
Software Economics: Quality-Based Return-on-Investment Model

 Ljubomir Lazić Nikos E Mastorakis

Department for Mathematics and Informatics Technical University of Sofia,
State University of Novi Pazar English Language Faculty of Engineering
 SERBIA Industrial Engineering, Sofia, BULGARIA
llazic@np.ac.rs, http://www.np.ac.rs http://www.wseas.org/mastorakis

Abstract: - Along with the ever more apparent importance and criticality of software systems for modern
societies, arises the urgent need to deal efficiently with the quality assurance of these systems. Even though
the necessity of investments into software quality should not be underestimated, it seems economically unwise
to invest seemingly random amounts of money into quality assurance. The precise prediction of the costs and
benefits of various software quality assurance techniques within a particular project allows for economically
sound decision-making. This article explains the return on investment rate (ROI) of Software Process
Improvement (SPI), and introduces practical metrics and models for the ROI of SPI. Furthermore an analytical
idealized model of defect detection techniques is presented. It provides a range of metrics: the ROTI of
software quality assurance for example. The method of ROTI calculation is exemplified in this paper. In
conclusion, an overview on the debate when software is purchased, concerning quality and cost ascertaining in
general will be given. Although today there are a number of techniques to verify the cost-effectiveness of
quality assurance, the results are thus far often unsatisfactory. More importantly, this article helps sort through
the seldom and often confusing literature by identifying a small set of practical metrics, models, and examples
for the ROI of SPI.

Key-Words: - Software Economics, Return on Investment, Software Process Improvement, Software Quality.

1 Introduction

Our research [4-6]1 concluded that developing

software is for most organizations no longer an
independent software project, but is part of a
business case which includes all disciplines
involved. In order to stay competitive, companies
must deliver high quality products on time and
within budget. Although the development cost was
very important, quality, lead-time, and delivery
precision were considered as the most important
factors. Therefore, an evaluation of what effect the
implemented concept had on these factors of
Quality-Based Return-on-Investment, using Cost
Benefit Analyses, was of interest. This paper
satisfies these objectives by designing, constructing,
and exercising a multi-part methodology consisting
of a Defect Removal Model, Cost and Benefit Data,
Return-on-Investment Model, Break Even Point
Model, and Costs and Benefits of Alternatives,

1 This work was supported in part by the Ministry of

Science and Technological Development of the Republic

of Serbia under Grant No. TR-13018.

which all lead up to a Cost and Benefit Model (as
shown in Fig. 1).

2 Costs and benefits of SPI strategies

Costs and benefits of Software Process
Improvement (SPI) strategies will be evaluated by a
variety of interrelated techniques, starting with the
Defect Removal Model. The Defect Removal
Model, as explained later, is a technique for
evaluating SPI method effectiveness, and once
economic models are factored in, provides an
empirically valid approach for comparing the costs
and benefits of SPI methods. Obviously, existing
cost and benefit data for SPI methods selected from
the Literature Survey will be judiciously factored
into, and drive, each of the individual analytical
models. A Return-on-Investment (ROI) Model will
be designed, based on the Defect Removal Model
and populated by empirical cost and benefit data, in
order to arrive at quality, productivity, cost, break
even, and of course, ROI estimates. Eventually, a
SPI strategy Cost and Benefit Model will be
constructed from Cost and Benefit Criteria, SPI
Strategy Alternatives, and Cost and Benefits of
Alternatives: Buy or Produce Software for
company’s Information System business tasks. The
design of the Methodology was significantly

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 25 ISBN: 978-960-474-194-6

influenced by Kan’s [2], Jones’ [7], Rico’s [8] and

Lazic’s [4-6] Defect Removal Model-based
comparisons of SPI costs and benefits.

Fig. 1 Methodology for Evaluating and Selecting
Costs and Benefits

An analysis of SPI costs and benefits also served as
primary influence for the design of the
Methodology. Their study, however, was the
primary influence for two reasons, it is
comprehensive in nature, and it exhibits a uniquely
broad range of comparative economic analyses
between SPI methods. In addition, their study stands
alone in unlocking economic analyses associated
with the Clean Room Methodology, Software
Reuse, and even the Software Inspection Process.
The study goes even further than that, in creating
and establishing a valid empirically-based
methodology for using existing cost and benefit data
and analyses, for evaluating and selecting SPI
methods.
Furthermore, Lazic’s text [4-6] on SPI strategies
also influenced the design and direction of the
Methodology, explicitly identifying the Software
Inspection Process as having an overwhelming
impact on bottom line organizational performance.
Thus, his works [4-6] helped justify the creation and
significance of the ROI Model, which will be
explained in greater detail later. Kan’s and Lazic’s
Defect Removal Model-based SPI method
comparison, however, was the final influence in
selecting and fully designing the Methodology,
highlighting the vast economic advantages that one
SPI strategy may have over another. In fact, Rico’s
[8] study was the starting point for implementing the
Methodology, which quickly picked up a lot of
momentum and took on an entire life of its own.
After only a few minutes of briefly extending their

analyses, the results proved mesmerizingly
phenomenal, and thus the Methodology was
conceived. In fact, the results of the Methodology,
and later the data analyses, exceeded all
expectations. And, just to imagine that the final
results were preliminarily yielded after only a few
moments of additional permutations involving
Jones’, Kan’s and Lazic’s study is truly amazing.

2.1 Cost and Benefit Criteria
Three cost criteria and five benefit criteria for a total
of eight criteria were chosen with which to evaluate,
assess, and analyze SPI alternatives: Training Hours,
Training Cost, Effort, Cycle Time, Productivity,
Quality, Return-on-Investment, and Break Even
Hours. These criteria were chosen because of their
commonality and availability as exhibited by Table
1. Reclassification of 487 Metrics for Software
Process Improvement (SPI) [2,4,7], Citation
Frequency of Metrics for Software Process
Improvement(SPI) [4-7], Survey of Software
Process Improvement (SPI) Costs and Benefits is
given in Table 1 [1,7].

