

Performing real-time image processing on distributed
computer systems

RADU DOBRESCU, MATEI DOBRESCU, DAN POPESCU

"Politehnica" University of Bucharest, Faculty of Control and Computers,
313 Splaiul Independentei, Bucharest

ROMANIA
radud@isis.pub.ro

Abstract. The aim of the paper is to validate a software architecture that allows an image processing researcher
to develop parallel applications. The challenge was to develop algorithms that perform real-time low level
operations on digital images able to be executed on a cluster of desktop PCs. The experiments show how to
use parallelizable patterns and how to optimize the load balancing between the workstations.
.

Keywords: real-time image processing, low level operations, parallel and distributed processing, tasks
scheduling, lines detection, directional filtering.

1 Introduction
Considering the need for real-time image
processing and how this need can be met by
exploiting the inherent parallelism in an algorithm,
it becomes important to discuss what exactly is
meant by the term “real-time,” an elusive term that
is often used to describe a wide variety of image
processing systems and algorithms. From the
literature, it can be derived that there are three main
interpretations of the concept of “real-time”,
namely real-time in the perceptual sense, real-time
in the software engineering sense, and real-time in
the signal processing sense.
Real-time in the perceptual sense is used mainly to
describe the interaction between a human and a
computer device for a near instantaneous response
of the device to an input by a human user. For
instance, Bovik defines the concept of “real-time”
in the context of video processing, describing that
“the result of processing appears effectively
‘instantaneously’ (usually in a perceptual sense)
once the input becomes available”[1]. Note that
“real-time” imposes a maximum tolerable delay
based on human perception of delay, which is
essentially some sort of application-dependent
bounded response time.
Real-time in the software engineering sense is
also based on the concept of a bounded
response time as in the perceptual sense.
Dougherty and Laplante [2] point out that a
“real-time system is one that must satisfy
explicit bounded response time constraints to

avoid failure”. So, soft real-time refers to the
case where missed real-time deadlines result in
performance degradation rather than failure.
Real-time in the signal processing sense is
based on the idea of completing processing in
the time available between successive input
samples [3]. An important item of note here is
that one way to gauge the “real-time” status of
an algorithm is to determine some measure of
the amount of time it takes for the algorithm to
complete all requisite transferring and
processing of image data, and then making
sure that it is less than the allotted time for
processing.
In the following the discussion is focused on
the possibility to perform software
implementation on a parallel processing
platform of some primary image processing
algorithms, corresponding to real-time in the
software engineering sense.

2 Software operations involved in real
time image processing

2.1 Levels of image processing operations
The digital primary processing mainly consists of
three stages: noise rejection, binary representation,
and edge extraction. Due to the fact that the noise
can introduce errors in other stages (like contour
detection and feature extraction), the image noise
rejection must be the first stage in any digital

Proceedings of the 10th WSEAS Int. Conference on MULTIMEDIA SYSTEMS & SIGNAL PROCESSING

