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Abstract: - A k-potent matrix is any matrix A, the kth power of which is a linear combination of the identity 

matrix and A, for example, unipotent, idempotent, and involutary matrices are special k-potent 

matrices. Such matrices have values in applications to digital image encryption.  In order to achieve 

lossless image decryption, all arithmetic operations are restricted over the integer field.  Therefore, 

algorithms are sought to construct integral k-potent matrices.  It turns out that the unique eigen-

structure of these matrices provides the key for constructing k-potent matrices systematically.  In this 

paper, we explore the spectral properties of k-potent matrices and applications to digital image 

encryption.   
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1   Introduction 
      In the past decade or so, image encryption 

techniques were developed to keep up with the pace of 

the growth of internet and multimedia communications.  

There are hard encryption and soft encryption 

approaches.  Most digital images are scrambled with 

soft encryption, which is also the choice of encryption 

as a component of the proposed UAS.  Most image 

encryption methods can be classified as the DCT-based 

techniques, DWT-based (Discrete Wavelet Transform) 

techniques, transformations, and chaotic maps.  Both 

DCT and DWT-based techniques are known as 

compression oriented schemes.  The well-received 

MPEG encryption was first proposed by Tang [Tang, 

1996] and is called “zig-zag permutation algorithm”.  

The idea is to substitute the fixed zig-zag quantized 

DCT coefficient scan pattern by a random permutation 

list.  A number of improvements on MPEG encryption 

were developed thereafter [Shin et. al., 1999; Zeng and 

Lei, 2003;].  The DWT-based method, [Dang and Chau, 

2000], takes advantage of the efficient image 

compression capability of wavelet networks through 

multi-resolution analysis integrated with block cipher 

data encryption.  The chaos-based encryption of images 

employs the principle of applying chaotic maps with 

strong perplexing characteristics, such as non-periodic, 

non-convergent, randomness, and ergodic to the visual 

data.  The most common nonlinear chaotic maps inherit 

properties as discrete cryptographic systems.  Such 

systems are hybrids between permutation and 

substitution ciphers with specific properties.  

Scharinger [Scharinger, 1998] was the first to apply a 

class of nonlinear maps known as Kolmogorov flows 

for the digital encryption purpose.  More papers on 

chaotic encryption followed, such as the chaotic key-

based algorithms [Yen and Guo, 2000], chaotic systems 

for permutation transformation in images [Zhang, et. 

al., 2003], and high-dimensional Arnold and Fibonacci-

Q maps [Fridrich, 1998].  However, some chaotic 

cryptosystems have been identified susceptible to 

cryptanalysis due to the design disfigurement of their 

part-linear characters.  Some attack algorithms have 

been developed in [Jakimoski and Kocarev, 2001; Li, 

et. al. 2003].  A common concern of the 

aforementioned encryption methods arises from the 

decryption site, where the data is unscrambled.  In 

many occasions, the perfect decryption is impossible 

due to slight disparity of the encryption/decryption keys 

or simply roundoff errors in and out of the 

transformation domain.  In many applications, such as 

medical and military operations, the quality of the 

images transmitted to the receiver station is crucial 
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during the decision making process.  Therefore, perfect 

reconstruction of the original image from the encrypted 

data is imperative when selecting various encryption 

methods, in addition to robustness to various attacks. 

     Images are stored in two-dimensional arrays, which 

make matrices the natural candidates for the kernels of 

encrypting operators.  Moreover, matrix multiplication 

is analogous to convolution/deconvolution between 

filters and signals.  The matrix kernel leaves signatures 

onto the image pixels and grey levels strictly over the 

integer field.  There will be no roundoff errors in the 

decrypted images; hence, perfect reconstruction of the 

original image is achieved.  The matrix considered in 

this paper is called k-potent integral matrix.  It is a 

generalization of nilpotent, idempotent, and involutary 

matrices. 

