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Abstract. The aim of the paper is to validate a software architecture that allows an image processing researcher 
to develop parallel applications. The challenge was to develop algorithms that perform real-time low level 
operations on digital images able to be executed on a cluster of desktop PCs. The experiments show how to 
use parallelizable patterns and how to optimize the load balancing between the workstations.   
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1 Introduction 
Considering the need for real-time image 
processing and how this need can be met by 
exploiting the inherent parallelism in an algorithm, 
it becomes important to discuss what exactly is 
meant by the term “real-time,” an elusive term that 
is often used to describe a wide variety of image 
processing systems and algorithms. From the 
literature, it can be derived that there are three main 
interpretations of the concept of “real-time”, 
namely real-time in the perceptual sense, real-time 
in the software engineering sense, and real-time in 
the signal processing sense. 
Real-time in the perceptual sense is used mainly to 
describe the interaction between a human and a 
computer device for a near instantaneous response 
of the device to an input by a human user. For 
instance, Bovik defines the concept of “real-time” 
in the context of video processing, describing that 
“the result of processing appears effectively 
‘instantaneously’ (usually in a perceptual sense) 
once the input becomes available”[1].  Note that 
“real-time” imposes a maximum tolerable delay 
based on human perception of delay, which is 
essentially some sort of application-dependent 
bounded response time. 
Real-time in the software engineering sense is 
also based on the concept of a bounded 
response time as in the perceptual sense. 
Dougherty and Laplante [2]  point out that a 
“real-time system is one that must satisfy 
explicit bounded response time constraints to 

avoid failure”. So, soft real-time refers to the 
case where missed real-time deadlines result in 
performance degradation rather than failure.  
Real-time in the signal processing sense is 
based on the idea of completing processing in 
the time available between successive input 
samples [3]. An important item of note here is 
that one way to gauge the “real-time” status of 
an algorithm is to determine some measure of 
the amount of time it takes for the algorithm to 
complete all requisite transferring and 
processing of image data, and then making 
sure that it is less than the allotted time for 
processing. 
In the following the discussion is focused on 
the possibility to perform  software 
implementation on a parallel processing 
platform of some primary image processing 
algorithms, corresponding to real-time in the 
software engineering sense. 
  
2 Software operations involved in real 
time image processing 
 
2.1 Levels of image processing operations  
The digital primary processing mainly consists of 
three stages: noise rejection, binary representation, 
and edge extraction. Due to the fact that the noise 
can introduce errors in other stages (like contour 
detection and feature extraction), the image noise 
rejection must be the first stage in any digital 
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image processing application. For these algorithms 
it is recommend local operators which act in 
symmetrical neighborhoods of the considered 
pixels. They have the advantage of simplicity and 
they can be implemented easily implemented on 
dedicated hardware structures. This approach 
changes when considering software processing.  
Digital images are essentially multidimensional 
signals and are thus quite data intensive, requiring 
a significant amount of computation and memory 
resources for their processing. T he key to cope 
with this issue is the concept of parallel processing 
who deals with computations on large data sets. In 
fact, much of what goes into implementing an 
efficient image/video processing system centers on 
how well the implementation, both hardware and 
software, exploits different forms of parallelism in 
an algorithm, which can be data level parallelism - 
DLP or/and instruction level parallelism – ILP [4]. 
DLP manifests itself in the application of the same 
operation on different sets of data, while ILP 
manifests itself in scheduling the simultaneous 
execution of multiple independent operations in a 
pipeline fashion. 
Traditionally, image processing operations have 
been classified into three main levels, namely low, 
intermediate, and high, where each successive level 
differs in its input/output data relationship [5]. 
Low-level operators take an image as their  input 
and produce an image as their output, while 
intermediate-level operators take an image as their 
input and generate image attributes as their output, 
and finally high-level operators take image 
attributes as their inputs and interpret the attributes, 
usually producing some kind of knowledge-based 
control at their output.  
One can hope that with an adequate task scheduling 
and a well designed cluster of processors one can 
perform in real time low-level operations by 
software parallelization. 
Low-level operations transform image data to 
image data. This means that such operators deal 
directly with image matrix data at the pixel level. 
Examples of such operations include color 
transformations, gamma correction, linear or 
nonlinear filtering, noise reduction, sharpness 
enhancement, frequency domain transformations, 
etc. The ultimate goal of such operations is to 
either enhance image data, possibly to emphasize 
certain key features, preparing them for viewing by 
humans, or extract features for processing at the 
intermediate-level. These operations can be further 
classified into point, neighborhood (local), and 
global operations [6]. Point operations are the 
simplest of the low-level operations since a given 

