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Abstract: - The safety of quantum cryptography relies on the no-cloning theorem. In secret quantum communications, 
an eavesdropper cannot clone the sent qubits perfectly, however the best eavesdropping attacks for quantum 
cryptography are based on imperfect cloning machines. The eavesdropper’s physically allowed quantum evolutions on 
the sent qubit can be described in terms of the quantum state’s geometry. We use a fundamentally new computational 
geometrical method to analyze the informational theoretical impacts of cloning activity on the quantum channel. Our 
method uses Delaunay tessellation and convex hull calculation, with respect to quantum relative entropy as distance 
measure. The security analysis is focused on the four state (BB84) and Six state quantum cryptography protocols. The 
proposed geometrical method can be used to analyze efficiently the informational theoretical impacts of physically 
allowed quantum cloning transformations. 
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1   Introduction 
Quantum cryptography is an emerging technology 

that may offer new forms of security protection, however 
the quantum cloning based attacks against the protocol 
will play a crucial role in the future [1, 2]. Our goal is to 
identify the quantum cloning based attacks in the 
quantum channel, and find potential and efficient 
solution for their detection in secret quantum 
communications. The incoherent and coherent attacks 
against quantum cryptography are based on quantum 
cloners. The type of used quantum cloner depends on the 
quantum cryptography protocol. Against the four state 
(BB84) Eve, the eavesdropper uses the phase-covariant 
cloner, while for the Six state protocol the optimal 
results can be achieved by the universal quantum cloner 
(UCM) [8, 9, 10, 11].  

We use a computational geometrical method to 
analyze the cloning activity on the quantum channel.  

 
1.1. Attacks in Quantum Cryptography 

The incoherent quantum cloning based attack is the 
eavesdropper’s most general strategy [8, 9], thus in our 
geometrical based security analysis, we use the 
incoherent attack based attacker model. In the four state 
(BB84) and Six state quantum cryptography protocols 
Alice, the transmitter, sends quantum states from a set of 
possible quantum states, chosen randomly. On the other 

side, Bob receives the quantum states in a basis chosen 
at random between two or three bases. In the incoherent 
attack, Eve clones imperfectly the sent quantum state 
using her probe quantum state, she sends one copy to 
Bob, and keeps the other copy. We denote Eve’s 
quantum state by E , and the unitary operation which 

describes the interaction between the sent qubit and 
Eve’s state is denoted by U, thus the whole 
transformation can be given by [6]:  

0,0 0,1

1,0 1,1

0 0 1 ,

1 0 1 ,

U

U

E E E

E E E

  

  
   (1) 

where ,i jE  denotes Eve’s cloned quantum state, 

and E  can be written as 2 2  matrix, whose elements 

are Eve’s states ,i jE . In our method we measure the 

informational theoretical meaning of quantum cloning 
activity in the quantum channel, where Alice’s and 
Bob’s side can be modeled by random variable X and Y. 
Our geometrical security analysis is focused on the 
cloned mixed quantum state, received by Bob. Alice’s 
pure state is denoted by A , Eve’s cloner modeled by an 

affine map  , and Bob’s mixed input state is denoted by 

 A B  . The general model for the quantum cloner 

based attack in quantum cryptography is illustrated in 
Figure (1). 
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Fig. 1: The analyzed attacker model and the entropies 

 
We measure in a geometrical representation the 

information, which can be transmitted in a presence of 
an eavesdropper on the quantum channel.  In a secret 
quantum channel, we seek to maximize  H X  and 

minimize  H X Y  in order to maximize the radius *r of 

the smallest enclosing ball of Bob, which describes the 
maximal transmittable information from Alice to Bob in 
the attacked quantum channel: 

     * .
iall possible xr max H X H X Y     (2) 

To compute the radius *r  of the smallest 
informational ball of quantum states, instead of classical 
Shannon entropy, we can use von-Neumann entropy and 
quantum relative entropy. Geometrically, the presence of 
an eavesdropper causes a detectable mapping to change 
from a noiseless one-to-one relationship, to a stochastic 
map [6, 7].  

 
1.2   Attacker Model for BB84 and Six State 
Protocol  

The type of the quantum cloner machine depends on 
the actual protocol. For BB84, Eve chooses the phase 
covariant cloner, while for the Six state protocol she uses 
the universal quantum cloner (UCM) machine [8, 9].  