Table 1 Criteria for Evaluating Software Process
Improvement (SPI) Alternatives

Survey of Metrics for Software Process
Improvement (SPI), showed 74 broad metric classes
and 487 individual software metrics. However,
Citation Frequency of Metrics for Software Process
Improvement (SPI), reclassified the 74 classes of
487 metrics into 11 classes: Productivity (22%),
Design (18%), Quality (15%), Effort (14%), Cycle
Time (9%), Size (8%), Cost (6%), Change (4%),
Customer (2%), Performance (1%), and Reuse (1%).

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 26 ISBN: 978-960-474-194-6

This helped influence the selection of the eight
criteria for SPI cost/benefit analysis, since later
quantitative analyses will be based on the existence
and abundance of software metrics and
measurement data available in published sources.
But, availability is not the only reason these eight
criteria were chosen. These eight criteria were
chosen because it is believed that these are the most
meaningful indicators of both Software Process and
Software Process Improvement (SPI) performance,
especially, Effort, Cycle Time, Productivity,
Quality, Return-on-Investment (ROI), and Break
Even Hours. Effort simply refers to cost, Cycle
Time refers to duration, Productivity refers to
number of units produced, Quality refers to number
of defects removed, ROI refers to cost saved, and
Break Even refers to length of time to achieve ROI
[1-4,7,8]. Quality software measurement data will
prove to be a central part of this analysis and the
direct basis for a Return-on-Investment (ROI) model
that will act as the foundation for computing ROI
itself. Thus, the Quality criterion is an instrumental
factor, and it is fortunate that SPI literature has so
abundantly and clearly reported Quality metric and
measurement data, despite Quality’s controversial
and uncommon usage in management and
measurement practice [1,7]. The SEI reports that
approximately 95.7% of software organizations are
below CMM Level 4. CMM Level 4 is where
software quality measurement is required. It is safe
to assert that 95.7% of software organizations do not
use or collect software quality measures.
While, Kan’s [2] seminal masterpiece gives a much
greater scholarly portrait of sophisticated metrics
and models for software quality engineering, Lazic
breaks Defect Density down into its most practical
terms, Appraisal to Failure Ratio. Lazic has
demonstrated that an optimal Appraisal to Failure
Ratio of 2:1must be achieved in order to manage
software development to the peak of efficiency.
While, Kan encourages the use of Rayleigh
equations to model defect removal curves, Lazic
presents us with the practical saw-tooth form, two
parts defects removed before test and one part
during test, resulting in very near zero defect levels
in finished software products. Since, defects found
in test cost 10 times more than defects found before
test, and 100 times more after release to customers,
Lazic has found that finding 67% of defects before
test leads to optimal process performance, minimal
process cost, and optimal final software product
quality. The other common argument against the use
of Defect Density metrics is that they seem to be
rather limited in scope, ignoring other more
encompassing software life cycle measurements.

Again, Lazic’s Defect Density Metrics Appraisal to
Failure Ratio-based methodology [4-6] has proven
that metrics need not be inundating, overwhelming,
all encompassing, and sophisticated. This is merely
a common confusion between product desirability
and Quality. Customer satisfaction and market share
measurement is a better form of measuring product
desirability while Defect Density is an excellent
form of measuring software Quality. Kan [2] gives
an excellent exposition of over 35 software metrics
for measuring many aspects of software Quality,
including customer satisfaction measurement, while
reinforcing the strategic nature of Defect Density
metrics for measuring software quality associated
with SPI.

2.2 Return-on-Investment Model (ROI)

Since very little ROI data is reported [1,8],
available, and known for SPI methods, it became
necessary to design a new ROI model in order to act
as an original source of ROI data, and establish a
fundamental framework and methodology for
evaluating SPI methods (see Table 2). This original
software quality-based ROI model is a direct
extension of an earlier work by Rico [8], that was
designed for the express purpose of evaluating ROI.

Table 2 Basic Quality-Based Return-on-lnvestment
(ROI) Model

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 27 ISBN: 978-960-474-194-6

It is a seemingly simple, though intricately complex
composite of multiple sub-models, simulating the
effects of several SPI methods on efficiency,
productivity, quality, cost, break-even points, and
ROI. Some of the sub-models represented include a
defect removal model and multiple empirical
statistical parametric linear and log-linear software
cost models. The defect removal model or defect
containment analysis model is an experimentally,
scientifically, empirically, and commercially
validated software quality-based approach to
examining SPI method effectiveness and ROI,
introduced and used extensively by several major
studies [1-4,7,8].
 The method involves estimating software defect
populations, estimating the efficiency of SPI
methods for eliminating software defects, estimating
the residual software defect population after
applying a particular SPI method, and estimating the
cost of eliminating the residual software defect
population delivered to customers.

3 Software quality practices and tools

There are many practices and tools that a software
vendor can employ [2,7]. There does exist a general
framework for understanding how these practices
and tools influence the outcomes of software
projects, and from which one can determine the
potential benefits.
 The smart implementation of software quality
practices can result in:
• A reduction in software project costs (i.e., an
increase in productivity) either directly or through
reducing rework.
• The delivery of higher quality software and
consequently reducing the customer's cost of
ownership
• Reducing time to market (i.e., shorter delivery
schedules)

 This paper is based on research demonstrating
that for specific quality improvement practices and
tools, the above benefits can be quantified. Figure 1
shows the chain of effects that follow from the
implementation of quality improvement practices
and tools. The direct consequence of these practices
and tools is increased reuse of software and an
improvement in delivered quality.
 Increased reuse will lead to higher productivity.
Higher quality will lead to lower rework. Increased
reuse can also influence quality. There is some
earlier evidence showing that quality improves by
reusing pre-existing artifacts [7]. More recently, one
study found that object-oriented classes tend to have

a lower defect density than classes that were new or
reused with modification [2]. In general, it was
found that reuse reduced the amount of rework. Of
course, if rework is reduced, then productivity
increases as well.
 An improvement in delivered software quality
reduces the total cost of ownership of the software
by the customer. Therefore, quality practices have a
direct impact on the ongoing costs that are incurred
by the customer while operating the software.
It is not atypical that 50% or more of a project's cost
can be rework [5]. Rework means fixing defects. If
the quality of the software is higher then less effort
will be spent on rework since fewer defects need to
be fixed. Higher development productivity and
lower rework result in reduced overall software
project costs. And, lower total costs mean less effort
by the project staff. Higher productivity also
translates into a reduction in overall project
schedule.
 In the remainder of this paper we will explain
how these mechanisms operate and provide
examples.