ISSN: 1790-5117 15 ISBN: 978-960-474-176-2

image processing application. For these algorithms
it is recommend local operators which act in
symmetrical neighborhoods of the considered
pixels. They have the advantage of simplicity and
they can be implemented easily implemented on
dedicated hardware structures. This approach
changes when considering software processing.
Digital images are essentially multidimensional
signals and are thus quite data intensive, requiring
a significant amount of computation and memory
resources for their processing. T he key to cope
with this issue is the concept of parallel processing
who deals with computations on large data sets. In
fact, much of what goes into implementing an
efficient image/video processing system centers on
how well the implementation, both hardware and
software, exploits different forms of parallelism in
an algorithm, which can be data level parallelism -
DLP or/and instruction level parallelism – ILP [4].
DLP manifests itself in the application of the same
operation on different sets of data, while ILP
manifests itself in scheduling the simultaneous
execution of multiple independent operations in a
pipeline fashion.
Traditionally, image processing operations have
been classified into three main levels, namely low,
intermediate, and high, where each successive level
differs in its input/output data relationship [5].
Low-level operators take an image as their input
and produce an image as their output, while
intermediate-level operators take an image as their
input and generate image attributes as their output,
and finally high-level operators take image
attributes as their inputs and interpret the attributes,
usually producing some kind of knowledge-based
control at their output.
One can hope that with an adequate task scheduling
and a well designed cluster of processors one can
perform in real time low-level operations by
software parallelization.
Low-level operations transform image data to
image data. This means that such operators deal
directly with image matrix data at the pixel level.
Examples of such operations include color
transformations, gamma correction, linear or
nonlinear filtering, noise reduction, sharpness
enhancement, frequency domain transformations,
etc. The ultimate goal of such operations is to
either enhance image data, possibly to emphasize
certain key features, preparing them for viewing by
humans, or extract features for processing at the
intermediate-level. These operations can be further
classified into point, neighborhood (local), and
global operations [6]. Point operations are the
simplest of the low-level operations since a given

input pixel is transformed into an output pixel,
where the transformation does not depend on any
of the pixels surrounding the input pixel. Such
operations include arithmetic operations, logical
operations, table lookups, threshold operations, etc.
The inherent DLP in such operations is obvious, as
depicted in Fig. 1 (a), where the point operation on
the pixel shown in black needs to be performed
across all the pixels in the input image. Local
neighborhood operations are more complex than
point operations in that the transformation from an
input pixel to an output pixel depends on a
neighborhood of the input pixel. Such operations
include two-dimensional spatial convolution and
filtering, smoothing, sharpening, image
enhancement, etc. Since each output pixel is some
function of the input pixel and its neighbors, these
operations require a large amount of computations.
The inherent parallelism in such operations is
illustrated in Fig. 1 (b), where the local
neighborhood operation on the pixel shown in
black needs to be performed across all the pixels in
the input image. Finally, global operations build
upon neighborhood operations in which a single
output pixel depends on every pixel in the input
image (see Fig. 1 (c)).

Fig.1.Parallelism in low-level image processing:
a) point b) neighborhood c) global

All low-level operations involve nested looping
through all the pixels in an input image with the
innermost loop applying a point, neighborhood, or
global operator to obtain the pixels forming an

Proceedings of the 10th WSEAS Int. Conference on MULTIMEDIA SYSTEMS & SIGNAL PROCESSING

ISSN: 1790-5117 16 ISBN: 978-960-474-176-2

output image. For this reason low-level operations
are excellent candidates for exploiting DLP.
The higher degree operations are difficult to
implement for real time execution. Intermediate-
level operations transform image data to a slightly
more abstract form of information by extracting
certain attributes or features of interest from an
image. This means that such operations also deal
with the image at the pixel level, but a key
difference is that the transformations involved
cause a reduction in the amount of data from input
to output. The goal by carrying out these operations
(which include segmenting an image into
regions/objects of interest, extracting edges, lines,
contours, or other image attributes of interest such
as statistical features) is to reduce the amount of
data to form a set of features suitable for further
high-level processing. Some intermediate-level
operations are also data intensive with a regular
processing structure, thus making them suitable
candidates for exploiting DLP.
High-level operations interpret the abstract data
from the intermediate-level, performing high level
knowledge-based scene analysis on a reduced
amount of data. These types of operations (for
example recognition of objects) are usually
characterized by control or branch-intensive
operations. Thus, they are less data intensive and
more inherently sequential rather than parallel.

2.2.Software Architecture Design
While translating a source code from a research
development environment to a real-time
environment is an involved task, it would be
beneficial if the entire software system is well
thought out ahead of time. Considering that real-
time image processing systems usually consist of
thousands of lines of code, proper design principles
should be practiced from the start in order to ensure
maintainability, extensibility, and flexibility in
response to changes in the hardware or the
algorithm [7]. One key method of dealing with this
problem is to make the software design modular
from the start, which involves abstracting out
algorithmic details and creating standard interfaces
or application programming interfaces (APIs) to
provide easy switching among different specific
implementations of an algorithm. Also beneficial is
to create a hierarchical, layered architecture where
standard interfaces exist between the upper layers
and the hardware layer to allow ease in switching
out different types of hardware so that if a
hardware component is changed, only minor
modifications to the upper layers will be needed.

