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Preface

This is a development report for the investigation of the partial differential equation net-

works. In this report, we mainly discuss the stabilization of the wave equations with variable

coefficients defined on the metric graphs. These networks might be discontinuous or with cir-

cuits.

In the past decades, there have been a lot of literature studying the controllability, observ-

ability and stabilization for the elastic system. Some nice results and innovative approaches

have obtained. For examples, Rolewicz in [95] investigated the controllability of systems of

strings; Cox and Zuazua in [22] studied decay rate of the energy of single string system; Xu

and Guo in [111] studied the stabilization of a string with interior pointwise control and ob-

tained the Riesz basis property of the eigenfunctions of the system; more recent papers for

single string system, we refer to [128], [120] and the reference therein. While single Timoshenko

beam treated as two weakly internal-coupled vibrating strings have been studied under various

boundary conditions, for instance, see [110], [112], [113],[114] and [115]. Under different control

laws, the exponential stabilization and the Riesz basis property of those systems were obtained.

There were some nice results for the serially connected strings system, here we refer to literature

[15], [62], [68] and [71], in which the authors used the multiplier approach to obtain stabilization

for the wave equations by boundary control. In particular, under certain conditions, Liu et al

in [71] obtained the exponential stabilization for a long chain of vibrating strings. Guo et al

in [43] gave an abstract sufficient condition to deal with Riesz basis generation and apply it to

serially connected strings. For other type of serially connected elastic system such as Euler-

Bernoulli beams and Timoshenko beams, many authors had made great effort on the control

and stabilization of the system, for instance, see [96], [16], [103] and [119].

The study of the differential equations on graphs (or networks) was derived from distinct

science background. The questions arise the high-tech such as chip interconnect problem and

electron motion in a molecule. The differential equations on graphs was investigated in [87]

and [40] for the scattering problem of the free electrons. Since then, there were a great deal

papers studying the properties of the differential equations, we refer to two works [90] and [12],

in which the authors gave a brief review of results on this aspect. As for spectral problem of

the differential equations on the graphs, there were many nice results, we refer to the works

of J. von Below, F. Ali Mehmeti and S. Nicaise, please see [10], [1] ,[30] and the references

therein. The elastic networks are important class of the differential equations on graphs. As
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to the modelling and control problem of the elastic networks, we refer to the early works [75]

and [102]. More recent development on controllability, observability and stabilization of the

network of strings, we refer to a book [34] and a report [129], in where there is a complete list

of references on the study of network of strings.

We observe that most of the literature aforementioned mainly deal with the differential

equations on graphs with constant coefficients and system continuity, there are a few works

discussing the system with variable coefficients and discontinuity. Therefore, we choose the

networks with variable coefficients as our research object. Our project includes the following

two aspects:

(1) Stabilization of elastic network with variable coefficients;

(2) Identification of the network structure.

In the first aspect, we mainly discuss design of the feedback controllers involving the location

of controllers and availability of controllers and stability analysis of the close loop system. In

the second part, our attention focuses on identifying the shape of the network structure by

measurement. These questions have important application in the real world.

This report is merely a development report for investigation of one dimensional wave net-

works. The first four chapters are basic materials on the elastic networks. Chapters 5–9 are

on the control and stabilization of networks of strings. These works are finished recently. As

to the networks of Euler-Bernoulli beams and Timoshenko beams, we will give an investigation

report on them in the future. This research is supported by the Natural Science Foundation of

China Grant NSFC-60874034 and partially supported by WSEAS.
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Chapter 1

Complex Dynamic Systems

1.1 Distributed electronic circuits

1.1.1 Distributed parameter model of interconnects

With the rapid increase of the signal frequency and decrease of the feature sizes of high-speed
electronic circuits, interconnects have become a dominant factor in determining circuit perfor-
mance and reliability in deep sub-micron designs. On-chip interconnect problems have been
interested many researchers, and become hot topics in the area of advanced CAD (computer
aided design) techniques [18]. The interconnects can be modeled as lumped, distributed, or
full-wave models directly according to the operating frequency, rise time of signal, interconnect
structure, etc. Generally speaking, at lower frequencies, i.e., the length of the interconnect
lines is electrically small at the frequency of interest, interconnect lines could be modeled using
lumped RC (first-order system for monotonic waveform) or RLC (second-order system needed
for ringing phenomena) circuit model [28]. To model the interconnect lines more precisely, a
large number of lumped sections are often needed, which leads to circuit equations with very
large dimension, high CPU intensive and memory exhaustive simulations.