    Let n nA C ×∈  be an n by n complex matrix and it is 

said to be idempotent if 2A A= .  This definition can be 

generalized to a higher power on A, if kA A=  for some 

positive integer 2k ≥ .  With the same condition on A, 

if 0kA = , a zero matrix, for some positive integer k, the 

matrix A is called a nilpotent matrix.  Another 

important class of matrices is called involutary, 

i.e. 2A I= , the identity matrix.  We define the unipotent 

matrix as a natural extension of the involutary matrix as 

follows: a matrix A is unipotent if it satisfies kA I= , for 

some positive integer k. A skew-periodic matrix 

satisfies kA A= − , while a skew unipotent matrix is 

defined as kA I= − .  All the above mentioned special 

matrices can be unified by a single equation: 

                     kA I Aα β= + ,                       (1)                                         

where { }0, , 1,0,1 , and 2.kαβ α β= ∈ − ≥   A matrix A is 

said to be k-potent if it satisfies (1). 

 

2   Eigen-structure of k-potent matrix and 

construction 
    As discussed in the previous section, we are looking 

for integral matrices that satisfy (1).  Some of these 

matrices can be adopted in image encryption as the 

encryption keys.  One of the requirements for a robust 

cryptosystem is that the key space is infinite 

dimensional.  Well, how many integral matrices are 

there that satisfy (1)?  The answer is infinitely many.  

The following study will reveal a systematic approach 

for constructing such matrices, which turns out be 

closely related to the eigen-structure of the k-potent 

matrix.  We will go through the case studies of some 

well-known matrices, and, more importantly, extend the 

results to higher k-values as in (1). 

    We first investigate the spectral decomposition of 

nilpotent matrices.  A square matrix A is such that 

0kA = , the zero matrix, for some positive integer k 

known as the index number of Nilpotency if the integer 

is the smallest positive integer so that 1 0kA − ≠ .  

Nilpotent matrices are useful in the design of digital FIR 

filter banks with unequal filter length. The eigen-

structure of a nilpotent matrix is revealed in what 

follows.  Note that most of the proofs are omitted due to 

limited space.  

   

Proposition 2.1 The eigenvalues of a nilpotent matrix 

are all zeros. 

 

Proposition 2.2 Suppose the square matrix A  is a 

nonzero nilpotent matrix, then A  is not diagonalizable. 

 

Proposition 2.2 implies that the spectral decomposition 

of a nilpotent matrix A has the following form 

                            1A P P−= Λ                                       (2) 

where the columns of P consist of the generalized 

eigenvectors of A and Λ is a block diagonal matrix with 

nilpotent Jordan blocks on the main diagonal as follows 

            

1

2

p

n

m

m

m

m

J

J

J

J

 
 
 Ο 
 
 
 Λ=
 Ο
 
 
 
 
  

⋱

⋱

                (3) 

 
Proposition 2.3 Let Λ  be the Jordan Canonical form (3) 

with nilpotent Jordan blocks along its main diagonal.   If 

{ }1 2max , ,...,p nm m m m= ,  then 
1

0pm −Λ ≠  and 

0.pmΛ =  

 

Proposition 2.3 implies that the Jordan matrix Λ is a 
nilpotent matrix, and the index number of the Nilpotency 

for Λ  equals the dimension of the largest nilpotent 

Jordan block in Λ . 
    The following result provides the key for constructing 

integral nilpotent matrices, which can be obtained 

quickly from Proposition 2.3 

 

Proposition 2.4 The index number of a nilpotent matrix 

equals the size of the largest nilpotent Jordan block 

associated with the matrix. 

 

    Our next group of matrices is in the category of 

periodic matrices.  A square matrix A such that  kA A=  

for k to be a positive integer is called a periodic matrix.  
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If k is the least such integer, then the matrix is said to 

have period k-1. The well-known idempotent matrix 

i.e. 2A A= , is obviously a special case of the periodic 

matrix to be studied here.  Periodic matrices are useful in 

digital signal encryption such as image coding. We 

begin with exploring the spectral properties of a periodic 

matrix. 

 

Proposition 2.5 Let A be a periodic matrix with index 

number k and letλ be an eigenvalue of A, then 

{ } { }2 /( 1)0 , 0,1,..., 2i m ke m kπ
λ

−∈ ∪ = − . 

 

Proposition 2.5 tells us that the eigenvalues of a periodic 

matrix are distributed around the unit circle or possibly 

at the origin.  The next proposition addresses the 

diagonalizability of periodic matrices. 

 

Proposition 2.6 Periodic matrices are diagonalizable. 