input pixel is transformed into an output pixel, 
where the transformation does not depend on any 
of the pixels surrounding the input pixel. Such 
operations include arithmetic operations, logical 
operations, table lookups, threshold operations, etc. 
The inherent DLP in such operations is obvious, as 
depicted in Fig. 1 (a), where the point operation on 
the pixel shown in black needs to be performed 
across all the pixels in the input image. Local 
neighborhood operations are more complex than 
point operations in that the transformation from an 
input pixel to an output pixel depends on a 
neighborhood of the input pixel. Such operations 
include two-dimensional spatial convolution and 
filtering, smoothing, sharpening, image 
enhancement, etc. Since each output pixel is some 
function of the input pixel and its neighbors, these 
operations require a large amount of computations. 
The inherent parallelism in such operations is 
illustrated in Fig. 1 (b), where the local 
neighborhood operation on the pixel shown in 
black needs to be performed across all the pixels in 
the input image. Finally, global operations build 
upon neighborhood operations in which a single 
output pixel depends on every pixel in the input 
image (see Fig. 1 (c)).  

 

 

 
 
Fig.1.Parallelism in low-level image processing:   
a) point b) neighborhood c) global  
 
All low-level operations involve nested looping 
through all the pixels in an input image with the 
innermost loop applying a point, neighborhood, or 
global operator to obtain the pixels forming an 
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output image. For this reason low-level operations 
are excellent candidates for exploiting DLP. 
The higher degree operations are difficult to 
implement for real time execution. Intermediate-
level operations transform image data to a slightly 
more abstract form of information by extracting 
certain attributes or features of interest from an 
image. This means that such operations also deal 
with the image at the pixel level, but a key 
difference is that the transformations involved 
cause a reduction in the amount of data from input 
to output. The goal by carrying out these operations 
(which include segmenting an image into 
regions/objects of interest, extracting edges, lines, 
contours, or other image attributes of interest such 
as statistical features) is to reduce the amount of 
data to form a set of features suitable for further 
high-level processing. Some intermediate-level 
operations are also data intensive with a regular 
processing structure, thus making them suitable 
candidates for exploiting DLP. 
High-level operations interpret the abstract data 
from the intermediate-level, performing high level 
knowledge-based scene analysis on a reduced 
amount of data. These types of operations (for 
example recognition of objects) are usually 
characterized by control or branch-intensive 
operations. Thus, they are less data intensive and 
more inherently sequential rather than parallel.  
 
2.2.Software Architecture Design 
While translating a source code from a research 
development environment to a real-time 
environment is an involved task, it would be 
beneficial if the entire software system is well 
thought out ahead of time. Considering that real-
time image processing systems usually consist of 
thousands of lines of code, proper design principles 
should be practiced from the start in order to ensure 
maintainability, extensibility, and flexibility in 
response to changes in the hardware or the 
algorithm [7]. One key method of dealing with this 
problem is to make the software design modular 
from the start, which involves abstracting out 
algorithmic details and creating standard interfaces 
or application programming interfaces (APIs) to 
provide easy switching among different specific 
implementations of an algorithm. Also beneficial is 
to create a hierarchical, layered architecture where 
standard interfaces exist between the upper layers 
and the hardware layer to allow ease in switching 
out different types of hardware so that if a 
hardware component is changed, only minor 
modifications to the upper layers will be needed. 