At relatively high signal speed, electrical length of interconnect lines becomes a significant
fraction of the operating wavelength, interconnect line reveals its distributed nature, giving
rise to signal distorting effects that do not exist at lower frequencies, which results in the fact
that the conventional lumped models are inadequate to capture the dynamic characteristic of
interconnect lines and distributed parameter system models are needed. In [11] and [105], On-
chip interconnects are modeled as a distributed RLC parameter model, and the approximation
model obtained is not complicated due to the fact that the dielectric loss G is ignored. Un-
fortunately, this can not be neglected in many practical occasions especially in high frequency
domain. [98] expanded the admittance matrix of RLCG transmission line analytically in terms
of poles and residues. Often, from the system design point of view, the solution to Maxwell’s
equations may be given by the so-called quasi-transverse electro-magnetic modes (TEM), and
it can be characterized by distributed parameters R,L,C, and G [4]. In general, a transmission

1



2 CHAPTER 1. COMPLEX DYNAMIC SYSTEMS

line is presented by Telegrapher’s equations.
Let us recall a single nonuniform RLCG interconnect line under consideration. A real inter-

connect system consists of single interconnect line of length ` and ground. Suppose the line is
inhomogeneous, which implies that the Resistant R, inductance L, capacitance C and conduc-
tance for unit length (dielectric loss) G are the position-dependent. For a RLCG transmission
line system, let v(x, t) and i(x, t) respectively be voltage and current at position x ∈ (0, `) at
time t. Using Kirchhoff’s laws of the voltage and current, the equivalent circuit equations can
be written into

∂v(x, t)
∂x

+ L(x)
∂i(x, t)
∂t

= −R(x)i(x, t), (1.1.1)

∂i(x, t)
∂x

+ C(x)
∂v(x, t)
∂t

= −G(x)v(x, t). (1.1.2)

The coefficients R,L,C, and G are distributed parameters for RLCG transmission line. If R = 0
and G = 0, the transmission line is lossless, see [59] and [60].

The current and voltage at the near end are i(0, t) and v(0, t) respectively, and the current
and voltage at the far end are i(`, t) and v(`, t) respectively.

1.1.2 Complex circuit equations with distributed elements

Let us consider a hybrid system of lump and distributed elements, which have two simple
circuits with RLCG transmission lines, see Fig.1.1.1.

v1(t) i2(x, t)
v2(x, t)

i3(x, t)
v3(x, t)

v4(t)g1 - • -
�

e(t)© c1 c4 � g4

•
x = 0 x = `2 x = 0 x = `3

Fig.1.1.1 An electronic circuit network

The behavior of the system is governed by

c1
dv1(t)

dt = g1(e1 − v1)(t)− 1
z0
v1(t) + 1

z0
i(0, t)

∂v2(x,t)
∂x + L2(x)

∂i2(x,t)
∂t = −R2(x)i2(x, t), x ∈ (0, `2)

∂i2(x,t)
∂x + C2(x)

∂v2(x,t)
∂t = −G2(x)v2(x, t), x ∈ (0, `2)

v2(0, t) = v1(t), v2(`2, t) = v3(0, t)
∂v3(x,t)

∂x + L3(x)
∂i3(x,t)

∂t = −R3(x)i3(x, t), x ∈ (0, `3)
∂i3(x,t)

∂x + C3(x)
∂v3(x,t)

∂t = −G3(x)v3(x, t), x ∈ (0, `3)

v3(`3, t) = v4(t)

c4
dv4(t)

dt = −g4(v4)(t) + 1
z4
v4(t) + 1

z4
i3(`3, t),

(1.1.3)

where g1 and g4 are nonlinear functions
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1.2 Saint Venant network

1.2.1 Saint Venant equations

Dynamics of open-water channels are usually described by Saint-Venant equations which are
nonlinear PDEs representing mass and momentum balance along the channel. The Saint-Venant
equations constitute a so-called 2× 2 system of one-dimensional balance laws.

