
Dynamic Service Selection Capability for  
Load Balancing in Enterprise Service Bus 

 
AIMRUDEE JONGTAVEESATAPORN, SHINGO TAKADA 

School of Science for Open and Environmental Systems 
Keio University 

3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522  
JAPAN  

aimrudee@doi.ics.keio.ac.jp, michigan@doi.ics.keio.ac.jp 
 

Abstract: - The concept of SOA and its enabling technologies such as ESB are becoming more and more popular. This 
enables services that have been built on various platforms to be used. Although the number of available services is 
growing, most ESB implementations only allow static routing, i.e. the service that messages are sent to is pre-determined 
and fixed. Thus, even though there may be multiple services that have the same function, only one or two may be used. 
We thus propose to incorporate load balancing feature into an ESB. Unlike conventional load balancing, our approach 
does not balance among replicated services; we conduct balancing among services that may be provided by different 
providers. In order to realize this, we introduce the concept of service type. We also show the results of an experiment. 
 
Key-Words: - ESB, Middleware Message Balancing, Web Services, Load Balancing, SOA 
 
1   Introduction 

A Service Oriented Architecture (SOA) is a design 
pattern which decouples service providers from service 
consumers. One enabling technology for SOA is the 
enterprise service bus (ESB). ESB is an important 
middleware tool for integrating services based on various 
platforms. Its main focus is to route messages among 
different services.  

Current ESB implementations support several 
message routing patterns, but can execute based only on 
static configuration [1]. If the requests increase 
dramatically, it is better to distribute the requests to 
existing multiple services which can satisfy the same 
requests. For example, Mule [2] and Service Mix [3] are 
both ESB implementations that support load balancing, 
but the target services (specifically, endpoints) must be 
set in a configuration file a priori and cannot be changed 
at runtime. 

Many Web sites take a load balancing approach to 
handle the issue of “too many” requests. The simplest 
approach is for a hostname to have multiple IP addresses. 
This is the case with google.com, where the actual server 
one accesses will differ depending on the load at that time 
[4]. This same approach can also be taken in SOA if the 
service provider replicates the service onto multiple 
servers resulting in multiple physical services (Fig. 1 (a)). 
Thus, conventional load balancing approach can also be 
taken to satisfy the issue of “too many” requests.  

We take a different approach. Instead of replicating 
a service, we group services with the same function. To 
this end, we introduce the concept of service type. 
Services belonging to the same service type have the 
same function and same signature. We also incorporate a 

load balancing feature into an ESB implementation, 
specifically Mule. Our load balancing mechanism 
switches between services of the same type (Fig. 1 (b)), 
using strategies such as random, round-robin, threshold, 
minimum, and least load [5]. Furthermore, services 
belonging to the same service type may change during 
runtime, so there is no need to pre-determine concrete 
candidate services. 
 

           
 

(a) Conventional balancing             (b) Our approach 
 

Fig. 1 Load balancing 
 

Our approach assumes the following: 
 A registry exists which contains information on 

the services. 
 Client programs can attach the service type in the 

header of a request message. 
The rest of the paper is organized as follows. Section 

2 discusses related work. Section 3 describes our service 
type model. Section 4 then presents our balancing ESB 
framework along with an overview of how it is 
implemented. Section 5 describes the experiment we 
conducted. Section 6 makes concluding remarks. 

RECENT ADVANCES in COMPUTER ENGINEERING and APPLICATIONS

ISSN: 1790-5117 115 ISBN: 978-960-474-151-9



2   Related Work 
Much research has been done recently on ESB for 

supporting SOA integration. We briefly describe three 
types: (1) dynamic service selection, (2) load balancing, 
and (3) service substitution. 
 
2.1 Dynamic service selection 

In the ASB project [6], a target service is chosen at 
run time. The target service selection is based on a 
ranking which uses information such as execution time 
and expected availability. Their approach focuses only on 
an adaptable service bus for dynamic service composition 
only. The DRESR project [1] defines the Abstract 
Routing Path using abstract service names, which are 
instantiated at runtime by replacing the abstract service 
names with the real URIs. B. Wu et al [7] proposed a 
method for dynamic reliable service routing. The context 
of application information related to the request message 
is added for use in service discovery. If the request does 
not respond within a suitable time, ESB will resend the 
request to another service.  

All three above approaches consider dynamic 
service selection, but they do not apply their approaches 
to message balancing. 
 