The effect of the eavesdropper’s symmetric quantum 
cloner simply shrinks the Bloch ball  , with given 
probability p. The UCM cloning transformation shrinks 
the vector characterizing the input quantum state by 

4 2
1 ,

3 3

p     while the phase covariant cloner shrinks 

the radius with   1
1 3 2 2 .

8
p     The fidelity of the 

UCM cloning transformation can be given by 
1 2 5

1 ,
2 3 6

F        
 

 and the fidelity of phase 

covariant cloner is 
1 1 1 1

1 2
2 8 2 8

F
 

     
 

 [8, 9, 11]. 

 

2   Geometrical Computation of Quantum 
Informational Ball  
In our security analysis, the distance between quantum 
states is defined by the quantum relative entropy of 
quantum states. The relative entropy of quantum states 
measures the informational distance between quantum 

states [2]. The Shannon entropy  H p  of quantum 

states can be given by the von-Neumann entropy  S , 

which is a generalization of classical entropy to quantum 
states [2, 3]. The entropy of quantum states can be given 
by the following way:  

   log .Tr   S    (3) 

The relative entropy of quantum states measures the 
informational distance between quantum states, using the 
negative entropy of quantum states [3, 5] as the 
generator function  F :  

     log .Tr     F S    (4) 

The relative quantum entropy between density matrices 
  and   can be described by the strictly convex and 
differentiable function F , as:  

       , ,D           F F F    (5) 

where  *, Tr    is the inner product of 

quantum states, and   F  is the gradient.  

 
Fig. 2: Visualizing generator function F as negative von Neumann entropy 

and its corresponding relative quantum entropy 

 
2.1. Geometrical background 

If the set   of quantum states is denoted by 
 1 2, , nS     , the Voronoi cell  vo   for quantum 

state   and S the set of point can be given by  

        , , ,i jvo x d x d x S         (6) 

where  d   is the distance function, which for 

Euclidean distance can be given by   .d dd        

The circumcircle of the given quantum states is the circle 
that passes through the quantum states 1  and 2  of the 

edge 1 2   and endpoints 1 , 2  and 3  of the triangle 

1 2 3   . The triangle t is said to be Delaunay, when its 
circumcircle is empty.  

1

2

3c

 

1

2
3

4
5

6

7

8

9

Quantum
states on the

Bloch ball

Delaunay
tesselation

 
Fig. 3: The triangle of quantum states corresponds to the vertex c (a), and a 

Delaunay tessellation on the Bloch sphere (b). 
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For an empty circumcircle, the circle passing through the 
quantum states of a triangle t T , encloses no other 
vertex of the set V [4].  
In our security analysis we use the fact, that the Voronoi 
diagram  V S  of set of quantum states S, and the 

Delaunay triangulation  D S  are dual to each other [4]. 

 
2.2  Connection between Information Theoretical 
Radius and Bloch Vector 

The informational theoretical effect of the 
eavesdropper’s cloning machine is described by the 
radius *r  of the smallest enclosing quantum 
informational ball. The quantum informational theoretical 
radius *r  equals to the maximum quantum informational 
distance from the center, and it can be expressed as:   

   
    

2 2

* min max .r D
 

 
 


  

     (7) 

In our geometrical approach, we compute the smallest 
enclosing information ball by Delaunay tessellation, 
which is the fastest known tool to seek a center of a 
smallest enclosing ball of points [4, 5]. For UCM and 
phase-covariant cloning, the connection between 
information theoretical radius *r  and the Bloch vector 

Blochr  can be defined as:  

 * 1 ,Blochr S r     (8) 

where S  is the von Neumann entropy of 
corresponding quantum state with maximal length vector 

Blochr . The informational theoretical radius of UCM and 

phase-covariant cloners are denoted by *
UCMr  and 

*
phasecovr , respectively. 

