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Abstract: – Due to the uncertainties and higher risks of fatality in combat situations, Unmanned Ground Robots 

(UGR) may be proven to be a safer alternative for carrying out critical military missions, such as search and 

rescue, and reconnaissance operations. Among many issues involved in the Military Path Planning (MPP) 

problem, this paper discusses factors affecting drop locations of the UGR in the battlefield. A customized GIS-

based model which finds suitable drop locations of the UGR is developed accordingly. The objective is to reach a 

known target location as quickly as possible, while minimizing its energy consumption as well as intervention 

from the enemies distributed in the battlefield. The model is tested on a complex digital terrain, assuming there is 

a presence of enemy’s surveillance system. The result confirms the capability of the proposed method, by 

indicating that the candidate drop locations are feasible without violation of the specified constraints. 
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1. Introduction 
Due to the uncertainties and higher risks of fatality, 

robots (especially unmanned ground robots (UGR)) 

have become an important part of many applications 

in combat situations. In the battlefield, the UGR 

operates in an outdoor environment over a wide 

variety of terrain to complete a mission. Two classes 

of UGR (i.e., Teleoperated or Autonomous robot) are 

generally used in real world. One is Teleoperated 

UGR controlled by a human operator at a remote 

location via a communications link, and the other is 

Autonomous UGR operating itself for extended 

durations without human intervention. The objective 

of UGR is to carry out critical missions such as search 

and rescue, and reconnaissance operations. 

 

Many mathematical models and technologies have 

been proposed and are being developed for intelligent 

UGR operation in visual detection of surrounding 

environment, path planning and controls. Among 

them the most popular, yet challenging one is the path 

planning problem. The problem of path planning for 

mobile robots (i.e., UGR) is generally defined as the 

search for a path from a starting point to a target 

location without being destroyed by obstacles (such as 

enemies). To date, a variety of approaches have been 

developed to solve the path planning problem, such as 

analytical methods [1-3], genetic algorithms [4-7] and 

neural networks [8-10].  

 

It is interesting to note that most approaches dealing 

with the path planning problem assume that the 

starting point of the robot is given and fixed. In 

combat situation, however, finding the start point of 

the UGR is not a simple problem, and must be 

preceded before operating it toward the target. Due to 

the existence of enemies distributed in the battlefield 

and complex land-use and surface of terrain, factors 

affecting its initial location are conflicting each other 

(e.g., minimizing travel time to target and minimizing 

the risk of exposure to enemies), and thus make the 

location problem complicated. 

 

Among many issues that need to be considered for an 

effective use of UGR in the battlefield, this paper 

seeks to find its initial position for mission operation, 

assuming that it is dropped from the sky (e.g., from 

aircrafts and helicopters) to the battlefield. The 

remainder of this paper begins with investigation of 
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factors affecting the robot drop location. 

Mathematical formulations of these factors are also 

discussed in this section. Next, a GIS-based approach 

for solving the location problem is proposed. An 

example study to show the performance of the model 

is demonstrated in the following section. Finally, we 

conclude with the summary of this study. Future work 

is also discussed in the conclusion section. 

 

 

2. Methodology 
 

2.1 Slope Impact 
In this study, we should take into consideration the 

slope of terrain for two different aspects. First, the 

slope is one of the important factors affecting the 

robot drop. Areas of relatively flat land are preferred 

to minimize the risk of accidents due to an unstable 

landing on an irregular surface. The second aspect of 

the slope in this problem is that it significantly affects 

energy consumption of the robot when traveling on 

the surface of terrain. The robot requires more effort 

for moving on higher slopes of terrains, while less 

effort is needed for moving on lower slopes. 

 

Slope Value Affecting Robot Drop Location: A map 

which contains the elevation of the study area (e.g., 

DEM) is needed to calculate the slop of terrain. For 

each cell of the elevation map, changes in elevation 

over the distance between the cell and its neighbors 

are calculated, and the maximum value is regarded as 

the slope (θ) of that cell. In the slop map the lower the 

slope value, the flatter the terrain, while the higher the 

slope value, the steeper the terrain. Note that the slope 

value is calculated using the average maximum 

technique developed by Burrough and McDonell [13]. 

 

Vertical Factor Affecting Energy Consumption: The 

energy consumption of the robot may vary depending 

on the slope of terrain on which the robot is traveling. 