3.1 Quality and The Cost of Ownership

In this section we will present a model for
calculating the relationship between software quality
and the cost of ownership of software. Through a
number of examples, it will be demonstrated that
low quality software can be quite expensive for the
customer.

A Definition of Customer Costs

When software is purchased, the customer costs
consist of three elements:
1. Pre-purchase costs constitute the resources
expended by the customer to investigate different
software companies and products.
2. Installation costs constitute the resources invested
in installing and verifying the operation of new
software beyond that which is covered in the
purchase contract (i.e., as part of the purchase price).
3. Post-purchase costs constitute the resources to
deal with software failures, including consultants
and the maintenance of redundant or parallel
systems.
 For our purposes we will focus mainly on the
latter two cost categories as being the most relevant.
Both cost categories increase when there are defects
in the software.

Installation defects typically are due to interface
problems with legacy systems or interoperability
with pre-installed software. For commercial (shrink-

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 28 ISBN: 978-960-474-194-6

wrapped) software, installation problems are usually
minimal. However, if there are problems during
installation, the customer bears the cost of trying to
figure out the problem and making support calls to
the developers. For customized software there are
greater chances of installation difficulties. Dealing
with them may entail expenditures on consultants
and third party integrators. Additional cost
components here are those of lost productivity due
to the software not being installed on time, and lost
sales or revenue due to the unavailability of an
operational system.

Post-purchase costs occur because the customer
has to deal with failures of the software or lower
performance than expected. This entails interacting
with the vendor to describe and recreate the
problem, and implementing workaround procedures
(which may be inefficient) while waiting for the fix.
Bugs may result in the loss of data and the need to
re-enter them, and may result in capital costs being
incurred due to early retirement of new but
ineffective systems. Another cost of failures is that
of operating redundant or parallel systems at the
same time as the new software until the new
software is fully functional with no quality
problems.

These costs tend to be different depending on
whether the customer company is small or large.
Small companies tend to incur relatively larger costs
due to software defects because [3]:

• Smaller companies are less likely to have internal
support staff who can help troubleshoot and correct
errors. This means that the customer has to go back
to the vendor, which takes longer. The consequence
is that the disruptive effects of defects last longer.
• Larger corporations tend to get higher priority
from the software vendors.

Therefore their requests for fixes, patches, and
workarounds get more immediate attention than
smaller companies. Also, large companies are more
likely to have internal support staff. Therefore the
disruptions from discovering problems are
minimized.

For instance, in the manufacturing sector in USA
it has been estimated that the software defect costs
per employee varies from US$1466.1 to US$2141.4
for small companies (less than 500 employees), and
from US$128.9 to $277.8 for large companies (more
than 500 employees) [3]. For a 100 person company
that translates to US$146,614 to US$214,138, and
for a 10,000 employee company that makes
US$1,289,167 to US$2,777,868 per year.

3.2 Savings From Higher Quality Software

We can derive a model to estimate the savings to the
customer from purchasing higher quality software.
The scenario is that of a customer choosing between
two products from two vendors. The products are to
perform the same functions.
To develop a model that is actionable and where
sufficient benchmark data is available that can be
used, certain assumptions need to be made. The
approach that we take is to make assumptions that
are conservative. That means we will make
assumptions which result in the estimate of savings
from better quality being underestimated rather than
being exaggerated. This way we develop a lower
bound model. The installation and post-purchase
costs for a customer who has bought a software
product are given by:

 (1)
Where:
Q The quality of the product defined in terms of
defect density. Defect density is total defects found
after release per one thousand lines of code.
S This is the size of the product in thousands of
lines of code or Function Points (or some other size
measure).
C The cost per defect for the customer. This is due
to installation and post-purchase problems.
P The proportion of defects that the customer finds.
It is defined as the fraction of all of the defects in the
software that a single customer is likely to find. For
example, if it is 0.01, it means that any single
customer is likely to experience 1% of all of the
detectable defects in the software.

Let us assume that we have two software
products, A and B, that have the same functionality
(i.e., say the Function Points count is the same). Let
us also say that A has higher quality than B (i.e., it
has a lower defect density). These two products are
of the same size and will be used the same way. A
customer can choose between these two products.
The percentage cost savings to the customer from
using product A as opposed to product B would be:

 (2)
For example, if the percentage saving is 20%, then
this means that the specific cost to the customer of
owning product A (the installation and post-
purchase costs) is 20% less than that of owning
product B. We can easily make the assumption that
the sizes for A and B are the same since we are
talking about the same system functionality.