2.2 Load balancing 

Wang et al [8] proposed a load balancing 
middleware for service-oriented applications. It collects a 
service group from resources that are registered in a 
service replica repository, and adds a load agent into the 
server side for providing load information. Their 
approach uses machine-learning to predict loading. Note 
that their approach is based on having replicas of the 
same service to achieve load balancing. The Cygnus and 
TAO projects [5, 9] apply adaptive balancing in CORBA 
[10] by adding load condition dynamically. However, 
this approach uses fixed and static replica management 
and load migration to relieve overload. Migration delay 
may cause problems, and it cannot support heterogeneous 
services. 
 
2.3 Service substitution 

Taher et al [11] proposed a concept of abstract web 
service (A.WS) and concrete web service (C.WS) for 
web services substitution. Each A.WS is classified into a 
category and links to a list of similar concrete web 
services. Our approach is similar to this structure but we 
added service type property such as QoS for advanced 
filter services. Pianwattanaphon et al [12] used the 
service type ontology to describe the capability of web 
services such as signature, behavior for invoking a 
substitute web service in the case of invocation failure. 
However we are not interested in semantic matching. 
 

3 Service Type Model 
Services are normally declared in a service registry 

such as UDDI [13]. In UDDI, business information (e.g., 
business name, contacts) and service information (e.g., 
service name, access point) are registered. These standard 
attributes in UDDI are not enough for ESB to 
dynamically determine which service to send a message 
to. We propose to group Web services with the same 
function that can satisfy the same request by adding an 
attribute. 

 
3.1 Service type 

We introduce the concept of “service type”. Each 
service in our registry belongs to a service type. A type 
has the following information: 

 Service Type Name: Each service type has a 
unique name. 

 Service Signature: The signature consists of the 
input parameter(s) and return type.  

 Service Property: A property is optional 
information, such as QoS attribute, which can be 
used when searching for a suitable service. Note 
that unlike the signature, this is optional, and 
services that do not provide property information 
may be included in the same type.  

Table 1 shows examples of service types. For 
example, the MoviePreview type takes a string as an 
input parameter, and returns a MediaFile. There is one 
property “availability”.  

The basic idea of incorporating a service type is that 
services of the same service type may be substituted with 
each other.  For example, in Fig. 2, Web Service #1 and 
Web Service #3 both have the same service type A. Since 
this means that they have the same functionality, they can 
be substituted with each other; if Web Service #1 is 
unavailable, then Web Service #3 can be called.  

 
Table 1 Service type examples 

 
ServiceType 

Name 

ServiceSignature ServiceType 
Property Parameter Return 

DataType 

HotelReservation 
Location: String 
Room:Int Boolean Availability 

FlightInformation 
Departure:String 
Arrive:String 
Date:Date 

List ExecutionTime 

CarRent 
CarType:String 
Hour:Int List Accessibility 

ResturantSerching City:String List Accessibility 
DocumentPrinter Document: File Boolean Availability 
PhotoSharing Picture:File Boolean Security 
MoviePreview MovieName: String MediaFile Availability 

 

RECENT ADVANCES in COMPUTER ENGINEERING and APPLICATIONS

ISSN: 1790-5117 116 ISBN: 978-960-474-151-9



 
 

Fig. 2 Sharing service type 
 

3.2 Incorporating service type 
The service provider defines the service information, 

including the service type. Although the provider can use 
any name, it is recommended that when possible, a type 
that is already included in the repository should be used. 
In other words, when a service provider stores service 
information in the service registry, he/she first searches 
for a service type that matches the one they have built. If 
there are no matching service types, the provider can 
define a new service type.  

Note that a service type with many services likely 
indicates that (1) the service type can be considered to be 
important because multiple service providers provide the 
basic functionality, and (2) the chance of load balancing 
increases.  
 
4   Balancing Mechanism 

The basic idea of our mechanism is that, given a 

service type, we send a message to the most suitable 
service (belonging to the service type) based on the 
specified balancing mechanism. 

 
4.1 Mechanism components 

We describe each component in our mechanism 
below (Fig. 3): 
 Inbound router is provided by Mule, and it receives 

messages from a channel. We currently use JMS [14] 
channel. When a client sends a message, the message 
is stored in a request queue of ActiveMQ 5.2.0 [15] 
which is an open source JMS. 

 Message extractor is a module for extracting the 
header and body from the message. The service type is 
an essential header attribute in our approach. 