In addition, because in real-time image processing 
system, certain tasks or procedures have strict real 
time deadlines, while other tasks have firm or soft 
real-time deadlines, it is useful to utilize a real time 
operating system in order to be able to manage the 
deadlines and ensure a smoothly running system. 
Real-time operating systems allow the assignment 
of different levels of priorities to different tasks. 
With such an assignment capability, it becomes 
possible to assign higher priorities to hard real-time 
deadline tasks and lower priorities to other firm or 
soft real-time tasks [8].  
 
3. Performing real time image processing on a 
distributed platform 
 
3.1 Parallel platform model and scheduling 
principles 
Our system model consists of P processor units. 
Each processor pi has capacity ci > 0, i = 1,2,…, P. 
The capacity of a processor is defined as its speed 
relative to a reference processor with unit-capacity. 
We assume for the general case that c1�c2 �… �cP.. 
The total capacity C of the system is defined as 

�
=

=
P

i
icC

1

. A system is called homogeneous when 

c1=c2…=cP. The platform is conceived as a 
distributed system [9]. Each machine is equipped 
with a single processor. In other words, we do not 
consider interconnections of multiprocessors. The 
main difference with multiprocessor systems is that 
in a distributed system, information about the 
system state is spread across the different 
processors. In many cases, migrating a job from 
one processor to another is very costly in terms of 
network bandwidth and service delay [10], and that 
the reason that we have considered for the 
beginning only the case of data parallelism for a 
homogenous system. The intention was to test the 
general case of image processing with both data 
and task parallelism, by developing a   scheduling 
policy with two components [11]. The global 
scheduling policy decides to which processor an 
arriving job must be sent, and when to migrate 
some jobs. At each processor, the local scheduling 
policy decides when the processor serves which of 
the jobs present in its queue.  
Jobs arrive at the system according to one or more 
interarrival-time processes. These processes 
determine the time between the arrivals of two 
consecutive jobs. The arrival time of job j is 
denoted by Aj. Once a job j is completed, it leaves 
the system at its departure time Dj. The response 
time Rj of job j is defined as Rj = Dj – Aj. The 

}|{)( jj DtAjtJ <≤=
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service time Sj of job j is its response time on a 
unit-capacity processor serving no other jobs; by 
definition, the response time of a job with service 
time s on a processor with capacity c’ is s/c’. We 
define the job set J(t) at time t as the set of jobs 
present in the system at time t:  
For each job j∈J(t), we define the remaining work 

)(tW r
j  at time t as the time it would take to serve 

the job to completion on a unit-capacity processor. 
The service rate )(tr

jσ  of job j at time t (Aj� t<Dj) 

is defined as:
τ

τ
σ

τ d

dW
t

r
j

t

r
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→
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share )(ts
jω of job j at time t (Aj� t<Dj) is defined 

as: Ctt r
j

s
j /)()( σω = . So, )(ts

jω is the fraction of 

the total system capacity C used to serve job j, but 
only if we assume that   )(tW r

j  is always a 

piecewise-linear, continuous function of t. 
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One can define an upper bound on the sum of the 
obtained job shares of any set of jobs {1,…,J}as:  
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3.2 A case study: lines detection 
 
3.2.1   Theoretical background  
Usually the problem of detecting lines and linear 
structures in images is solved by considering the 
second order directional derivative in the gradient 
direction, for each possible line direction [12]. 
Theoretically, in two-dimensions, line points are 
detected by considering the second order 
directional derivative in the gradient direction. For 
a line point, the second order directional derivative 
perpendicular to the line is a measure of line 
contrast, given by ),( yxfww=λ where f(x,y) is the 
grey-value function and the indices w denote 
differentiation in the gradient direction. Bright 
lines are observed when � < 0 and dark lines when 
� >0. In practice, one can only measure differential 
expressions at a certain observation scale. By 
considering Gaussian weighted differential 
quotients in the gradient direction, 