In addition, because in real-time image processing
system, certain tasks or procedures have strict real
time deadlines, while other tasks have firm or soft
real-time deadlines, it is useful to utilize a real time
operating system in order to be able to manage the
deadlines and ensure a smoothly running system.
Real-time operating systems allow the assignment
of different levels of priorities to different tasks.
With such an assignment capability, it becomes
possible to assign higher priorities to hard real-time
deadline tasks and lower priorities to other firm or
soft real-time tasks [8].

3. Performing real time image processing on a
distributed platform

3.1 Parallel platform model and scheduling
principles
Our system model consists of P processor units.
Each processor pi has capacity ci > 0, i = 1,2,…, P.
The capacity of a processor is defined as its speed
relative to a reference processor with unit-capacity.
We assume for the general case that c1�c2 �… �cP..
The total capacity C of the system is defined as

�
=

=
P

i
icC

1

. A system is called homogeneous when

c1=c2…=cP. The platform is conceived as a
distributed system [9]. Each machine is equipped
with a single processor. In other words, we do not
consider interconnections of multiprocessors. The
main difference with multiprocessor systems is that
in a distributed system, information about the
system state is spread across the different
processors. In many cases, migrating a job from
one processor to another is very costly in terms of
network bandwidth and service delay [10], and that
the reason that we have considered for the
beginning only the case of data parallelism for a
homogenous system. The intention was to test the
general case of image processing with both data
and task parallelism, by developing a scheduling
policy with two components [11]. The global
scheduling policy decides to which processor an
arriving job must be sent, and when to migrate
some jobs. At each processor, the local scheduling
policy decides when the processor serves which of
the jobs present in its queue.
Jobs arrive at the system according to one or more
interarrival-time processes. These processes
determine the time between the arrivals of two
consecutive jobs. The arrival time of job j is
denoted by Aj. Once a job j is completed, it leaves
the system at its departure time Dj. The response
time Rj of job j is defined as Rj = Dj – Aj. The

}|{)(jj DtAjtJ <≤=

Proceedings of the 10th WSEAS Int. Conference on MULTIMEDIA SYSTEMS & SIGNAL PROCESSING

ISSN: 1790-5117 17 ISBN: 978-960-474-176-2

service time Sj of job j is its response time on a
unit-capacity processor serving no other jobs; by
definition, the response time of a job with service
time s on a processor with capacity c’ is s/c’. We
define the job set J(t) at time t as the set of jobs
present in the system at time t:
For each job j∈J(t), we define the remaining work

)(tW r
j at time t as the time it would take to serve

the job to completion on a unit-capacity processor.
The service rate)(tr

jσ of job j at time t (Aj� t<Dj)

is defined as:
τ

τ
σ

τ d

dW
t

r
j

t

r
j

)(
lim)(

→
= . The obtained

share)(ts
jω of job j at time t (Aj� t<Dj) is defined

as: Ctt r
j

s
j /)()(σω = . So,)(ts

jω is the fraction of

the total system capacity C used to serve job j, but
only if we assume that)(tW r

j is always a

piecewise-linear, continuous function of t.
Considering jj

r
j SAW =)(and 0)(=j

r
j DW we

have CSdttdtt j

D

A

r
j

D

A

s
j

j

j

j

j

/)()(== �� σω .

One can define an upper bound on the sum of the
obtained job shares of any set of jobs {1,…,J}as:

�
=

−=
),min(

1

1
max)(

PJ

i
icCtω .