If the robot is traveling downhill, its energy 

consumption will decrease; if it is going uphill, the 

energy consumption will increase. To represent such 

an effect of slope for estimating travel cost of the 

robot (see Section 2.4 for more detail), a vertical 

factor is introduced in this study. The vertical factor 

(denoted as F
V
) is computed based on the slope 

between two adjacent points, and is normalized with 

an equation expressed as: 
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where, 1,

V

i i
F −  = Vertical factor between two adjacent 

points 

α1, α2 = Parameters used for calculating 

vertical factor 

θi-1,i = Slope between two adjacent points 

θmax = Maximum allowable slope between 

two adjacent points 

θmin = Minimum allowable slope between 

two adjacent points 

λi = xyz coordinates of i
th
 location;            

λi = (xi, yi, zi) 

 

 
 

2.2 Land-Use Impact 
Undesirable Land-Use for Robot Drop and Travel: 

Various land-uses; for example, desert, forest, river, 

and agricultural areas, may exist in the battlefield. 

Among them, there might be areas to which the 

robotic agents should not travel and at which 

dropping the robot is not recommended. These land-

use types (e.g., lake, wetlands, and enemy facilities) 

should be regarded as “No-Go” areas (ΛNG) and be 

removed from the candidate locations of the robot 

drop and traveling. 

 

Friction Factor Affecting Energy Consumption: 

Different land-uses provide different values of 

bumpiness on their surfaces. More energy 

consumption is needed for the robot to travel on 

irregular surface compared to when it travels on a 

relatively flat surface. Thus, we use a land-use map to 

compute the degree of bumpiness (i.e., friction factor) 

of various surfaces in the battlefield. Figure 2 shows 
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the relation between land-use and friction factor. Note 

that such a relation is reflected when we calculate the 

weighted-travel cost of the robot in Section 2.4. The 

friction factor (denoted as F
F
) is calculated with an 

equation expressed as: 

 

( )1 2 expF

i iF LUβ β= + ×                                         (3) 

where, β1, β2 = Land-use parameter 

LUi = Discrete land-use variable at i
th
 

location in the battlefield (e.g.,          

0: open space without obstacles;       

1: Agricultural area, farmland;          

2: Desert; 3: Forest; 4: Built-up;       

5: Rocky mountain) 

 

 
 

2.3 Exposure to Enemy 
Limit of Radar Detecting Objects in the Sky: Recall 

that we assume the robotic agent being dropped from 

the Sky. Thus, if there is an enemy base which has 

radar system designed to detect air carriers (e.g., 

aircrafts and helicopters) transporting the robotic 

agent, its drop location must be outside the detectable 

limit of the radar. In this study, the areas within the 

detectable limits of the enemy radars are regarded as 

“No-Drop” areas (ΛND), and are removed from the 

candidate robot locations. 

 

Exposure to Enemy’s Visible Sensor: Besides the 

radar systems, which are designed to detect the robot 

carrier in the sky, the robotic agent should try not to 

be detected by individual enemies distributed in the 

battlefield when it travels on the surface of terrain. 

Such an individual enemy can detect the robotic agent 

based on its eyes and/or visible sensors (e.g., 

periscope, telescope, and binocular) equipped in it. To 

estimate the robotic agent’s degree of exposure to the 

individual enemy, several assumptions are made in 

this study. These are:  

• There are a set of enemies (denoted as Eknown
) 

distributed in the battlefield, and their location is 

known at the time of the robot drop. 

• The specification of visible sensors (e.g., maximum 
and effective limit of detecting boundary) is given 

for enemies whose location is known. 

• The performance (i.e., detectable limit) of the 
robotic agent’s visible sensor is better than that of 

the enemies. 

• The robotic agent prefers to avoid the enemies until 
it reaches the target location rather than fighting 

with them. 

Taking all these considerations into account, the 

degree of exposure to the enemy (called the enemy 

factor, and denoted as F
E
) can be expressed as: 
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where, 
E

iF  

 

= Robotic agent’s degree of exposure to 

enemies at i
th
 location 

k
e

i
p  = Probability of being detected by k

th
 

enemy at i
th
 location 

k
e

i
d  = Visible distance from the location of 

k
th
 enemy to i

th
 point 

 

Fi
E
 is the sum of the exposure probabilities to all 

enemies detected at i
th
 location. Figure 3 shows 

robotic agent’s exposure probability to an individual 

enemy (e
k
). Note that F

E
 is also used for calculating 

the weighted-travel cost of the robotic agent in 

Section 2.4. 