Let us consider a pool of a prismatic open channel with a rectangular cross section and a
constant non-zero slope. Let H(t, x) denote the water depth at position x of channel at time t
and V (t, x) denote the horizontal water velocity at the time instant t and the location x along
the channel, L be the length of the pool. The dynamics of the system are described by the
Saint-Venant equations

∂

∂t

 H

V

+
∂

∂x

 HV

1
2V

2 + gH

+

 0

g[Sf (H,V )− Sb]

 = 0, x ∈ (0, L), (1.2.1)

where Sb is the bottom slope and g the gravity constant. Sf (H,V ) is the so-called friction slope
for which various empirical models are available in the engineering literature. The simplest
model is

Sf (H,V ) = C
V 2

H
(1.2.2)

where C is a constant friction coefficient. In this case, the steady-state (or equilibrium) of
(1.2.1) is a constant state (H∗, V ∗)T that satisfies the relation

Sf (H∗, V ∗) = Sb, or SbH
∗ = C(V ∗)2. (1.2.3)

1.2.2 Saint-Venant network

Let us consider a system of navigable rivers or irrigation channels (see e.g. [23] [78]). Under the
power of gravity the water is transported along the channel through successive pools separated
by automated gates that are used to regulate the water flow, as shown in Fig.1.2.1. Suppose
that the channel has n pools, the dynamics are described by Saint-Venant equations

∂

∂t

 Hj

Vj

+
∂

∂x

 HjVj

1
2V

2
j + gHj

+

 0

g[CjV
2
j H

−1
j − Sb]

 = 0, x ∈ (0, L) (1.2.4)

where j = 1, 2, · · · , n.
Further we assume that all the pools have a rectangular section with the same width W .

The system (1.2.4) is subject to a set of 2n boundary conditions that are distributed into three
subsets:

1) The flow continuity condition between the pools: a first subset of n−1 conditions expresses
the natural physical constraint of flow-rate conservation between the pools (the flow that exits
pool j is equal to the flow that enters pool j + 1)

Hj(t, L)Vj(t, L) = Hj+1(t, 0)Vj+1(t, 0), j = 1, 2, · · · , n− 1. (1.2.5)
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hh��
6
Hi

��

Pools i
-

Vi

- x

6ui

��
Gate
hh��

6Hi+1

Pools i+1
-Vi+1

- x

6ui+1

��

Gate

hh��

-

Fig.1.2.1 n-series pools: Lateral view of successive pools of

an open-water channel with overflow gates

2) The nodal condition at every gate: a second subset of n boundary condition is made
up of the equations that describe the gate operations. A standard gate model is given by the
algebraic relation

Hj(t, L)Vj(t, L) = kG
√

[Hj(t, L)− uj(t)]3, j = 1, 2, · · · , n. (1.2.6)

where kG is a positive constant coefficient and uj(t) denotes the weir elevation which is a control
input (see Fig.1.2.1.).

3) The last boundary condition imposes the value of the canal inflow rate that denotes by
Q0(t)

H1(t, 0)V1(t, 0) = Q0(t). (1.2.7)

Depending on the application, Q0(t) may be viewed as a control input (in irrigation channels)
or as a disturbance input (in navigable rivers).

A steady-state (or equilibrium) is a constant state (H∗
j , V

∗
j )(j = 1, 2, · · · , n) that satisfies

the relations
SjH

∗
j = Cj(V ∗j )2, j = 1, 2, · · · , n. (1.2.8)

The subcritical flow condition is

gH∗
j − (V ∗j )2 > 0, j = 1, 2, · · · , n. (1.2.9)

REMARK 1.2.1 This model is taken from [14], in which the authors concerned with the expo-
nential stability (in L2-norm) of the classical solutions of the linearized Saint-Venant equations.
The stability of systems of one-dimensional conservation laws has been analyzed for a long time
in the literature. The most recent results can be found in [24] where it is shown that the sta-
bility is guaranteed if the Jacobian matrix of the boundary conditions satisfies an appropriate
sufficient dissipative condition.
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1.3 Ramp-metering modelling in road traffic networks