3.2 A case study: lines detection

3.2.1 Theoretical background
Usually the problem of detecting lines and linear
structures in images is solved by considering the
second order directional derivative in the gradient
direction, for each possible line direction [12].
Theoretically, in two-dimensions, line points are
detected by considering the second order
directional derivative in the gradient direction. For
a line point, the second order directional derivative
perpendicular to the line is a measure of line
contrast, given by),(yxfww=λ where f(x,y) is the
grey-value function and the indices w denote
differentiation in the gradient direction. Bright
lines are observed when � < 0 and dark lines when
� >0. In practice, one can only measure differential
expressions at a certain observation scale. By
considering Gaussian weighted differential
quotients in the gradient direction,

),()(yxfGf wwww ∗= σσ , a measure of line

contrast is given by σ
σσσ

b
fyxr ww

1
),,(2= where

�,, the Gaussian standard deviation, denotes the
scale for observing the line structure, and where
line brightness b is given by

{
otherwisefW

fiff
b ww

σ

σσ
σ

−
≤

=
0�

Line brightness is measured relative to black for
bright lines, and relative to white level W (255 for
an 8-bit camera) for dark lines [13].
The response of the second order directional
derivate � does not only depend on the image data,
but it is also affected by the Gaussian smoothing
scale �. Because a line has a large spatial extent
along the line direction, and only a small spatial
extent (i.e., the line width) perpendicular to the
line, the Gaussian filter should be tuned to
optimally accumulate line evidence. For directional
filtering anisotropic Gaussian filters may be used
of scale �v and �w, for longest and shortest axis,
respectively. Line contrast is given by:

wv

wv

b
yxr f

wwwvwv σσ

σσ
σσσσ ,

, 1
),,,(=′

The optimal filter orientation may be different for
each position in the image plane, depending on line
evidence at the particular image point under
consideration. The final line detection filter,
parameterized by orientation �, smoothing scale �v
in the line direction, and differentiation scale �w

perpendicular to the line, is given by

θσσ

θσσ
σσθσσ ,,

,, 1
),,,,(

wv

wv

b
yxr f

wwwvwv =′′

where),(),,(,, yxfGf wvwwww
wv ∗= θσσθσσ

When the filter is correctly aligned with the line,
and �v, �w are optimally tuned to capture the line,
filter response is maximal. Hence, the maximum
per pixel line contrast over the filter parameters
yields line detection:

),,,,(maxarg),(
,,

θσσ
θσσ

wvyxryxR
wv

′′=

The final result is obtained by considering the
maximum response per pixel over all filter results.
This yields the optimal orientation �, an estimate of
line thickness �w, the best smoothing size �v, and
the line contrast R(x,y).

3.2.2 Software implementation of the directional
filtering algorithm

There are many different ways to implement a
directional filtering algorithm. For example, one
can create for each orientation a new filter based on
�v and �w. This yields a rotation of the filters, while
the orientation of the input image remains fixed.
Another possibility is to keep the orientation of the

Proceedings of the 10th WSEAS Int. Conference on MULTIMEDIA SYSTEMS & SIGNAL PROCESSING

ISSN: 1790-5117 18 ISBN: 978-960-474-176-2

filters fixed, and to rotate the input image instead.
Yet another solution is to integrate the notion of
orientation in the filter operation itself. In this case
image pixels are accessed not only according to the
size of the neighborhood of the filter, but also on
the basis of the given orientation [14]. From these
solutions, the second, who consists in applying
fixed filters to rotated image data, seems to be
more suitable for parallelization. In order to stress
the possibility to execute parallel operations, let
consider first the main steps of a sequential
implementation.
The first step consists in rotating the original input
image for a given orientation �. This operation is
made by a dedicated routine Rotate_Image. Then,
for all combinations (�v, �w) the filtering is
performed by six operations executed in sequence
by six dedicated routines, as follows: 1) Filter 1 to
compute θσσ ,, wv