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 29 ISBN: 978-960-474-194-6

Therefore, the percentage savings equation
becomes:

We can simplify this to:

Let:
PA The proportion of defects that the customer
finds in program A.
PB The proportion of defects that the customer
finds in program B.
And, since B has more defects than A, we would
also expect to see:

Then, it is clear that:

Therefore, if we use the following equation, we are
actually calculating a lower bound on the percentage
saving:

The component of the above equation (cost per
defect) has two elements: mitigation costs which are
the costs that the customers incur in response to
defects actually manifesting themselves, and
avoidance costs such as installation costs and
redundant system costs. There is evidence that the
mitigation costs of the customers are linearly
proportional to the reduction in defects [3]. This
means that as the number of defects detected
decreases, the customer costs decrease
proportionally. Therefore, for these mitigation costs,
we can treat as a constant (i.e.,).However, the
avoidance costs decrease non-linearly with defects
[3]. In fact, in many instances the benefits of
reduced defects do not really accrue until the defect
counts approach zero. For example, redundant
systems have to be kept in place even if one defect
remains because one defect is sufficient to bring
down the whole system, which would then require
the redundant system to kick in. Similarly, some of
the customer costs will not disappear even if the
software did have zero defects. For instance, there
will always be installation costs even for perfect
software because some of the legacy applications
that the new software integrates with may have
defects. Therefore, for these avoidance costs we
make the conservative assumption that a reduction
in defects will have no impact on the customer since
in most cases the true defect density will be unlikely

to approach zero. In terms of our model, this means
that the component in the above equation consists
only of the mitigation costs. Based on the recent
data collected in [3], we can make another
conservative assumption that 75% of the post-
purchase customer costs are mitigation costs, and
the remaining 25% are avoidance costs. This means
that if the defect content of the software went all the
way to zero, 25% of the current post-purchase costs
would still be incurred. To demonstrate the
conservatism in this assumption, the NIST report [3]
notes that the cost per defect in the manufacturing
sector is on averageUS$4,018,588. The total of
installation, acceptance, maintenance, and redundant
system costs per firm is US$258,213.6. If, on
average a firm experiencing defects has 40 major
ones per year, then the mitigation costs can actually
be quite large compared to avoidance costs
according to these numbers. Therefore, if we say
that 75% of the customer costs are mitigation costs
that decrease proportionally to defect reduction, then
the above equation becomes:

 (3)

Which gives a lower bound on the post-purchase
cost savings from improved quality.
There are two interesting things to note about Eqn.
(3). First, in practice it is quite easy to get
comparative values for QA and QB. Even if QA and
QB are not readily available, there are reliable ways
to estimate their ratio using black-box testing
techniques. Therefore, it provides us with a very
actionable model. Second, the excessive
conservatism that we have emphasized in deriving
our assumptions, as you will see, do not dilute the
strong conclusions that can be drawn about the cost
of quality to the customer. We now look at a number
of examples to illustrate the benefit of better quality
software from the customer perspective using
benchmark data.

3.3 Benchmarking Customer Costs

The following examples are based on published data
and illustrate the savings to the customer under a
diverse set of scenarios. The savings are calculated
according to Eqn. (3).

SW-CMM Example

Jones [7] has published the defect density of
software from companies at different maturity levels
as measured on the Capability Maturity Model for
Software. If we consider the average values, we can

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 30 ISBN: 978-960-474-194-6

construct Table 3, which shows the reduction in the
customer's cost as the maturity of the supplier
increases. For instance, software from companies at
ML3 is 27.75% cheaper from the customer’s
perspective compared to software from an ML1
company. We can also see that there are dramatic
reductions in the customer cost as the maturity of
the supplier reaches the higher levels.

Table 3 Percentage reduction in ownership costs due
to improved quality from the customer’s perspective

Customer Savings By Industry, Country, and

Platform

We can also compare the customer cost when
buying software from average companies in their
domain versus best-in-class ones. Jones [7]
identifies delivered defects per Function Point for
average and best-in-class companies in a number of
different business domains. Best-in-class are the top
performers in their domain (defined as the top 10%).
Using those numbers we can determine the cost
savings to a customer from buying software from an
average company compared to a best-in-class
company. These results are shown in Table 4. As is
obvious, there are quite dramatic benefits to the
customer from buying software from a best-in-class
company that delivers high quality software.

Table 4 The percentage customer cost reduction
between the average and best-in-class companies in
each business sector at the three project sizes.

Data are from MIS and commercial projects, a small
project is 100 FP, a medium project is 1000 FP, and
a large project is 10000FP. For systems software
and military projects, a small project is1000FP, a
medium project is 10000FP, and a large project is
100000FP. This data is derived from [7].

The savings in ownership costs can be quite large
compared to average producers (assuming a bell
curve, one can make the reasonable assumption that
at least half of the vendors in each category are at or
below average). Based on defect density data
collected during the most recent ISBSG benchmark
we can evaluate the difference to the customer in
acquiring software from best-in-class companies (in
the top 10% as measured by delivered defect
density) and average performers. We also compare
best-in-class to worst performers (bottom 10% as
measured by delivered defect density).

Table 5 Cost savings to the customer in terms of
buying software from the best performers vs.
average and worst performers within each of these
countries.

 Data from table means that, for example, if an
Australian customer buys software from a company
that delivers best-in-class projects, then their post-
purchase costs would be about 70% cheaper
compared to if they buy it from a worst performer
and over 50% better compared to if they buy it from
an average performer.

Table 6 Cost savings to the customer in terms of
buying soft-ware from the best performers vs.
average and worst performers within each of these
business areas.

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 31 ISBN: 978-960-474-194-6

This table shows the cost savings to the customer in
terms of buying software from the best performers
vs. average and worst performers within each of
these target platforms. This means that, for example,
if a mainframe customer buys software from a
company that delivers best-in-class projects, then
their post-purchase costs would be over 70%
cheaper compared to if they buy it from a worst
performer and around 64% better compared to if
they buy it from an average performer.

4 Economics Of Software Quality

Cost of quality represents any and all costs that
organization incurs from having to repeat a process
more than once in order to complete the work
correctly. Cost of developing software Quality
(CoSQ) is useful to enable our understanding of the
economic trade-offs involved in delivering good-
quality software. Commonly used in manufacturing,
its adaptation to software offers the promise of
preventing poor quality but, unfortunately, has seen
little use to date. Different authors and researcher
have used different ways to classify components for
quality cost [2-8], if we look carefully their
understanding about various components are
approximately the same as shown in Fig.2.