 
2.3   Laguerre Diagram for Quantum States 
In our paper we use Laguerre Delaunay diagram [4] to 
compute the radius of the smallest enclosing ball. In 
generally, the Laguerre distance for generating points ix  

and with weight 2
ir , in the Euclidean space is defined by  

  2 2,L i i id p x p x r   .   (9) 

The Delaunay diagram with respect to the Laguerre 
distance is called Laguerre Delaunay diagram. For the 
Laguerre bisector of two three-dimensional Euclidean 

balls  , PB p r  and  , QB q r  centered at three 

dimensional points p  and q , we can write equation  
2 22 , , , 0.Q Px q p p p q q r r         (10) 

In the Euclidean space, for weight 2
ir  the Laguerre 

distance  ,L id p x  can be interpreted as the square of the 

length of the line segment starting at p and tangent to the 

circle centered at ix  with radius 2
ir . Thus, the circle 

centered at ix  with radius 2
ir  is the circle associated 

with ix  [4].  
We show a basically new method to derive quantum 

relative entropy based Delaunay tessellation on the 

Bloch ball   to detect eavesdropping activity on the 
quantum channel. In our algorithm we present an 
effective solution to seek the center c  of the set of 
smallest enclosing quantum information ball, using 
Laguerre diagrams. Our geometrical based security 
analysis has two main steps:  

1. We construct Delaunay triangulation from 
Laguerre diagrams on the Bloch ball.  

2. Seek the center of the center of smallest 
enclosing ball. 

 

3   Quantum Delaunay Triangulation 
from Laguerre Diagrams  
As we have seen, in the Euclidean space, the Laguerre 
distance of a point x  to an Euclidean ball  ,b b p r  is 

defined as   2 2, ,Ld p x p x r    and for n balls 

 ,i i ib b p r , where 1, ,i n  , the Laguerre diagram 

[4] of ib  is defined as the minimization diagram of the 
corresponding n distance functions 

  2 2.i
Ld x p x r      (11) 

In Figure (4) we show the ordinary triangulation of 
quantum relative entropy based Voronoi diagram, the 
image of quantum relative entropy based Delaunay 
triangulation by the inverse of gradient 1

F
 , is a curved 

triangulation whose vertices are the points of  .  

Quantum
states on the

Bloch ball

 
Fig. 4: The regular triangulation on the Bloch ball rooted at gradient vertices 

 
We use the result of Aurenhammer to construct the 
quantum relative entropy based dual diagram of the 
Delaunay tessellation, using the Laguerre diagram of the 
n Euclidean spheres of equations [5] 

  , , 2 ,i i i i i i ix p x p p p p p p        F .   (12) 

The most important result of this equivalence, that we 
can construct efficiently quantum relative entropy based 
Delaunay triangulation on the Bloch sphere, using fast 
methods for constructing classical Euclidean Laguerre 
diagrams. 
 
3.1   Center of the Quantum Informational Ball 
In our security analysis we use an approximation 
algorithm from classical computational geometry to 
determine the smallest enclosing ball of balls using core-
sets. The core-sets have an important role in our 
calculation, and approximate method. We apply the 
approximation algorithm presented by Badoui and 
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Clarkson, however in our algorithm the distances 
between quantum states are measured by quantum 
relative entropy [5, 9]. The  -core set   is a subset of 
the set   , such for the circumcenter c  of the 
minimax ball [5] 

   , 1 ,d r c      (13) 

where r is the radius of the smallest enclosing 
quantum information ball of set of quantum states   [5, 
9]. The approximating algorithm, for a set of quantum 
states  1, , ns s   and circumcenter c  first finds a 

farthest point ms  of ball set B, and moves c  towards ms  

in  dn  time in every iteration step. The algorithm 

seeks the farthest point in the ball set 

    1 1 1, , , ,n n nB b Ball r b Ball r  c c  by 

maximizing the quantum informational distance for a 
current circumcenter position c  as    1, ,max ,F ii n D b c . 

Using    max , ,
ix b F i F i iD x D S r  c c , we get 

        1, , 1, ,max , max , .F i F i ii n i nD b D S r  c c   (14) 

In Figure (5) we illustrated the smallest enclosing ball 
of balls in the quantum space.  