),()( yxfGf wwww ∗= σσ , a measure of line 

contrast is given by σ
σσσ

b
fyxr ww

1
),,( 2= where 

�,, the Gaussian standard deviation, denotes the 
scale for observing the line structure, and where 
line brightness b is given by 

{
otherwisefW

fiff
b ww

σ

σσ
σ

−
≤

=
0�

 

Line brightness is measured relative to black for 
bright lines, and relative to white level W (255 for 
an 8-bit camera) for dark lines [13]. 
The response of the second order directional 
derivate � does not only depend on the image data, 
but it is also affected by the Gaussian smoothing 
scale �. Because a line has a large spatial extent 
along the line direction, and only a small spatial 
extent (i.e., the line width) perpendicular to the 
line, the Gaussian filter should be tuned to 
optimally accumulate line evidence. For directional 
filtering anisotropic Gaussian filters may be used 
of scale �v and �w, for longest and shortest axis, 
respectively. Line contrast is given by: 

wv

wv

b
yxr f

wwwvwv σσ

σσ
σσσσ ,

, 1
),,,( =′  

The optimal filter orientation may be different for 
each position in the image plane, depending on line 
evidence at the particular image point under 
consideration. The final line detection filter, 
parameterized by orientation �, smoothing scale �v 
in the line direction, and differentiation scale �w 

perpendicular to the line, is given by 

θσσ

θσσ
σσθσσ ,,

,, 1
),,,,(

wv

wv

b
yxr f

wwwvwv =′′  

where ),(),,(,, yxfGf wvwwww
wv ∗= θσσθσσ  

When the filter is correctly aligned with the line, 
and �v, �w are optimally tuned to capture the line, 
filter response is maximal. Hence, the maximum 
per pixel line contrast over the filter parameters 
yields line detection:  

),,,,(maxarg),(
,,

θσσ
θσσ

wvyxryxR
wv

′′=  

The final result is obtained by considering the 
maximum response per pixel over all filter results. 
This yields the optimal orientation �, an estimate of 
line thickness �w, the best smoothing size �v, and 
the line contrast R(x,y). 
 
3.2.2   Software implementation of the directional 
filtering algorithm 
 
There are many different ways to implement a 
directional filtering algorithm.  For example, one 
can create for each orientation a new filter based on 
�v and �w. This yields a rotation of the filters, while 
the orientation of the input image remains fixed. 
Another possibility is to keep the orientation of the 
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filters fixed, and to rotate the input image instead. 
Yet another solution is to integrate the notion of 
orientation in the filter operation itself. In this case 
image pixels are accessed not only according to the 
size of the neighborhood of the filter, but also on 
the basis of the given orientation [14]. From these 
solutions, the second, who consists in applying 
fixed filters to rotated image data, seems to be 
more suitable for parallelization. In order to stress 
the possibility to execute parallel operations, let 
consider first the main steps of a sequential 
implementation.   
The first step consists in rotating the original input 
image for a given orientation �. This operation is 
made by a dedicated routine Rotate_Image.  Then, 
for all combinations (�v, �w) the filtering is 
performed by six operations executed in sequence 
by six dedicated routines, as follows: 1) Filter 1 to 
compute θσσ ,, wv