Fig. 2 Model of Cost of software Quality (CoSQ)

4.1 Statement Of the Problem

A key metric for measuring and benchmarking the
software testing efficacy is by measuring the
percentage of possible defects removed from the
product at any point in time. Both a project and
process metric – can measure effectiveness of
quality activities of a all over project by:

DRE = E/(E+D) (4)

Where E is the number of errors found before
delivery to the end user, and D is the number of
errors found after delivery. The goal is to have DRE
close to 100%. The same approach is applied to
every test phase denoted with i as shown on Fig. 3:

DREi = Ei / (Ei + Ei+1) (5)

Where Ei is the number of errors found in a software
engineering activity i, and Ei+1 is the number of
errors that were traceable to errors that were not
discovered in software engineering activity i.

The goal is to have this DREi approach to 100%
as well i.e., errors are filtered out before they reach
the next activity. Projects that use the same team and
the same development processes can reasonably
expect that the DRE from one project to the next are
similar. For example, if on the previous project, you
removed 80% of the possible requirements defects
using inspections, then you can expect to remove
~80% on the next project. Or if you know that your
historical data shows that you typically remove 90%
before shipment, and for this project, you’ve used
the same process, met the same kind of release
criteria, and have found 400 defects so far, then
there probably are ~50 defects that you will find
after you release. How to combine Defect Detection
Technique (DDT) to achieve high DRE, let say
>85%, as a threshold for SPI required effectiveness
[4-6] which describe optimum combination of
software defect detection techniques choices.
 Note that the defects discussed in this section
include all severity levels, ranging from severity 1:
activity stoppers, down to severity 4. Obviously, it is
important to measure defect severity levels as well
as recording numbers of defects.

Fig. 3 Fault Injection and Fixing Model

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 32 ISBN: 978-960-474-194-6

4.2 The Real Cost Of Software Defects

It is obvious that the longer a defective application
evolves the more costly it is to repair. But how
much more? The answer might surprise you.
According to the collected metrics of one software
development organization, a bug that costs $1 to fix
on the programmer’s desktop costs $100 to fix once
it is incorporated into a complete program, and
many thousands of dollars if it is identified after the
software has been deployed in the field [7], as
described on Fig. 4. Several studies [2-6] has
published over nearly three decades that
demonstrate how the cost for removing a software
defect grows exponentially for each downstream
phase of the development lifecycle in which it
remains undiscovered.

Fig. 4 Engineering Rules for Cost Of Defect
Removal [3]

 Further, another major research project
conducted recently by the United States Department
of Commerce, National Institute of Standards and
Technology (NIST) [3] showed that in a typical
software development project, fully 80% of software
development dollars are spent correcting software
defects. The same NIST study also estimated that
software defects cost the U.S. economy, alone, $60
billion per year. Many organizations view the
software development lifecycle, in a Conventional
way, as a linear process with discrete functions:
design, develop, test and deploy. In reality, the
software development lifecycle is a cyclical function
with interdependent phases. Quality assurance has a
role in every phase of that lifecycle, from
requirements review and test planning, to code
development and functional testing, to performance
testing and on into production. It was unanimously
agreed that quality and quality assurance is more
than strictly testing at the end of the development

process. Starting quality initiatives early and paying
attention to quality throughout the development,
deployment and production effort is key in order to
achieve a baseline goal of zero-defect software.

4.3 Software Testing Economics

4.3.1 Techniques To Analyze Return On The

Testing Investment (ROTI)

The ROTI model compares the development cost for
a conventional project with the development cost
for a project that uses Test Driven Development
(TDD) as depicted on Fig. 5. The investment cost is
the additional effort necessary to complete the TDD
project as compared to the conventional project.
The life cycle benefit is captured by the difference
in quality measured by the number of defects that
the TDD team finds and fixes, but the conventional
project does not. This defect difference is
transformed into a monetary value using the
additional developer effort corresponding to finding
and fixing these defects in the conventional project.
The concepts of the life cycle benefit and the
investment cost in our context are depicted in Fig.
10. The upper horizontal line corresponds to the
conventional project with additional quality
assurance phase! The lower horizontal line
corresponds to the TDD project. Our model captures
the return on investment for an experienced TDD
team in software testing process improvement (SPI).

Fig. 5 Overview of benefit cost ratio calculation

4.3.2 Financial ROI

From a developer’s perspective, there are two types
of benefits that can accrue from the implementation
of good software quality practices and tools: money
and time. A financial ROTI looks at cost savings
and the schedule ROTI than looks at schedule
savings. Direct financial ROTI is expressed in terms
of effort since this is the largest cost on a software
project. There are a number of different models that
can be used to evaluate financial ROTI for software
quality.
 The first is the most common ROI model. We
will show that this model is not appropriate because
it does not accurately account for the benefits of
investments in software projects. This does not

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 33 ISBN: 978-960-474-194-6

mean that that model is not useful (for instance,
accountants that we speak with do prefer the
traditional model of ROI), only that we will not
emphasize it in our calculations.
 Methods for return on investment (ROI) include
benefit, cost, benefit/cost ratio, ROI, net present
value, and breakeven point are given in Fig. 6. ROI
methods in general are quite easy, indispensable,
powerfully simplistic, and absolutely necessary in
the field of software process improvement (SPI). It
is ironic that ROI methods are not in common
practice. The literature does not abound with ROI
methods for SPI. The ROI literature that does exist
is very hard to locate, appears infrequently, and is
often confusing.

Fig. 6 ROI metrics showing simplicity of ROI
formulas and their order of application

We also look at ROI at the project level, specially
on return on the testing investment (ROTI), rather
than at the enterprise level. ROI at the enterprise
level (or across multiple projects) requires a slightly
different approach which we will not address
directly here.