 

    Unlike nilpotent matrices, the eigen-space of a periodic 

matrix is non-degenerate.  A periodic matrix is similar to 

a diagonal matrix via a similarity transformation.  This 

result is useful for numerical formation of periodic 

matrices. 

    The index number of a periodic matrix obviously 

relates to the periodicity of the matrix as seen from the 

definition of a periodic matrix.  We would like to point it 

out that the eigenvalue (except zero) of a periodic matrix 

with period ν must satisfy the following equation: 

                                                             

                 1 0ν
λ − = .                                      (4)                       

 

Condition (4) gives another criterion for identifying a 

periodic matrix with certain periodicity. 

    In what follows we look into the case of unipotent 

matrices.  A unipotent matrix extends the involutary 

matrix to a higher-order power matrix.  To be exact, a 

unipotent matrix satisfies , 2.kA I k= ≥   It is easily seen 

from the definitions that a unipotent matrix must also be a 

periodic matrix, but not the other way around unless the 

periodic matrix is also invertible.  Again, we are 

interested in exploring the spectral properties of unipotent 

matrices. 

 

Proposition 2.7 Let A be a unipotent matrix with index 

number k and let λ  be an eigenvalue of A, then 

{ }2 / , 0,1,2,..., 1i m ke m kπ
λ∈ = −  

 

Proposition 2.3.1 further reveals the connection between a 

unipotent matrix and a periodic matrix from the circular 

distribution of their eigenvalues. 

 

Proposition 2.8 Unipotent matrices are diagonalizable 

 

Similar to (4), the eigenvalue of a unipotent matrix with 

index number k must satisfy the following equation: 
 

                        1 0k
λ − = .                                    (5)                       

 

    Since the treatment for the skewed k-potent matrix is 

exactly the same as that for the previously discussed k-

potent matrices, we summarize the results as follows on 

the skewed k-potent matrix. 

    A skew-periodic matrix A satisfies the constraint with 

index 2k ≥ , kA A=− .  We have the following results 

for the spectral properties of skew-periodic matrices. 

 

Proposition 2.9 Let A be a skew-periodic matrix with 

index number k and letλ be an eigenvalue of A, then 

{ }(2 1) /( 1){0} , 0,1,..., 2i m ke m kπ
λ

+ −∈ ∪ = − .   

 

The eigenvalues (except zero) of a skew-periodic matrix 

are solutions of the following equation 

                                                             

                    1 1 0k
λ
− + = .                             (6)                                                   

 

Proposition 2.10 Skew-periodic matrices are 

diagonalizable. 

 
    A skew-unipotent matrix A satisfies the 

constraint kA I=− . We have the following results for 

the spectral properties of skew-unipotent matrices. 

 
Proposition 2.11 Let A be a skew-unipotent matrix with 

index number k and let λ  be an eigenvalue of A, then 

{ }
1

(2 1) /

0

k
i m k

m
e π

λ
−

+

=
∈ .   

 

The eigenvalues of a skew-unipotent matrix with index 

number k satisfy the following equation: 

                                                               

                1 0k
λ + = .                                  (7)                                            

 
Proposition 2.12 Skew-unipotent matrices are 

diagonalizable. 

 

    In summary, we categorize three groups of k-potent 

matrices: (i) nilpotent matrices, (ii) periodic and 

unipotent matrices, and (iii) skew-periodic and skew-

unipotent matrices.  The classification is based on the 

characteristics of the eigenvalue/eigen-space of the 

matrices.  The results presented above will be used to 

manufacture such matrices symbolically, i.e. all k-potent 

matrices are constructed over the integer field. 

RECENT ADVANCES in APPLIED MATHEMATICS

ISSN: 1790-2769 457 ISBN: 978-960-474-150-2



    Our objective in this work is to develop an algorithm 

for constructing integral k-potent matrices. In particular, 

(skew-) periodic and (skew-) unipotent matrices are 

useful in digital signal encryption.  Instructors who teach 

Linear Algebra and Numerical Analysis may find the 

proposed algorithm useful as they may want to come up 

with a number of such k-potent matrices for students to 

practice with the related concepts in matrix theory. 

    The idea is simple.  A power-induced matrix can be 

easily constructed via the spectral decomposition 

formula, i.e. 