 Service group recognizer receives the service type 
data from message extractor and then sends this data 
to the service registry for discovering the services 
belonging to this type. This results in a list of 
endpoints, which is sent to the balancing computing 
module. The service group recognizer also has the 
responsibility of filtering services if property 
information is available. 

 Service registry is integrated with ESB for 
supporting dynamic service selection. Dynamic 
selection requires a list of services, each of which can 
satisfy the same request. Our current implementation 
is based on UDDI; we added an extra attribute for 
service type. Service type can be used to query a list of 
services that belong to that type. 

 Balance computing module is the main component 
for managing the sending of messages. The actual 
destination of a message is decided using a balancing 

 
 

Fig. 3 ESB enhanced with balancing mechanism 

RECENT ADVANCES in COMPUTER ENGINEERING and APPLICATIONS

ISSN: 1790-5117 117 ISBN: 978-960-474-151-9



strategy. This module connects to the load monitor 
module for getting load information, and uses the 
obtained data to check which service application has a 
the least amount of load at that time. 

 Load info is information concerning the load on the 
service. It should be updated by the service provider 
frequently. In our current implementation, it is 
calculated by the number of completed process 
messages subtracted from the number of incoming 
messages into the service. 

 Load monitor is the module that connects to the 
service provider to obtain load info. We can configure 
a time period for updating the load info data. 
 

 
 

Fig. 4 Alive service checking 
 

 Extended outbound router is a component that is 
extended from the standard Mule outbound router. 
The endpoint can be set at runtime for dispatching 
messages. If the outbound router catches an exception 
because the system cannot connect to the target 
endpoint as shown in Fig. 4, another service from the 
same service type is chosen. The ESB then resends the 
request to this service, and sends a signal to the service 
registry to temporarily block the broken endpoint. 
Meanwhile, the ESB will send a heartbeat to check if 
the service becomes “alive” again. If the service 
recovers, the ESB adds the endpoint back to the 
service list. 
 

4.2 Balancing procedure 
The steps in balancing are given below:  

1. A client sends a message to invoke a service. The 
actual service is not specified; instead the service type 
is specified in the message header. Service properties 
such as availability can also be attached in the header 
for use in filtering candidate services. 

2. The inbound router of ESB catches the incoming 
request message, and forwards it to the message 
extractor component. 

3. The message extractor extracts the service type value 
from the message header, and then sends it to the 
service group recognizer. 

4. The service group recognizer queries the service 
registry using the service type value as a query 
parameter. 

5. The service registry returns a list of services 
belonging to the same service type to the service 
group recognizer. 

6. If the service type in the message header contained 
properties, then when possible, the service group 
recognizer filters the list of services. Then, the service 
group recognizer obtains the endpoint of each service 
in the list, and sends them to the balancing module. 

7. The balancing module requests the load information 
(loadInfo) from the load monitor module. 

8. The load monitor module asks for the current loadInfo 
from the service providers. 

9. The service provider returns the current load 
information to the load monitor. 

10. The load monitor forwards the load information to the 
balancing module. 

11. The balance computing module chooses the target 
service based on the balancing strategy, and forwards 
the endpoint to the extended outbound router. 

12. The extended outbound router sends the message to 
the actual destination service. 
 

4.3 Balancing Strategy 
The selection of the actual destination service 

depends on the balancing strategy. The following 
strategies are available in our current implementation: 
 Round-Robin: This strategy keeps an endpoint list of 

a given service type containing at least one endpoint, 
and selects an endpoint iteratively through the service 
list. 

 Random: This strategy randomly chooses an 
endpoint from an endpoint list. 

 Threshold: This strategy allows a service to continue 
receiving requests until a threshold value is reached. 
Once the threshold value is reached, subsequent 
requests are sent to another endpoint with the same 
service type. The next endpoint is chosen based on 
round-robin strategy. This next endpoint will be used 
until its threshold value is reached. Then the third 
endpoint is selected based on round-robin strategy, etc. 
If all services are over the threshold, then the 
round-robin strategy is employed for each message. 

 Minimum: This strategy selects the service which has 
the least number of messages in the message queue. 

 LeastLoad: This strategy is similar to threshold; it 
allows a service to continue receiving requests until a 
threshold value is reached. However it is different 
from threshold strategy in that once the threshold 
value is reached, subsequent requests are sent to the 
service with the least load. If all services are over the 
threshold, then the system will send the message to the 
service server with the least load even though it has 
reached the threshold limit. 