wwf ; 2) Filter 2 to compute θσσ ,, wvb
(both filtering operations are generalized Gaussian
convolutions performed by applying two 1-
dimensional filters; 3) Binary_Op1, a binary pixel
operation having an image as argument; 4)
Binary_Op2, a binary pixel operation having an
constant value as argument; 5) Back_Rotate_Image
to match the orientation of the original input image;
6) Contrast to obtain the maximum response.
It is to note that on a state-of-the-art sequential
machine the program may take from tens of
seconds up to minutes to complete, depending on
the size of the input image and the extent of the
chosen parameter subspace. Consequently, for the
directional filtering program parallel execution is
highly desired.
The above described program may be processed in
parallel in two different schedules. In the first
schedule all dedicated routines are forced to run in
parallel, using all available processing units. The
second schedule differs from the first in that the
last two operations in the innermost loop of the
program are run on one node only. In both
schedules the Original_Image structure must be
broadcast to all nodes. This is because the structure
is applied in the initial rotation operation. In
addition, in both schedules the first four operations
in the innermost loop can be executed locally on
partial image data structures. The only need for
communication is in the exchange of image borders
(shadow regions) in the two Gaussian
convolutions.
In the first schedule the last two operations in the
innermost loop are run in parallel as well. This
requires the distributed image Binary_Op1 to be
available in full at each node, because it has an

access pattern of type 'other' in the back-rotation
operation. This can be achieved by executing a
gather-to-all operation, which is logically
equivalent to a gather operation followed by a
broadcast. Finally, a partial maximum response
image Contrast is calculated on each node, which
requires a final gather operation to be executed just
before termination of the program. In the second
schedule the last two operations are not executed in
parallel. As a result, the intermediate result image
after Binary_Op2 that produces both the back-
rotated image needs to be gathered to the single
node, as well as the complete maximum response
image.

3.2.3 Experimental results
A test image was processed first on a single
processing unit, then on a test network configured
as a cluster with 2, 4 or 8 nodes, each node being a
processor unit working at 1 GHz with 128 MByte
RAM. For each instruction utilized in the
directional filtering algorithm two measurements
were executed, for images having 2002 or 10002
elements. Table 1 offers the measured results for
the processing times of an image with 1024x1024
pixels (see fig. 2: a) original, b) after processing
with 12 orientations and 4 combinations (�v, �w).

 a) b)

Fig. 2. Test image for line detection

Table 1. Comparison of processing times for
different cluster dimensions

Measured duration [s]
Number of
processors Schedule 1 Schedule 2

1 5.56 5.56
2 2.90 4.01
4 1.60 3.22
6 0.97 2.82
8 1.21 2.95

A schedule is preferred if the set of operations
unique to that schedule is faster than the set of
operations unique to another schedule (i.e., not in

Proceedings of the 10th WSEAS Int. Conference on MULTIMEDIA SYSTEMS & SIGNAL PROCESSING

ISSN: 1790-5117 19 ISBN: 978-960-474-176-2

the set of operations common to both schedules).
Hence, for the directional filtering program the
schedule in which all operations are run in parallel
is preferred if:
��(Protate(size/N)+Pmax(size/N)+Pbcast(size/N)+Pgather

(size/N)) < ��(Protate(size)+Pmax(size))
where N denotes the number of processing units
and �� denotes the size of the parameter subspace.
For the first schedule the large number of broadcast
operations is expected to have the most significant
impact on performance. For the second schedule,
on the other hand, the many rotations of non-
partitioned image data are expected to be costly.
Another difference between the two schedules is
the fact that the total duration decrease proportional
with the number of nodes only for schedule 2. For
the schedule 1 there is an optimal structure with 6
nodes, then when the number of nodes is grater the
processing duration begins to rise again.