                    1A P P−= Λ                                (8)                                                                                                                      

 

where P is an invertible matrix and Λ  is either a 
diagonal matrix or a block diagonal matrix in Jordan 

form.  It is easy to see that, as long as Λ  is k-potent, the 
matrix A is k-potent of the same type.  In what follows, 

we introduce different ways for constructing the Λ -
matrix so that it is a power-induced matrix satisfying a 

predetermined index number. 

 

    Case (i): Nilpotent matrices 

 

According to Proposition 2.4, the Λ -matrix in (8) 

is guaranteed nilpotent with certain index number 

if Λ consists of nilpotent Jordan blocks, and the 
size of the largest nilpotent Jordan block equals 

the index number.  The following matrix, for 

example, is a nilpotent matrix with index 4, i.e. 
4 0Λ = . 

                                                   

        

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0
 .

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

 
 
 
 
 
 Λ=  
 
 
 
 
  

                  (9)                                             

 

  Case (ii): Periodic matrices 

 

   Proposition 2.5 and equation (4) are the keys 

for constructing periodic Λ -matrix.  For the sake 

of argument, let ν  be the period of Λ and let 

{ } { }2 /0 , 0,1,..., 1i me mπ ν

ν
νΓ = ∪ = −  be the set 

of eigenvalues of the periodic matrix.  It is 

sufficient that  

  1 2diag( , ,..., )sλ λ λΛ= ,                     (10)                             

 

where , 1,2,..., ,i i s
ν

λ ∈Γ =  which guarantees 

that the Λ -matrix (10) is a periodic matrix with 

period ν .  The Λ -matrix can also be written as 

a block diagonal matrix as follows 

 

              1 2diag( , ,..., )mB B BΛ=                     (11)                               

 

as long as the eigenvalues of each block 

, 1,2,..., ,iB i m=  belong to 
ν
Γ .   This setting 

gives us some flexibility for constructing 

periodic matrices. One can also mix the 

eigenvalues of the Λ -matrix in (10) or (11) to 

construct periodic matrices with a higher index 

number.  To this end, let the eigenvalues of Λ  
be chosen from the following set 

 

     
1 2

...
tν ν νΓ=Γ ∪Γ ∪ ∪Γ ,                  (12)                                     

 

and let 

 

           1 2LCM( , ,..., )tν ν ν ν
∗ = ,                  (13) 

 

where LCM stands for least common multiple, 

then, it can be verified that the period of Λ  is 

ν
∗ .  For example, the following matrix is a 

periodic matrix with period 12, 

               

1 3 0 0

1 2 0 0

0 0 0 1

0 0 1 0

 
 
 − −
 Λ=  
 
 − 

                    (14) 

 

because the eigenvalues of the first block are 

1 3

2 2
i− ± , which are solutions of (4) with 

3ν = , and the eigenvalues of the second block 

in (21) are solutions of (11) with 4.ν =  

 

    The treatment for constructing the other Λ -matrices, 

i.e. unipotent, skew-periodic, and skew-unipotent 

matrices, is essentially the same as that for periodic 

matrices because the eigen-structures among those 

matrices are similar.  When constructing such matrices, 

one should realize that the equations (5), (6), and (7) 

must be satisfied for the corresponding matrices. 

    For mathematics instructors, it is preferred to work 

with integral matrices, i.e. the elements of a matrix are 

all integers, mainly because the arithmetic is symbolic as 

far as additions and multiplications are concerned, which 

also implies that there are no roundoff errors. We are 

able to achieve this when constructing the Λ -matrix, see 

(14), or by taking advantage of a companion matrix for 

the characteristic polynomial [Golub and Van Loan, 

1989], for example, those characteristic polynomials 

from equations (4)-(7).  Formula (8) can be used if one 
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wants to construct a dense integral k-potent matrix, 

where both P  and 1P−  in (8) have to be integral 

matrices.  In what follows, let n nZ × represent the set of n 

by n integral matrices. 

 

Proposition 2.13 Suppose n nA Z ×∈ and A is a 

nonsingular matrix, then 1 n nA Z− ×∈   if and only if 

1)det( ±=A . 