The most common ROI model, and that has been
used more often than not in software engineering,
we use for ROTI calculation is:

InvestmentTest

InvestmentTestSavedCoQTotal
ROTI

⋅

⋅−⋅⋅
=1

 (6)

This ROTI model gives how much the Total Cost of
Quality (CoQ) savings gained from the project were
compared to the initial investment. Let us look at a
couple of examples to show how this model works.
We will use a hypothetical case study to illustrate
the use of this cost of quality technique to analyze

return on the testing investment. Suppose we have a
software product in the field, with one new release
every quarter. On average, each release contains
1,000 “must-fix” bugs—unacceptable defects—
which we identify and repair over the life of the
release. Currently, developers find and fix 250 of
those bugs during development, while the customers
find the rest. Suppose that you have analyzed the
costs of internal and external failure. Bugs found by
programmers costs $10 to fix. Bugs found by
customers cost $1,000 to fix. We analyze three cases
of software development and testing process which
provide Low Quality, Good Quality and High
Quality Results.

Case 1: Low Quality Results

Case 1 is assumed to be a fairly small systems
software project of 251 function points in size.
Defect potentials are derived by raising the function
point total of the application to the 1.25 power,
which results in a total of 1,000 defects or 4 defects
per function point [2]. Defect removal efficiency is
assumed to be 75% overall. The development team
is assumed to be below level 1 on the CMM scale in
Software Development Process (SDP) which is
unpredictable and poorly controlled i.e. Ad hoc
level.

As shown in the “Case 1 Testing” column in Fig.
7, our cost of quality is three-quarters of a million
dollars. It’s not like this $750,000 expenditure is
buying us anything, either. Given that 750 bugs
escape to the field, it’s a safe bet that customers are
mad!

Case 2: Good Quality Results

Case 2 is exactly the same size and the same class of
software as Case 1. The project management
decided to improve software testing process (STP)
and invested in testing staff $60,000 and test
infrastructure $10,000 as shown in the “Case 2
Testing” column in Fig. 7.
 The development team is assumed to be level 1
on the CMM scale. Defect removal efficiency is
assumed to be 85% overall. Defect removal
operations consist of six test stages: 1) unit test, 2)
new function test, 3) regression test, 4) integration
test, 5) system test, and 6) external Beta test.

Case 3: High Quality Results

Case 3 is exactly the same size and the same class of
software as Case 1. The development team is
assumed to be higher than level 3 on the CMM
scale. By means of more effective defect prevention
such as Quality Function Deployment (QFD) and

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 34 ISBN: 978-960-474-194-6

Six-Sigma the defect potentials are lower. Defect
removal efficiency is assumed to be 95%. Defect
removal operations consist of nine stages: 1) design
inspections; 2) code inspections; 3) unit test, 4) new
function test, 5) regression test, 6) integration test,
7) performance test, 8) system test, 9) external Beta
test.
To clarify the differences between the three case
studies, note that both examples are exactly the
same size, but differ in these key elements:
• CMM levels
• Defect prevention
• Defect potentials
• Defect removal efficiency
• Development schedules
• Development effort
• Development costs

Fig. 7 Using Cost of Quality to Analyze two ways of
Return on Investment calculation

Suppose we calculate that bugs found by testers
would cost $100 to fix. This is one-tenth what a bug
costs if it escapes to our customers. So, we invest
$70,000 per quarterly release in a Case 2 testing
process. The “Case 2 Testing” column shows how
profitable this investment is. The testers find 600

bugs before the release, which cuts almost in 80%
the number of bugs found by customers. This
certainly will make the customers happier. This
process improvement will also make the Chief
Financial Officer happier, too: Our total cost of
quality has dropped to about half a million dollars
and we enjoy a nice fat 571% return on our $70,000
investment.
 In some cases, we can do even better. For
example, suppose that we invest $12,500 in test
automation tools and Inspection activities (see in the
“Case 3” column in Fig. 7). Let’s assume we intend
to recapture a return on that investment across the
next twelve quarterly releases. Would we be happy
if that investment in test automation helped us find
about 67% more bugs?
 Finding 350 bugs in development phases and 600
bugs in the test process would lower the overall
customer bug find count for each release to 50.
Deployment of more formal and rigorous STP in
which 950 bugs out of 1000 were removed, i.e.
Total DRE 95%. Certainly, customers would be
much happier to have the more-thoroughly tested
system. In addition, cost of quality would fall to a
little under $200,000, a 575% return on investment
(ROI).

4.4 The Life Cycle Benefit model parameters

formulas for calculations

This section describes those formulas of our
OptimalSQM metrics model [6] which are
necessary to understand the break-even and ROTI
analysis if the investment of described STP
improvements in previous sections pays off.

Calculating the return on investment ROI means
to add up all the benefits of the investment, subtract
the cost, and then compute the ratio of the cost
according the equation (6) in Section 4.3.2 Financial
ROI. If the investment in STP improvement pays
off, the ROTI1 is positive, otherwise negative. In
our evaluation of TDD we focus on the benefit cost
ratio BCR which is easily derived from the return on
investment.

BCR = LifeCycleBenefit/Investment = ROTI1 + 1

Studying the BCR instead of the ROTI1 makes the
break-even analysis much simpler, see below.

4.4.1 Investment Cost

We first look at the investment cost. For the
conventional project, the development phase
includes design, implementation and test. The

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 35 ISBN: 978-960-474-194-6

development phase of the TDD project is comprised
only of test-driven development.
As first empirical evidence suggests, we assume that
the TDD project lasts longer than the
conventional project. We call the ratio of the project
durations the test-speed-disadvantage (TSD).

TSD = TimeConv/TimeTDD

Since we assume that the development phase is
shorter for the conventional project, because
include small number of test activities, the test-
speed-disadvantage ranges between 0 and 1:0 <
TSD < 1.
 Using productivity figures to explain the
difference in elapsed development time between
the two kinds of project, the TDD development is
(1 − TSD) × 100 % less productive than the
conventional project. Finally, the investment is the
difference between the development cost of the
TDD project and the conventional project as
depicted in Fig. 5.