1.3.1 The LWR Model

In the fluid paradigm for road traffic modelling, the traffic state is usually represented by a
macroscopic variable ρ(t, x) which represents the density of the vehicles (# veh/km) at time
t and at position x along the road. q(t, x) is the traffic flux representing the flow rate of the
vehicles at (t, x). By the definition, one has q(t, x) = ρ(t, x)v(t, x) where v(t, x) is the velocity
of the vehicles at (t, x). Then the traffic dynamics are represented by a conservation law

∂tρ(t, x) + ∂xq(t, x) = 0 (1.3.1)

this expresses the conservation of the number of vehicles on a road segment without entries or
exits. The basic assumption of the so-called LWR model (see e.g. [50, Chapter 3]) is that the
drivers instantaneously adapt their speed to the local traffic density, which is expressed by a
function v(t, x) = V (ρ(t, x)). The LWR traffic model is therefore written as

∂tρ(t, x) + ∂x(ρ(t, x)V (ρ(t, x))) = 0. (1.3.2)

According to the physical observations, the velocity-density relation is a monotonic decreasing
function (dV/dρ < 0) on the interval [0, ρm] with properties that

1) V (0) = Vm, the maximal vehicle velocity when the road is empty;
2) V (ρm) = 0, the velocity is zero when the density is maximal, the vehicles are stopped

and the traffic is totally congested.
The flux q(ρ) = ρV (ρ) is a non-monotonic function with q(0) = 0 and q(ρm) = 0, which is

maximal at some critical value ρc that separates free-flow and traffic congestion: the traffic is
flowing freely when ρ < ρc while the traffic is congested when ρ > ρc.

1.3.2 The LWR network

Ramp-metering Control Problem. Let us now consider the highway network made up of nine
road segments with four entries and three exits, whose structure is shown as in Fig. 1.3.1.
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Fig. 1.3.1. A highway network
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The densities and flows on the road segments are denoted ρj and qj , j ∈ {1, 2, · · · , 9}. The flow
rate u1 is a disturbance input and the flow rates u2, u3, u4 at the three other entries are inputs.

The traffic dynamics are described by a set of LWR models:

∂tρj(t, x) + ∂x(ρj(t, x)V (ρj(t, x))) = 0, j ∈ {1, 2, · · · , 9} (1.3.3)

Under free-flow conditions, the flows qj(ρj) = ρjV (ρj) are monotonic increasing functions and
hence there are inverse function ρj = S(qj). Thus the model for the network of Fig.1.3.1 can
be rewritten into a set of kinematic wave equations

∂tqj(t, x) + c(qj(t, x))∂xqj(t, x) = 0, c(qj) > 0, (1.3.4)

with the boundary conditions

q1(t, 0) = u1(t), q2(t, 0) = αq1(t, L),

q3(t, 0) = βq2(t, L), q4(t, 0) = q3(t, L) + u2(t),

q5(t, 0) = γq4(t, L), q6(t, 0) = q5(t, L) + u3(t),

q7(t, 0) = (1− α)q1(t, L), q8(t, 0) = q7(t, L) + u4(t),

q9(t, 0) = q6(t, L) + q8(t, L)

where α, β and γ are traffic splitting factors at the diverging junction and two exits of the
network.

REMARK 1.3.1 This example is taken from [13], in where the objective is to analyze the
stability of this network under a feedback ramp metering strategy which consists in using traffic
lights for modulating the entry flows ui. The motivation behind such control strategy is that a
temporary limitation of the flow entering a highway can prevent the appearance of traffic jams
and improve the network efficiency (possibly at the price of temporary queue formation at the
ramps).

1.4 Transport system

Herein we consider a transport problem of population in some region. V = {a1, a2, · · · , am}
denotes a set of large towns in the region under consideration. E = {e1, e2, · · · , en} denotes a
set of the transport lines of population, in which each line ej is of length `j . Suppose that there
is no birth in the transport process, and that the velocity of transmission along the line ej is
cj that is position independent. Let us consider change of population in the region.