*c

*r

 * * *,b Ball r c

ir
iS

Quantum
states

 
Fig. 5: The smallest enclosing ball of a set of balls in the quantum space 

 
We denote the set of n d-dimensional balls by 

 1, , nB b b  , where  ,i i ib Ball S r , where iS  is the 

center of the ball ib , and ir  is the radius of the i-th ball 

radius. The smallest enclosing ball of set  1, , nB b b   

is the unique ball  * * *,b Ball r c  with minimum radius 
*r  and center *c  [6]. The smallest enclosing ball of the 

set of balls  1, , nB b b  , fully enclosing  B, thus 

 * *,B Ball r c . The algorithm does 
2

1 
  

  iterations 

to ensure an  1   approximation, thus the overall cost 

of the algorithm is 
2

dn 
 
 




 [5]. The smallest enclosing 

ball of a ball set B can be written as 

 min ,Bc F c    (15) 

where        1, ,, max ,B ii nX d X B d X B F  , and 

the distance function  ,d    measures the relative 

entropy between quantum states [9].  The minimum ball 
of the set of balls is unique, thus the circumcenter *c  of 
the set of quantum states is  * arg min .B cc F c  The 

main steps of our algorithm are: 

                                                                                Algorithm 1.

1

1 1

2

1.  a random center  from the set of quantum states 

                                              

1
       1,2, ,

      

2.  the farthest point  of  wrt.  

Select

S

i

Find S quantum



      

c

c

for

do









 

   1
1

1

 

                               arg max ,

3.  the circumcircle:

1
                   .

1 1

4.  

s F i

i F F i F

i

relative entropy

S D S

Update

i
S

i i

Return










       

c

c c

c



 

At the end of our algorithm, the radius *r  of the 
smallest enclosing ball *  with respect to the quantum 
informational distance is equal to the informational 
theoretical fidelity of the cloning transformation.  

Using the information theoretical radius 

   
    

2 2

* min maxr D
 

 
 


  

  , the radius of the best 

cloned state can be expressed as:  

 * 1 ,Blochr S r     (16)  

where S  is the von Neumann entropy of quantum 
state with maximal length vector Blochr .  
 

4   Applying Our Method in Quantum 
Cryptography 
Using the declared statement in Section 2.2., the 
quantum channel in BB84 and Six state protocols is 
secure iff * * .phasecovr r  and * * .UCMr r  In our geometrical 

method we compute *r , the radius of the smallest 
enclosing quantum informational ball, to determine the 
security of the quantum communication.  
 
4.1   BB84 Protocol and Phase Covariant 
Cloning 

In Figure (6) we illustrated the dual Delaunay-
diagram for cloned equatorial states in BB84 protocol. 
The sent pure quantum states cloned by Eve’s phase-
covariant quantum cloner, denoted by 1 2 3, ,    and 4 .  

 
Fig. 6: Dual Delaunay-diagram of cloned equatorial states in BB84 protocol 

 

Using Delaunay tessellation, we compute the convex-
hull of the cloned equatorial states 1 2 3, ,    and 4 . In 
Figure (7) we illustrated the convex-hull of cloned states 
in two and three dimensional Bloch ball representation. 
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Fig. 7: The convex hull of cloned mixed states. The convex hull computed by 

Delaunay triangulation 
 
From the convex set, we can compute the smallest 
enclosing quantum informational ball *  and its radius 

*r . In Figure (8) we have illustrated the Euclidean 
smallest enclosing ball by the dashed circle, and the 
quantum relative entropy ball.  

  
Fig. 8: The smallest enclosing quantum informational ball and its radius 

 
From the smallest enclosing quantum informational ball 

* , we can determine the radius *r , which describes the 
informational theoretical impact of the eavesdropper 
cloning machine. The center of the smallest enclosing 
quantum informational ball is denoted by *c . 
 
4.2   Six State Protocol and Universal Cloning 

In Figure (9.a) we have illustrated the Voronoi-cells 
for the cloned states and the three-dimensional convex 
hull (light-grey) of cloned states 1 2 3 4 5, , , ,      and 

6 . The cloned states generated by Eve’s universal 
quantum cloner machine, using the Six state quantum 
cryptography protocol. From the convex hull, we 
compute the smallest enclosing quantum informational 
ball * . In Figure (9.b) we have illustrated the smallest 
quantum informational ball and its radius *r .  