 

RECENT ADVANCES in COMPUTER ENGINEERING and APPLICATIONS

ISSN: 1790-5117 118 ISBN: 978-960-474-151-9



5   Evaluation 
This section first describes an experiment that 

evaluates the performance of our load balancing ESB. 
We then describe limitations to our approach. 

 
5.1 Experiment environment 

We used the open source Java-based ESB software 
Mule 2.2.1. Our load balancing ESB ran on Intel 
Core2Duo 2.4GHz PC with RAM 2 GB. 

We deployed 4 services with the same service type 
and set up Apache server 2.2.11 [16] for publishing load 
information in VirtualBox V.2.2.4 on host CPU Intel 
Core2Duo 1.6 GHz, all running on Ubuntu 9.04 with 
RAM 128 MB. All PCs were connected over a 100 Mbps 
LAN.  
 
5.2 Experiment method 

The client sends a message (StartTime) every 
second to a service type. When the client receives a reply, 
the ReplyTime is recorded, and then the response time for 
that interaction is recorded. The response time at client 
side is as follows: 

ResponseTime = ReplyTime – StartTime 
 Response time: The amount of time between sending 

the request and receiving a response [17]. 
 StartTime: Time when message is sent from the 

client side. 
 ReplyTime: Time when the client receives a return 

message. 
For the threshold and leastLoad strategies, the 

threshold value was set at 6 messages. 
 
5.3 Experiment result and discussion 

Fig. 5 shows the result of the average response time 
for 100 messages for each of the balancing strategy. It 
shows that the sequencing, i.e., when no load balancing 
was conducted, had the worst result. Thus, we can 
conclude that our approach was able to balance the load 
between similar services. 

 

 
Fig. 5 Average response time 

Fig. 5 also shows that the leastLoad balancing 
strategy is the most effective strategy for balancing. On 
the surface it would seem that the minimum balancing 
approach should have the best result. The reason for this 
is likely due to the extra processing that occurs when 
switching to (or finding) another service. When the 
minimum balancing approach is taken, each time that a 
message is sent from the client, the best service (i.e., the 
service currently handling the least number of messages) 
is searched for and then chosen. For the leastLoad 
strategy, the previous endpoint and its current message 
handling count (which have been cached) is first checked. 
If the current message handling count is under the 
threshold, then the message is sent to that endpoint. 
However, if it is over the threshold, then the next service 
that the message should be sent to needs to be computed 
in the same way as the minimum approach. This 
difference in always computing which service to send to, 
and only sometimes computing is the likely reason why 
leastLoad balancing was better than the minimum 
strategy.  

In Fig. 6, we compare the average response values 
for the leastLoad strategy, when the threshold takes a 
value between 4 and 12. The results show that the 
response time was best when the threshold was 6 
messages. Excluding when the threshold was 4 messages, 
the results show that the response time was better when 
the threshold was lower. This is because if the threshold 
is set high, then the same service must handle more 
messages before a message is sent to another service. 
This means that there are services that are not doing 
anything. It is obviously better if the messages are 
distributed, and of course this is the point of load 
balancing.  

 

 
 

Fig. 6 Performance of the leastLoad strategy under 
different threshold values 

 
The exception is when the number of messages was 

4. The reason for this is the same as the difference 
between minimum strategy and leastLoad strategy. When 
the threshold is 4, the number of switching is more than 
when the threshold is 6. This is where the overhead for 

496 532 483
427 389

1038

0
200
400
600
800

1000
1200

A
ve

ra
ge

 re
sp

on
se

 ti
m

e 
(s

/m
es

sa
ge

)

421

389 395
403

539

300
350
400
450
500
550
600

4 6 8 10 12

R
es

po
ns

e 
Ti

m
e 

(s
/m

es
sa

ge
)

Threshold(messages)

RECENT ADVANCES in COMPUTER ENGINEERING and APPLICATIONS

ISSN: 1790-5117 119 ISBN: 978-960-474-151-9



computing which alternate service to send a message to 
can no longer be ignored. Thus, the response time for 
threshold value 4 was worse than when the threshold 
value was 6.  

Our proposed service type is based on the service 
property model of CORBA trader. The result of our 
experiment is similar to the result in [5]. The results in [5] 
also showed that the leastLoad strategy was the most 
effective. 

 
5.4 Limitations 

There are several inherent limitations to our 
approach.  

First, there must be multiple services of the same 
type for our approach to have any affect at all. Currently, 
we require the services to have the same parameter and 
return data type to belong to the same service type. We 
are considering if there are other ways to define a service 
type such as using ontology, so that the number of 
services belonging to the same type will increase leading 
to more candidates for load balancing.   