4.4.2 Life Cycle Benefit

Now, we consider the benefit. Each
development process is characterized by a distinct
defect-removal-efficiency - DRE (recall the section
4.1). The defect-removal-efficiency denotes the
percentage of defects a developer eliminates
during development. Initially, a developer
inserts a fixed amount of defects per thousands
lines of code (initial-defect-density, IDD), but he
eliminates DRE × 100 % of the defects during the
development process. From the increased reliability
assumed for TDD,we have:

0 < DRE Conv < DRE TDD < 1.

The additional quality assurance (QA) phase of
the conventional project compensates for the
reduced defect-removal-efficiency of the
conventional process. The only purpose of the
Comprehensive QA plan phase is to remove all
those defects found by TDD but not by the
conventional process (recall the Case 3 in section
4.3.2). The amount of defects to be removed in the
Comprehensive QA plan phase is mainly
characterized by:

△DRE = DRE TDD − DRE Conv .

The benefit of TDD is equal to the cost of the
Comprehensive QA plan phase for the conventional
project. The benefit depends on the effort

(measured in developer months) for repairing one
line of code during QA, which is characterized by

WT

IDDDRT *
QAEffort =

QAEffort depends on the following:
• The defect removal time DRT. It describes the
developer effort in hours for detecting (finding) and
removing one defect.
• The initial defect density IDD. The number of de-
facts per line of code inserted during development.
• The working time WT. The working hours per
month of a developer. The reciprocal of QAEffort is a
measure for the productivity during the QA phase.

4.4.3 Benefit Cost Ratio

The benefit cost ratio is the ratio of the benefit and
the investment. Substituting the detailed formulas
given in [6] of our model, the benefit cost ratio
becomes:

)1(

** Prod*
BCR

TSD

TSDDREQAEffort

−

∆
= (7)

Where, Prod is the productivity of the
conventional project during the development phase
measured in lines of code per month. Values larger
than 1 for the BCR mean a monetary gain from
TDD, values smaller than 1 a loss.

4.4.4 Break Even

Setting the benefit cost ratio equal to 1, we get a
relation between the test-speed-disadvantage of
TDD and the reliability gain of TDD:

1*

1
TSD

+∆
=

DREc
, or

TSDc

TSD
DRE

*

1−
=∆ , where c=QAEffort*Prod

As an example, we examine the benefit cost ratio of
the following scenario.
Factor Value

DRT 10 h/defect
IDD 0.1 defects/LOC
WT 135 h/month
Prod 350 LOC/month

Let TSD and △DRE vary. Figure 8 shows the
benefit cost ratio plane spanned by the test-
speed-disadvantage TSD and the defect-removal-

efficiency difference △DRE. Values larger than 4
are cut off.
For large values of the test-speed-disadvantage
(TSD > 0.9) the TDD project performs almost

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 36 ISBN: 978-960-474-194-6

always better than the conventional project, even for
a small defect-removal-efficiency difference. On
the other hand, if the test-speed-disadvantage is
very small (TSD < 0.2), TDD does not produce any
benefit regardless how large the defect-removal-
efficiency difference is.

Fig. 8 Benefit cost ratio dependent on TSD and △DRE

The TSD can be estimated with formula (10) for
∆SCED in next Section. The relationship between
cost savings defined by ROTI2 and schedule
reduction is shown in Fig. 10 in the same Section.

4.4.5 Schedule Benefits

If software quality actions are taken to reduce
development cost, then this will also lead to a
reduction in development schedule. We can easily
calculate the reductions in the development schedule
as a consequence of reductions in overall effort. In
this section we will outline the schedule benefits of
quality improvements. To do so we will use the
schedule estimation model from COCOMO [2].

It is instructive to understand the relationship
between project size and schedule as expressed in
the COCOMO II model [2]. This is illustrated in
Fig. 9. Here we see economies of scale for project
schedule. This means that as the project size
increases, the schedule does not increase as fast. The
three lines indicate the schedule for projects
employing different levels of practices. The lower
risk and good practice projects tend to have a lower
schedule.

Another way to formulate the ROTI model in Eqn. 6
which will prove to be handy is:

CoQTotalOriginal

CoQTotalNewCoQTotalOriginal
ROTI

⋅⋅

⋅⋅−⋅⋅
=2

 (8)

The New Total CoQ is defined as the total cost of
software quality the project delivered after

implementing the quality improvement practices or
tools as in our Case 2 and Case 3. This includes the
cost of the investment itself. Let us look at some
examples. For Case 2 we have:

%6262.0
500,752$

500,282$500,752$
2 ==

−
=ROTI

This means that in Case 2 project, the investment
only saved 62% of overall project cost.

Fig. 9 Relationship between project size and
schedule in COCOMO II.

Now for Case 3 we have:

%7474.0
500,752$

000,196$500,752$
2 ==

−
=ROTI , i.e. the

same investment saved 74% of overall project cost.

We can then formulate the New Total CoQ as
follows:

)1(2ROTICoQTotalOriginalCoQTotalNew −⋅⋅⋅=⋅⋅

Now, we can formulate the schedule reduction
(∆SCED or SCEDRED) as a fraction (or
percentage) of the original schedule as follows:

ScheduleOriginal

ScheduleNewScheduleOriginal
SCED

⋅

⋅−⋅
=∆ (9)

By substituting the COCOMO equation for
schedule, we now have:

)002.0(28.0

)002.0(28.0)002.0(28.0

5

1

5

1

5

1

∑

∑
−

∑

=∆

=

==

⋅×⋅+

⋅×⋅+⋅×⋅+

j

j

j

j

j

j

SF

Original

SF

New

SF

Original

PM

PMPM
SCED

where:

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 37 ISBN: 978-960-474-194-6

PMOriginal - The original effort for the project in
person-months.
PMNew - The new effort for the project (after
implementing quality practices) in person-months

SFj - A series of five Scale Factors that are used
to adjust the schedule (precedentedness,
development flexibility, architecture / risk
resolution, team cohesion, and process maturity).