      
Fig. 9: The convex hull of cloned mixed states in Six state protocol 

In Figure (10) we show an example for a two-
dimensional smallest enclosing quantum informational 
ball, and its informational theoretical radius *r .  

 
Fig. 10: The smallest enclosing quantum informational ball  

 
The center point is  0.3287,0.3274*c , and the 

radius *r  of the smallest enclosing quantum 
informational ball is * 0.4907.r   
 
5   Optimization  
The quantum relative entropy based algorithm at the i-th 

iteration gives an  1 i -approximation of the real 

circumcenter, thus to get an  1  approximation, our 

algorithm requires  

2 2 3

1dn d d

   
           
     

      (17) 

time, by first sampling 
1

n


  points. Based on the 

computational complexity of the smallest enclosing ball, 
the  1   approximation of the fidelity of the 

eavesdropper cloning machine can be computed in 

2

d


 
 
 

  time. In this section we improve our method to 

get an 
d


 
 
 

  time  1   approximation algorithm in 

quantum space. In Figure (11) we illustrated the 
improved algorithm on a set of quantum states. The 
approximate ball has radius r, the enclosing ball has 
radius r  . The approximated center c  denoted by 
black, the core-set are denoted by the grey circles. The 
optimal radius between the center c  and the farthest 
quantum state is denoted by *r  [9].  

r  *cr

Farthest
quantum state

*r

Core-set

 
Fig. 11: The approximate (light) and enclosing quantum ball (darker) 

 
In the proposed algorithm the optimal radius is 

between *r r r    , and the process is terminates as 

  , in at most 
1


 
 
 

  iterations. The main steps of 

the improved approximation algorithm are [9]: 
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.                                                                            Algorithm 2

 

 

1

1

1

1

1.  a random center  from the set of quantum states 

                                             

1
2. max , ;

2
1

3. max , ;
2

1
4.     1,2, ,

5.        

6.  arg

i F

i F

Select

r D

D

i

S











    
  



c

c

c

c

for

do











 
 

max , ;

7.  Move ,  on the geodesic until it touches 

     the  point ;

i FD c

Ball c r

farthest S



  

 8.  max , ;                                                          

3
9.               

4
3

10.                                   
4

11.        

12.                                  

i F is D c S r

s




 





if then

else 

 ;
4

3
13.                                  ;

4
14.    .

r r




 

 



until

 

 
5.1   Converge Rate 
In our experimental simulation we have compared the 
core-set algorithm and our improved core-set algorithm 
to find the smallest enclosing quantum information ball. 
We have analyzed the approximation algorithms for 30 
center updates, and we have measured the quality of the 
approximation with respect to quantum relative entropy.  

The results of our simulation are shown in Figure 
(12). The x-axis represents the number of center updates 
to find the center of the smallest enclosing quantum 
informational ball, on the y-axis we have illustrated the 
quantum informational distance between the found 
center c  and the optimal center *c .  
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Fig. 12: The converge rate of the approximation algorithms 

 
From the results we can conclude, that each algorithm 
find the approximate center c  to the optimal center *c  
very fast. The quantum relative entropy based 
approximation algorithms have a very accurate converge 
of c  towards *c , however the improved core-set 
algorithm converges faster for smaller number of center 
updates. 

6   Conclusions  
In quantum cryptography, an eavesdropper cannot 

clone the sent qubits perfectly, however the best 
eavesdropping attacks are based on imperfect quantum 
cloners. We proposed a fundamentally new approach to 
compute the informational theoretical impacts of an 
eavesdropper’s cloning machine in the quantum channel. 
The analyzed incoherent attacks are the eavesdropper’s 
most general strategy, however our method can be 
extended for different types of attacks. The legal parties 
can detect the disturbance generated by the 
eavesdropper’s cloning activity, and the impacts of her 
cloning transformation can be measured geometrically. 
Our method is based on Laguerre diagrams and quantum 
relative entropy as distance measure. Using Delaunay 
tessellation on the Bloch sphere, the geometric space can 
be divided and can be computed very efficiently, in a 
reasonable computational time.  

In the future, we would like to extend our method to 
other protocols, and to collective and coherent attacks. 
We would like to make a deep study on the possibility to 
construct a more effective algorithm to compute the 
informational theoretical impacts of the eavesdropper’s 
cloning machine.  
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