4 Conclusions
The experiments show how to use parallelizable
patterns, obtained for typical low level image
processing operations. In our study case the
performance model is highly accurate for parallel
processing using convolution functions. Given the
results we are confident in that the proposed
software architecture forms a powerful basis for
automatic parallelization and optimization of a
wide range of image processing applications.
Regarding the potential of the parallel platform for
image processing, in the near future we will focus
our attention on the improvement of the scheduling
component, by using processor units with different
processing capacities and also other service policy
for the queue of jobs. We will continue
implementing example programs to investigate the
implication of parallelization of typical
applications in the area of real-time image
processing, trying to improve the performances by
supporting the execution of a sequence of
algorithms on the same block and by dynamical
reconstruction of the post processed image.

ACKNOWLEDGEMENTS
This work was partially supported by the
Romanian Ministry of Education and Research
under PN2 Grants 61-031/2007 and 11-031/2007.

References:
[1] A. Bovik, Introduction to Digital Image and
Video Processing, in Handbook of Image & Video
Processing, A. C. Bovik, Ed., Elsevier Academic
Press, 2005.

[2] E. Dougherty and P. Laplante, Introduction to
Real-time Imaging. SPIE Press/IEEE Press, 1995.
[3] N. Kehtarnavaz, Real-Time Digital Signal
Processing Based on the TMS320C6000.
Amsterdam, Elsevier, 2004.
[4] H. Hunter and J. Moreno, A New Look at
Exploiting Data Parallelism in Embedded Systems,
Proc. of the Int. Conf. on Compilers, Architectures,
and Synthesis for Embedded Systems, 2003, pp.
159–169.
[5] S. Kyo, S. Okazaki, and T. Arai, An Integrated
Memory Array Processor Architecture for
Embedded Image Recognition Systems,
Proceedings of the 32nd International Symposium
on Computer Architecture, 2005, pp. 134–145.
[6] C. Soviany, Embedding Data and Task
Parallelism in Image Processing Applications,
Ph.D. Dissertation, Delft University of
Technology, The Netherlands, 2003.
[7] R. Sangwan, R. Ludwig, P. Laplante and C.
Neill, Performance Tuning of Imaging
Applications Through Pattern Based Code
Transformation, Proc. of SPIE-IS&T Electronic
Imaging Conf.on Real-Time Imaging, SPIE Vol.
5671, 2005, pp. 1–7.
[8] R. Dobrescu, D. Popescu, M. Nicolae, H.
Humaila, Real time dependable communication
infrastructure for a collaborative groupware
system, Proc. of the 1st Int. Conf. WSEAS
MEQAPS’09, vol.1, p.207-212
[9] D.H.J. Epema and J.F.C.M. de Jongh.
Proportional Share-Scheduling in Single-Server
and Multiple-Server Computing Systems.
Performance Evaluation Review,27(3):7–10, 1999.
[10] G.Agosta, S. Crespi Reghizzi, G. Falauto,
M. Sykora, JIST: Just-in-Time Scheduling
Translation for Parallel Processors, Third Int.
Symp. on Parallel and Distributed Computing
(ISPDC/HeteroPar'04), 2004, pp. 122-132
[11] J.M. Geusebroek, A.W.M. Smeulders, and
H. Geerts. A Minimum Cost Approach for
Segmenting Networks of Lines. International
Journal of Computer Vision, 43(2):99-lll, 2001.
[12] M. Dobrescu. Distributed Image
Processing Techniques for Multimedia
Applications, Ph.D. Thesis, Politehnica Univ. of
Bucharest, 2005.
[13] F.J. Seinstra, D. Koelma, and J.M.
Geusebroek. A Software Architecture for User
Transparent Parallel Image Processing. Parallel
Computing, 28 (7-8), 2002, pp. 967-993.
[14] E. Davies, Machine Vision: Theory,
Algorithms, Practicalities. San Francisco,CA:
Morgan Kauffmann Publishers, 2005.

Proceedings of the 10th WSEAS Int. Conference on MULTIMEDIA SYSTEMS & SIGNAL PROCESSING

ISSN: 1790-5117 20 ISBN: 978-960-474-176-2