Let pj(s, t) denote the density (number) of transport population at time t and position
s ∈ ej . Then the change of transport population along line ej at a small time ∆t is

pj(s+ cj∆t, t+ ∆t)− pj(s, t) = −µj(s)pj(s, t)∆t

where µj(s) denotes the death rate (mortality) of the transport population. Then the dynamical
equation is given by

∂pj(s, t)
∂t

+ cj
∂pj(s, t)
∂s

= −µj(s)pj(s, t). (1.4.1)
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Suppose that w(ai, t) is the total number of population at time t in town ai, then the change
of population in this town is

dw(ai, t)
dt

= −µ(ai)w(ai, t) + b(ai)w(ai, t) +
∑

j∈J+(ai)

pi(`j , t)−
∑

k∈J−(ai)

pk(0, t) (1.4.2)

where b(ai) is the birth rate of population in the town ai, which includes the birth rate and
available birth age. µ(ai) is the death rate. J+(ai) is a index set of the line entering the town
ai, and J−(ai) is a index set of the line leaving the town.

Note that each town has its environment capability. One can assume that the environment
capability for population is Di in town ai. If w(ai, t) < Di, the transport population may be
admissible to settle down, otherwise there are some population joining transport. Therefore,
the outgoing population of pk(0, t),k ∈ J−(ai), is described by

pk(0, t) =

 w
(1)
i,kw(ai, t), w(ai, t) < Di

w
(2)
i,kw(ai, t), w(ai, t) ≥ Di.

(1.4.3)

where w(j)
i,k , j = 1, 2 are rate coefficients.

EXAMPLE 1.4.1 Let G be of the structure shown as in Fig. 1.4.1. The transport process
takes place along the edge of G. a2, a4 and a5 are the center cities.
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Fig. 1.4.1 transport tree with center cities a2, a4 and a5

1.5 Elastic grid

1.5.1 String equation with tip mass

Let a string of length ` be homogeneous with density m and tension T . Suppose that the
string is fixed at one end and attached a tip mass M at another end. Let w(x, t) denote the
displacement of the string at position x and at time t depart from its equilibrium position
and v(t) denote the displacement of the mass. Obviously, it holds that w(`, t) = v(t) due to
the mass M has same displacement as that of the endpoint of the string. The Newton’s law
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says Mv′′(t) = −Twx(`, t). Thus the motion of the hybrid system is governed by the partial
differential equation and ordinary differential equation

mwtt(x, t) = Twxx(x, t), x ∈ (0, `)

w(0, t) = 0, w(`, t) = v(t)

Mv′′(t) = −Twx(1, t)

w(x, 0) = w0(x), wt(x, 0) = w1(x),

v′(0) = v0,

(1.5.1)

1.5.2 Elastic gird

Let us consider an elastic grid whose structure is shown as Fig.1.5.1, where • denote the elastic
vibrator with mass M , different vibrator may have different mass, and the � denote the elastic
support.
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Fig.1.5.1. An elastic grid

Let V = {a1, a2, · · · , a16} denote the set of vertices. At each vertex aj ∈ V , the vibrator
has mass Mj = M(aj). The vibrators Mi and Mj are connected by a nonuniform string ek.
Suppose that wk(x, t) denote the displacement of the string ek depart from its equilibrium
position, which satisfies the wave equation, i.e.,

mk(s)wk,tt(s, t) = (Tk(s)wk,s(s, t))s − qk(s)wk(s, t), s ∈ (0, `) (1.5.2)

wheremj(s) is the mass density and Tj(s) is the tension, they are positive continuous differential
functions, and qj(s) are nonnegative functions (or called potentials).

For node aj ∈ V , let vj(t) = v(aj , t) denote the displacement of elastic vibrator Mj , then
the strings jointed with Mj have property

v(aj , t) = wk(`, t) = wi(0, t), k ∈ J+(aj), i ∈ J−(aj) (1.5.3)

where J+(aj) denotes the index set of the strings with x = ` end jointed Mj and J−(aj) denotes
the index set of the strings with x = 0 end jointed Mj .

