j

j

j

j

j

j

SF

Original

SF

New

SF

Original

PM

PMPM
SCED

where: 
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PMOriginal - The original effort for the project in 
person-months. 
PMNew - The new effort for the project (after 
implementing quality practices) in person-months 

SFj  -   A series of five Scale Factors that are used 
to adjust the schedule (precedentedness, 
development flexibility, architecture / risk 
resolution, team cohesion, and process maturity). 
 
Now, by making appropriate substitutions, we have 
simplified Eqn.: 

  
)002.0(28.0

2

5

1)1(1
∑

−−=∆ =

×+

j

jSF

ROTISCED  (10) 

The relationship between cost savings and schedule 
reduction is shown in Fig. 10. As can be seen, the 
schedule benefits tend to be at smaller proportions 
than the cost benefits. Nevertheless, shaving off 
10% or even 5% of your schedule can have 
nontrivial consequences on customer relationships 
and market positioning. 

4.4.6 Interpreting The ROI Values 

In this section we will explain how to interpret and 
use the ROI values that are calculated. First, it must 
be recognized that the ROI calculations, cost 
savings, and project costs as presented in our models 
are estimates. Inevitably, there is some uncertainty 
in these estimates. The uncertainty stems from the 
variables that are not accounted for in the models 
(there are many other factors that influence project 
costs, but it is not possible to account for all of these 
since the model would then be unusable). Another 
source of uncertainty is the input values themselves. 
 These values are typically averages calculated 
from historical data; to the extent that the future 
differs from the past these values will have some 
error. Second, note that the calculated ROI values 
are for a single project. A software organization will 
have multiple on-going and new projects. The total 
benefit of implementing software quality practices 
to the organization can be calculated by generalizing 
the results to the organization. For example, if the 
ROI for a single project is say a 15% saving. 
Assuming that the input values are the same for 
other projects in the organization, then we can 
generalize to the whole organization and estimate 
that if software quality practices are implemented on 
all projects in the organization, the overall savings 
would be 15%. 
 If the software budget for all the projects is say 
20 million, then that would translate into an 

estimated saving of 3 million. Note that this is not 
an annual saving, but a saving in total project 
budgets hat may span multiple years (i.e., for the 
duration of the projects). To annualize it then the 
15% savings must be allocated across multiple 
years. If you are implementing quality improvement 
on a single project, then these costs would have to 
be deducted from the single project savings. If you 
are implementing quality practices in the whole 
organization, then these costs will be spread across 
multiple projects. In such a case, these costs would 
be deducted from the organizational savings (the 
calculation of which is described above). 

 
Fig. 10 The relationship between cost savings and 
schedule reduction for up to 50% cost savings. The 
assumption made for plotting this graph was that all 
Scale Factors were at their nominal values. 
 

5 Conclusion 

The data in this paper, especially taking into account 
the conservatism in the assumptions made, provides 
compelling evidence that substantial reductions in 
post-purchase costs can be gained by focusing on 
higher quality suppliers. In fact, one would contend 
that in many cases the savings would exceed the 
actual initial and annual licensing costs of the 
software. An improvement in delivered software 
quality reduces the total cost of ownership of the 
software by the customer. Therefore, quality 
practices have a direct impact on the ongoing costs 
that are incurred by the customer while operating the 
software. 
 It is not atypical that 50% or more of a project's 
cost can be rework [5]. Rework means fixing 
defects. If the quality of the software is higher then 
less effort will be spent on rework since fewer 
defects need to be fixed. Higher development 
productivity and lower rework result in reduced 
overall software project costs. And, lower total costs 
mean less effort by the project staff. Higher 
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productivity also translates into a reduction in 
overall project schedule. 

Small companies tend to incur relatively larger 
costs due to software defects because [3]: 
• Smaller companies are less likely to have internal 
support staff who can help troubleshoot and correct 
errors. This means that the customer has to go back 
to the vendor, which takes longer. The consequence 
is that the disruptive effects of defects last longer. 
• Larger corporations tend to get higher priority 
from the software vendors. 

Therefore their requests for fixes, patches, and 
workarounds get more immediate attention than 
smaller companies. Also, large companies are more 
likely to have internal support staff. Therefore the 
disruptions from discovering problems are 
minimized. 

There is accumulating evidence that higher 
maturity organizations produce higher quality 
software [1]. Therefore, it would pay to seek higher 
maturity suppliers and demand that existing uppliers 
invest in improving their maturity levels. 

This paper satisfies these objectives by 
designing, constructing, and exercising a multi-part 
methodology consisting of a Defect Removal 
Model, Cost and Benefit Data, Return-on-
Investment Model, Break Even Point Model, and 
Costs and Benefits of Alternatives, which all lead up 
to a Cost and Benefit Model. 
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