 

 
 

1 
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Figure 2: Relationship between Land-

Use and Friction Factor 
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Figure 3: Probability of Exposure to 

Individual Enemy 
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2.4 Weighted Travel Cost to Target 
Distance to target location would be the most 

important factor affecting the decision of robot drop 

location. If there is no enemy including individual 

units and facilities (e.g., enemy bases) in the 

battlefield, the best robot drop location would be 

exactly at the target location. However, due to the 

existence of enemies and complexity in terrain and 

land-use in the battlefield, finding the robot drop 

location based on the minimum distance is an 

oversimplification. Therefore, a weighted travel cost 

is introduced here which not only represents surface 

distance from the robot drop location to target but also 

reflects the effect of its energy consumption and 

exposure to enemies distributed in the battlefield. A 

weighted travel cost between two adjacent points can 

be expressed as: 

 

( ) ( ) 1 1

1, 1, 1,
2 2

E E F F

w S V i i i i

i i i i i i

F F F F
C D F − −

− − −

   + +
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   
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where, C
w

i-1,i = Weighted travel cost between two 

adjacent points 

D
S

i-1,i = Surface (i.e.,3D) distance between two 

adjacent points 

            Other parameters are defined earlier. 

 

 

3. GIS-Based Model 
 

3.1 Distance Transformation Algorithm 
The weighted travel cost to target location is 

calculated with Distance Transformation (DT) [11], 

which is widely used to transform an initial value of 

image into another representation. DT propagates 

from the source cell (i.e., the target location in this 

study), marking all free cells with an incrementing 

value. Once all cells that are not prohibited have been 

marked, a search from a selected start position can be 

made. If the start has been marked with a DT value, a 

path is possible; otherwise a path does not exist [12].  

 

Three GIS input layers (i.e., elevation map, exposure 

to enemy (F
E
), land-use friction factor (F

F
)) are 

employed to develop a weighted travel cost map, 

which is the output of the DT process. Figure 4 shows 

the input and output of the DT process. Note that 

surface distance (D
S
) and vertical factor (F

V
) between 

two adjacent points are computed during the DT 

process with xyz coordinates in the elevation map. DT 

algorithm is processed as follows: 

 

Step 1: Initialization 

• Identify the selected cell as the target cell, 
and assign its value to be 0. 

• Make the active cell list empty. 
Step 2: Calculating weighted travel cost between two 

adjacent cells. 

• Calculate Cw
 between the selected cell and 

its neighborhood cells 

• Add the neighborhood cells in the active 
cell list 

• Find the lowest cost cell in the active cell 
list 

Step 3: Calculating accumulated travel cost 

• Add the selected cell value to the lowest 
cost cell value 

• Store the sum in the output cell 
Step 4: Update the selected cell 

• Identify the selected cell as the lowest cost 
cell  

• Delete the lowest cost cell from the active 
cell list 

• Go to Step 2 

 

 
 

3.2 Find Suitable Location for Robot Drop 
It should be noted that the accumulated weighted 

travel cost to target location is stored in each cell of 

a=1 ………………… …………. …..n
b =1.
.

.
.

.

m

.
.

.

Elevation Map

F
E

F
F

(AC
w
)

Distance Transform 

Algorithm

60   45   42    38   30   28   25    22    20    17    15    10     0     7    10

52   44   40    35   32   28   26    25    22    20    17    12     5    11  12

54   42   38    34   40   35   30    29    24    23    18    14    10   13  18

48   45   43    41   38   33   45    44    35    30    23    19    22   25  30

68   60   44    42   56   50   48    42    39    32    30    27    25   35  42

52   48   78    70   66   58   51    45    48    45    32    30    27   38   50

68   61   47    33   40   35   30    33    29    25    20    11     9     8    11

65   70   38    35   42   60   48    40    35    28    22    17   15    20   22

 

Target

Map representing 

land-use friction factor

Map representing degree 

of exposure to enemies

Accumulated weighted travel cost map

Figure 4: Input and Output of DT Process 
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the resulting map of the DT process. Thus, the 

location problem (which finds the suitable robot drop 

point) can now reduce to: 

 

Objective: Finding the lowest cost cells in the 

output map (AC
w
) of the DT process 

Subject to: 1. Min/max allowable slopes for robot 

drop (i.e., θmin<θi< θmax) 

2. Undesirable land-use for robot drop 

(i.e., λi ∉ΛNG) 