wwf ; 2) Filter 2 to compute θσσ ,, wvb  
(both filtering operations are generalized Gaussian 
convolutions performed by applying two 1-
dimensional filters; 3) Binary_Op1, a binary pixel 
operation having an image as argument; 4) 
Binary_Op2, a binary pixel operation having an 
constant value as argument; 5) Back_Rotate_Image 
to match the orientation of the original input image; 
6) Contrast  to obtain the maximum response. 
It is to note that on a state-of-the-art sequential 
machine the program may take from tens of  
seconds up to minutes to complete, depending on 
the size of the input image and the extent of the 
chosen parameter subspace. Consequently, for the 
directional filtering program parallel execution is 
highly desired. 
The above described program may be processed in 
parallel in two different schedules. In the first 
schedule all dedicated routines are forced to run in 
parallel, using all available processing units. The 
second schedule differs from the first in that the 
last two operations in the innermost loop of the 
program are run on one node only. In both 
schedules the Original_Image structure must be 
broadcast to all nodes. This is because the structure 
is applied in the initial rotation operation. In 
addition, in both schedules the first four operations 
in the innermost loop can be executed locally on 
partial image data structures. The only need for 
communication is in the exchange of image borders 
(shadow regions) in the two Gaussian 
convolutions. 
In the first schedule the last two operations in the 
innermost loop are run in parallel as well. This 
requires the distributed image Binary_Op1 to be 
available in full at each node, because it has an 

access pattern of type 'other' in the back-rotation 
operation. This can be achieved by executing a 
gather-to-all operation, which is logically 
equivalent to a gather operation followed by a 
broadcast. Finally, a partial maximum response 
image Contrast is calculated on each node, which 
requires a final gather operation to be executed just 
before termination of the program. In the second 
schedule the last two operations are not executed in 
parallel. As a result, the intermediate result image 
after Binary_Op2 that produces both the back-
rotated image needs to be gathered to the single 
node, as well as the complete maximum response 
image. 
 
3.2.3   Experimental results  
A test image was processed first on a single 
processing unit, then on a test network configured 
as a cluster with 2, 4 or 8 nodes, each node being a 
processor unit working at 1 GHz with  128 MByte 
RAM. For each instruction utilized in the 
directional filtering algorithm two measurements 
were executed, for images having 2002 or 10002 
elements. Table 1 offers the measured results for 
the processing times of an image with 1024x1024 
pixels (see fig. 2: a) original, b) after processing 
with 12 orientations and 4 combinations (�v, �w).  

 
     a)         b) 

Fig. 2. Test image for line detection 
 
Table 1. Comparison of processing times for 
different cluster dimensions 

Measured duration [s] 
Number of  
processors Schedule 1 Schedule 2 

1 5.56 5.56 
2 2.90 4.01 
4 1.60 3.22 
6 0.97 2.82 
8 1.21 2.95 

 
A schedule is preferred if the set of operations 
unique to that schedule is faster than the set of 
operations unique to another schedule (i.e., not in 
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the set of operations common to both schedules). 
Hence, for the directional filtering program the 
schedule in which all operations are run in parallel 
is preferred if: 
��(Protate(size/N)+Pmax(size/N)+Pbcast(size/N)+Pgather

(size/N)) < ��(Protate(size)+Pmax(size)) 
where N denotes the number of processing units 
and �� denotes the size of the parameter subspace. 
For the first schedule the large number of broadcast 
operations is expected to have the most significant 
impact on performance. For the second schedule, 
on the other hand, the many rotations of non-
partitioned image data are expected to be costly. 
Another difference between the two schedules is 
the fact that the total duration decrease proportional 
with the number of nodes only for schedule 2. For 
the schedule 1 there is an optimal structure with 6 
nodes, then when the number of nodes is grater the 
processing duration begins to rise again. 

4 Conclusions  
The experiments show how to use parallelizable 
patterns, obtained for typical low level image 
processing operations. In our study case the 
performance model is highly accurate for parallel 
processing using convolution functions.  Given the 
results we are confident in that the proposed 
software architecture forms a powerful basis for 
automatic parallelization and optimization of a 
wide range of image processing applications.   
Regarding the potential of the parallel platform for 
image processing, in the near future we will focus 
our attention on the improvement of the scheduling 
component, by using processor units with different 
processing capacities and also other service policy 
for the queue of jobs. We will continue 
implementing example programs to investigate the 
implication of parallelization of typical 
applications in the area of real-time image 
processing, trying to improve the performances by 
supporting the execution of a sequence of 
algorithms on the same block and by dynamical 
reconstruction of the post processed image. 
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