Second, providers must register their service 
according to a service type, i.e., although small, there is 
some extra work for the provider.  

Third, the granularity of services must be 
considered when registering, or else stateful services will 
become problematic. For example, if the client starts 
using a hotel reservation service, then all messages must 
be sent to the same service. A similar issue exists for 
services that require membership. 

 
6   Conclusion 

In this paper, we proposed a balancing mechanism 
that dynamically routes messages based on the specified 
balancing strategy. We first proposed a service type 
model, where each service belongs to a type. Messages 
can then be sent to any service that belongs to the same 
type. We implemented our approach, and conducted an 
experiment.  

Our main contributions are as follows: 
1. Our load balancing is done between different 

services with the same function, not between 
replicated services. 

2. Our “service type” enables the dynamic selection 
of the target service. The candidate services are 
not listed in an ESB configuration file a priori.  

3. We compared and discussed the differences 
between balancing strategies  

As for future work, we plan to consider QoS in 
dynamic service selection of ESB and study the ranking 
of matched service results. We also consider other 
information that can be sent such as service consumer 
information for use with service property attribute to 
enable more powerful service selection. 

References: 
[1] X. Bai, J. Xie, B. Chen, S. Xiao, DRESR: Dynamic 

Routing in Enterprise Service Bus, Proc. of Intl. Conf. 
on e-Business Engineering, 2007, pp. 528-531 

[2] Mule open source ESB. from:  http://www.mulesoft. 
org/display/MULE2USER/Outbound+Routers#Outb
oundRouters-RoundRobin 

[3] Apache ServiceMix. The agile open source ESB. 
from:  http://servicemix.apache.org/how-do-i-confi 
gure- an-endpoint-resolver-policy.html 

[4] Google platform. from:  http://en.wikipedia.org /wiki/ 
Google_platform 

[5] J. Balasubramanian, D. C. Schmidt, L. W. Dowdy, O. 
Othman, Evaluating the Performance of Middleware 
Load Balancing Strategies, Proc. of 8th Intl. Conf. on 
Enterprise Distributed Object Computing, 2004, pp. 
135-146 

[6] I.-Y. Chen, G.-K. Ni, C.-Y. Lin, A runtime-adapt able 
service bus design for telecom operations support 
systems, IBM Systems Journal, Vol.47, No.3, 2008, 
pp. 445-456 

[7] B. Wu, S. Liu, L. Wu, Dynamic Reliable Service 
Routing in Enterprise Service Bus, Proc. of 
Asia-Pacific Service Computing Conf., 2008, pp. 
349-354 

[8] J. Wang, Y. Ren, D. Zheng, Q. Wu, Agent Based 
Load Balancing Middleware for Service-Oriented 
Applications, Proc. of the 7th Intl. Conf. on 
Computational Science Part2, 2007, pp. 974-977 

[9] O. Othman, C. O'Ryan, D. C. Schmidt, Designing an 
Adaptive CORBA Load Balancing Service Using 
TAO, IEEE Distributed Systems Online 2(4), 2001 

[10] Object Management Group. CORBAservices: Com 
mon object specification. Version 1.0, May 10, 1996 

[11] Y. Taher,    D. Benslimane ,   M. Fauvet,   Z. Maamar,     
Toward an approach for web services substitution, 
10th Database Engineering and Applications 
Symposium, 2006, pp. 166-173 

[12] R. Pianwattanaphon, T.  Senivongse, Compatibility 
by service type model for automatic web service 
substitution , Proc. of 9th Intl. Conf. on Advanced 
Communication Technology, 2007, pp. 76-81 

[13] uddi.org. UDDI. from: http://uddi.xml.org/  
[14] Java Message Service from: http://java.sun.com/ 

products/jms/overview.html 
[15] The Apache software foundation. Apache Active 

MQ open source message broker, from: http://active 
mq.apache.org/  

[16] Apache HTTP server project from: http://httpd. 
apache.org/ 

[17] S. Kalepu, S. Krishnaswamy, S. W. Loke, Verity: A 
QoS Metric for Selecting Web Services and Providers, 
Proc. of 8th Intl. Conf. on Web Information Systems 
Engineering Workshops, 2003, pp. 131 - 139 

RECENT ADVANCES in COMPUTER ENGINEERING and APPLICATIONS

ISSN: 1790-5117 120 ISBN: 978-960-474-151-9