3. Limit of enemy radars designed to 

detect air carriers transporting the 

robotic agent (i.e., λi ∉ΛND) 

where, ACi
w
 = i

th
 cell value in the AC

w
; ACi

w ∈ AC
w
 

θi = Slope of i
th
 cell 

λi = Geographic location of i
th
 cell;           

λi = (xi, yi, zi) 

ΛNG = A set of “No-Go” areas 

ΛND = A set of “No-Drop” areas 

 

 

4. Case Study 
This section presents an example study to demonstrate 

the performance of the proposed method. Figure 5 

shows the land-use and terrain information of the 

example study area in which the target location, 

individual enemies, and enemy bases with their limits 

of radar search boundaries are displayed. The mission 

assigned to the robot is to reach the destination (i.e., 

target) as quickly as possible, while avoiding “No-

Go” areas and highly risky regions being detected by 

the enemy. Key input parameters used for this 

example study are also presented in Figure 5. The 

total size of the study area is about 440 km
2
 (22 km 

long and 20 km wide), and various land-uses (e.g., 

river, agricultural, and mountainous areas) are 

comprised in it. A Pentium Core 2 duo desktop PC 

with ArcGIS 9.3 is used for preparing and 

manipulating input GIS maps and finding suitable 

locations of the robot drop. 

 

Several robot drop locations that satisfy the 

constraints (specified in Section 3.5) are identified 

after massive processing of GIS data with the 

proposed method (See Figure 6(a)). As shown in the 

figure, darker areas represent undesirable regions for 

dropping the robotic agents, while the areas with the 

lighter color represent relatively suitable regions for 

the robot drop. All the robot drop locations are 

outside the radar search limit of the enemy bases, and 

are located in the open space rather than mountainous 

areas. In addition, slopes at those drop locations are 

within minimum and maximum allowable limits 

specified. Figure 6(a) also shows minimum weighted 

cost paths at the candidate drop locations. These are 

initial paths which connect the drop locations to the 

target, and are found based on current information 

obtained from the battlefield. It should be noted 

however that the initial paths might be relocated when 

the robotic agent starts moving along the paths and 

the enemy positions are redistributed. 

 

 
 

Among the four candidate robot drop locations, Drop 

Point 1 seems the best one since its path to the target 

location requires the least total travel cost compared 

to the others. Figure 6(b) shows 3D view of its path 

displayed with digital terrain elevation data (DTED) 

using ArcScene Tool by ESRI. 

 

 

5. Conclusion and Future Work 
A customized GIS-based model is developed to find 

suitable drop locations of unmanned ground robots 

(UGR) in combat situations. The objective of the 

UGR is to reach a known target location as quickly as 

possible, while minimizing intervention from the 

enemies distributed in the battlefield. The unique 

Figure 5: Example Study Area 

Number of enemy bases 7 

Number of individual enemies 10 

Max. limit of enemy radar search boundary 3k

m 

Max. limit of enemy’s visible sensor 0.5

km 

Effective limit of enemy’s visible sensor 0.1

km 
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feature of the proposed method is that actual land-use 

information, terrain profile, and location of enemies 

spatially distributed in the battlefield are modeled to 

evaluate robotic agent’s energy consumption and its 

degree of exposure to the enemies, and eventually 

suitable drop locations with their corresponding 

minimum cost paths to the target location are 

identified. An example study tested on a complex 

digital terrain map with presence of enemy’s 

surveillance system confirms the capability of the 

proposed method in searching for the robot drop 

locations. The result clearly indicates that the 

candidate drop locations are feasible without violation 

of the specified constraints for the robotic agent to 

start moving toward the target location. 

 

 

Our future plan is to advance navigating the robotic 

agent in the battlefield in various combat situations 

over time. To achieve this goal, a dynamic military 

path planning strategy in a highly automated fashion 

is desired. Many technical and methodological 

improvements that must be considered are:  

• Automatic map rectification based on enemy 

positions dynamically changed over time. 

• Development of a stochastic model which 

measures survival probability of the robotic agent 

(by defeating enemies and/or by avoiding 

enemies) based on the line-of-sight analysis. 

• Development of a knowledge intensive model 

which guides robotic agents’ movements based on 

historic data and uncertain territory of the enemy 

location. 

• Modeling various enemy moving strategies (such 

as, random patrol, scheduled patrol, and unknown 

patrol). 
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