Now, by making appropriate substitutions, we have
simplified Eqn.:

)002.0(28.0

2

5

1)1(1
∑

−−=∆ =

×+

j

jSF

ROTISCED (10)

The relationship between cost savings and schedule
reduction is shown in Fig. 10. As can be seen, the
schedule benefits tend to be at smaller proportions
than the cost benefits. Nevertheless, shaving off
10% or even 5% of your schedule can have
nontrivial consequences on customer relationships
and market positioning.

4.4.6 Interpreting The ROI Values

In this section we will explain how to interpret and
use the ROI values that are calculated. First, it must
be recognized that the ROI calculations, cost
savings, and project costs as presented in our models
are estimates. Inevitably, there is some uncertainty
in these estimates. The uncertainty stems from the
variables that are not accounted for in the models
(there are many other factors that influence project
costs, but it is not possible to account for all of these
since the model would then be unusable). Another
source of uncertainty is the input values themselves.
 These values are typically averages calculated
from historical data; to the extent that the future
differs from the past these values will have some
error. Second, note that the calculated ROI values
are for a single project. A software organization will
have multiple on-going and new projects. The total
benefit of implementing software quality practices
to the organization can be calculated by generalizing
the results to the organization. For example, if the
ROI for a single project is say a 15% saving.
Assuming that the input values are the same for
other projects in the organization, then we can
generalize to the whole organization and estimate
that if software quality practices are implemented on
all projects in the organization, the overall savings
would be 15%.
 If the software budget for all the projects is say
20 million, then that would translate into an

estimated saving of 3 million. Note that this is not
an annual saving, but a saving in total project
budgets hat may span multiple years (i.e., for the
duration of the projects). To annualize it then the
15% savings must be allocated across multiple
years. If you are implementing quality improvement
on a single project, then these costs would have to
be deducted from the single project savings. If you
are implementing quality practices in the whole
organization, then these costs will be spread across
multiple projects. In such a case, these costs would
be deducted from the organizational savings (the
calculation of which is described above).

Fig. 10 The relationship between cost savings and
schedule reduction for up to 50% cost savings. The
assumption made for plotting this graph was that all
Scale Factors were at their nominal values.

5 Conclusion

The data in this paper, especially taking into account
the conservatism in the assumptions made, provides
compelling evidence that substantial reductions in
post-purchase costs can be gained by focusing on
higher quality suppliers. In fact, one would contend
that in many cases the savings would exceed the
actual initial and annual licensing costs of the
software. An improvement in delivered software
quality reduces the total cost of ownership of the
software by the customer. Therefore, quality
practices have a direct impact on the ongoing costs
that are incurred by the customer while operating the
software.
 It is not atypical that 50% or more of a project's
cost can be rework [5]. Rework means fixing
defects. If the quality of the software is higher then
less effort will be spent on rework since fewer
defects need to be fixed. Higher development
productivity and lower rework result in reduced
overall software project costs. And, lower total costs
mean less effort by the project staff. Higher

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 38 ISBN: 978-960-474-194-6

productivity also translates into a reduction in
overall project schedule.

Small companies tend to incur relatively larger
costs due to software defects because [3]:
• Smaller companies are less likely to have internal
support staff who can help troubleshoot and correct
errors. This means that the customer has to go back
to the vendor, which takes longer. The consequence
is that the disruptive effects of defects last longer.
• Larger corporations tend to get higher priority
from the software vendors.

Therefore their requests for fixes, patches, and
workarounds get more immediate attention than
smaller companies. Also, large companies are more
likely to have internal support staff. Therefore the
disruptions from discovering problems are
minimized.

There is accumulating evidence that higher
maturity organizations produce higher quality
software [1]. Therefore, it would pay to seek higher
maturity suppliers and demand that existing uppliers
invest in improving their maturity levels.

This paper satisfies these objectives by
designing, constructing, and exercising a multi-part
methodology consisting of a Defect Removal
Model, Cost and Benefit Data, Return-on-
Investment Model, Break Even Point Model, and
Costs and Benefits of Alternatives, which all lead up
to a Cost and Benefit Model.

References

[1] El-Emam, K. and D. Goldenson (2000). "An
Empirical Review of Software Process
Assessments." Advances in Computers, 53: 319-
423.

[2] S. H. Kan,“Metrics and Models in Software

Quality Engineering“, Second Edition, Addison-
Wesley, 2003.

[3] NIST2002, „The Economic Impacts of

Inadequate Infrastructure for Software Testing“,
National Institute of Standards and Technology,
U.S. Department of Commerce, 2002.

[4] Lj. Lazić, N. Mastorakis, Cost Effective
Software Test Metrics, WSEAS
TRANSACTIONS on COMPUTERS , Issue 6,
Volume 7, June 2008.

[5] Lj. Lazić, A. Kolašinac, Dž. Avdić. "The
Software Quality Economics Model for Software
Project Optimization", WSEAS
TRANSACTIONS on COMPUTERS, Issue 1,
Volume 8, p21-47, January 2009.

[6] Lj. Lazić, N. Mastorakis.”
OptimalSQM:Integrated and Optimized

Software Quality Management”, WSEAS
TRANSACTIONS on INFORMATION
SCIENCE and APPLICATIONS, Issue 10,
Volume 6, p p 1636-1664, ISSN: 1790-0832,
October 2009.

[7] C. Jones, “Software Assessments, Benchmarks, and

Best Practices”, Addison-Wesley, 2000.

[8] D.F. Rico, “ROI of Software Process Improvement:

Metrics for Project Managers and Software

Engineers”, J. Ross Publishing, Boca Raton, FL,
2004.

RECENT ADVANCES in MATHEMATICS and COMPUTERS in BUSINESS, ECONOMICS, BIOLOGY & CHEMISTRY

ISSN: 1790-2769 39 ISBN: 978-960-474-194-6