 

Proposition 3.1 gives us a guideline for constructing 

such an integral P-matrix.  We can simply use the 

following formula for P, 

 

                         P UL= ,                              (15) 

  

where U is an upper triangular integral matrix with 1’s 

on the main diagonal and L is a lower triangular integral 

matrix with 1’s on the main diagonal.  It is obvious 

that 1P = , according to proposition 2.13, 1P− is an 

integral matrix.  With an integral P-matrix from (15), we 

obtain a dense integral nilpotent matrix calculate from 

(9), 

 

22 44 114 183 2 317

13 26 68 110 4 188

20 40 104 167 2 289

9 18 48 77 3 133

14 28 74 118 2 206

12 24 63 101 2 175

A

 −
 
 − − − − −
 
 − =  − 
 − − − − − 
 

−  
. 

It is verified in MatLab that 4 0,A = which has the same 

index of nilpotency as that of (9).   

 

 

3   Applications to image encryption  
    An image is formed from MN  samples arranged in a 

two-dimensional array of M rows and N columns such as 

a photo, an image formed of the temperature of a 

integrated circuit, x-ray emission from a distant galaxy, a 

satellite map from Google Earth. 

    In imaging terminology, each sample of the image is  

called a pixel. Each pixel is attributed a value called 

grayscale ranging from 0 to 255, where 0 is black, 255 is 

white, and the intermediate values are shades of gray.  

For the purpose of image encryption, we apply a series 

of encryption key matrices to mask an image via matrix 

multiplications.  This will alter the gray level of each 

pixel so that the original image is no longer 

recognizable.  This masking process is in essence a 

filtering process because each row (column) in the 

encryption key matrix is treated as a digital filter with 

finite impulse response.  Due to the randomness and 

magnitude of the filter coefficients, the original image is 

transformed into a rather different image by way of a 

filter banks. 

    We adopt the previously studied k-potent matrices for 

the encryption key matrix, particularly the unipotent or 

periodic matrices.  The nilpotent matrix can also be used 

for image encryption with some special treatment such 

as diagonal perturbation, but we will not elaborate here. 

     The cryptosystem proposed in this paper consists of 

associate keys and primary keys.  The function of the 

associate key 1T  is to divide the original image into sub-

images, not necessarily the same sizes, followed by 

another associate key 2T  to permute the pixels of the 

sub-image for pre-scrambling.  The permutation key is 

nothing but a product of elementary matrices.  The 

mathematical setting is given as following for the pre-

encryption stage:  

 

1 : , , , 1,2,...,

, .

i im nM N
i i i

i i

T Z Z m M n N i k

m M n N

×× → < < =

= =∑ ∑
 (16) 

 

            2

2 1 2

: , 1,2,..., .i i i im n m n
i

i i i is

T Z Z i k

T E E E

× ×→ =

= ⋅⋅⋅
               (17) 

 

where ijE is an elementary matrix that exchange the 

rows of a matrix if left-multiplied or columns of the 

matrix if right-multiplied. 

    The primary key can be formulated via a product of 

unipotent and/or skew-unipotent matrices as follows 

 

                           1 2
1 2

tk k k
M tT A A A= ⋅⋅⋅                       (18) 

 

Let iX be a sub-image from (16) to be scrambled, with 

matching dimensions to assure multiplicability between 

 and  M iT X  , the encrypted image is obtained as 

i M iY T X= .  The decryption key is given by 

 

         1 1 1 11
1 1( 1) t tt t n k n kn kp

M t tT A A A− −− −−−
−= − ⋅⋅⋅           (19) 

 

where in  is such that , 1,2,...,in
iA I i t=± =  and p 

represents the number of skew-unipotent matrices 

applied in (18).  With (19), the original image is 

recovered from iY  via 1
i M iX T Y−=  .  It is also ready to 

be seen that the decryption process only involves matrix 

multiplication with additions and multiplications 

between integers.  Therefore, lossless image 

encryption/decryption is guaranteed, see Fig. 1 for an 
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example.  The encryption key consists of three 5 by 5 

unipotent matrices.  

    It seems noteworthy to point out that the methodology 

proposed in this paper can be applicable to other 

matrices satisfying special constraints, similar to the 

ones for the k-potent matrices, and such constraints are 

characterized by the spectral decomposition of the 

matrices. 

 
 

 

(a) 

 

                                                        (b) 

Figure 1. (a) snapshot of a circuit board; (b) scrambled 

image of selected components of the circuit board 

(courtesy of MatLab image processing toolbox) 
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