At the interior node aj , the dynamic behavior of the vibrator is governed by the differential
equation

M(aj)vj,tt(t) +

 ∑
k∈J+(aj)

Tk(1)wk,s(`, t)−
∑

i∈J−(aj)

Ti(0)wi,s(0, t)

 = 0. (1.5.4)
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At the exterior node aj , the network has an elastic support, the motion of vibrator is described
by

M(aj)vj,tt(t) +

 ∑
k∈J+(aj)

Tk(1)wj,s(`, t)−
∑

i∈J−(aj)

Ti(0)wi,s(0, t)

+ k(aj)vj(t) = 0 (1.5.5)

where k(aj) are the Hooke’s law constants. The energy function of the system is defined by

E(t) =
1
2

n∑
j=1

∫
ej

[Tj(s)|wj,s(s, t)|2 + qj(s)|wj(s, t)|2]ds+
1
2

n∑
j=1

∫
ej

mj(s)|wj,t(s, t)|2ds

+
1
2

∑
a∈V

M(a)|vt(a, t)|2 +
1
2

∑
a∈∂G

k(a)|v(a, t)|2.

This is a conservation system.

1.6 Modeling elastic system

In this section we model an elastic structure, whose motion retains in a plane.

1.6.1 Elastic network

R is an elastic structure made of n members, i.e., R =
n⋃

k=1

Rk, where Rk(x, t) denotes centric

axis of the k-th member in space position x at time t, which is a vector-valued function on
x ∈ [0, `k] where `k is its nature length. Notations Rk

x(x, t) and Rk
t (x, t) denote the partial

differential with respect to x and t, respectively. In particular, when x = 0 or `k, Rk
x(x, t)

denotes the single side partial differential.
Let V be a set composed of all nodes of R. For a ∈ V , the index set J(a) is defined as

J(a) = {i; a is an endpoint of Ri}.

If #J(a) = 1, the number of members in J(a), then a is called a simple node, otherwise a is
said to be a multiple node. Clearly,

∑
a∈V #J(a) = 2n. For each k ∈ J(a), εk(a) = −1 or 1

denote the node a to be the initial node (x = 0) or terminal node (x = `k) of Rk, respectively.
Let ρ(x) be the mass density distribution of the elastic structure. Suppose that the elastic

structure always retains its motion in a plane. Then the total mechanical energy (including the
kinetic energy, the elastic energy and the potential energy) of the elastic structure is

L(R) =
1
2

n∑
i=1

∫ `i

0

[
ρi|Ri

t|2 + hi(|Ri
x| − 1)2 + EIiκ

2
i

]
dx (1.6.1)

where hi are the Hooke’s law constants, EIi are physical constants and κi is the curvature of
the i-th member:

κi =
(|Ri

x|2|Ri
xx|2 − (Ri

x ·Ri
xx)2)

1
2

|Ri
x|3

. (1.6.2)

Let R have an equilibrium position which coincides with a planar graph G = (V,E) whose
vertices V = {a1, a2, · · · , aN} and edges E = {e1, e2, · · · en}. For each segment ei, it also is used
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to represent the unit vector whose tail corresponds to x = 0. In such an equilibrium in which
each element is straight (a line) and hence curvature is 0, the i-th member is of the form

Ri
0 + xei, x ∈ (0, `i)

where Ri
0 is a node position associated with some aj .

We consider a small vibration of the elastic structure near its equilibrium position. Denote
by Ri(x, t) the new position of the i-th member which always retains in the same plane with
ei, then it has the form

Ri(x, t) = Ri
0 + xei + ri(x, t)

where ri(x, t) is the deformation of the i-th member. Thus we have

Ri
x = ei + ri

x, Ri
xx = ri

xx

and

hi(|Ri
x| − 1)2 = hi(|Ri

x|2 − 2|Ri
x|+ 1) = hi(Ri

x ·Ri
x + 2

√
Ri

x ·Ri
x + 1)

= hi

(
1 + 2ri

x · ei + ri
x · ri

x + 1− 2
√

1 + 2ri
x · ei + ri

x · ri
x

)
.

Applying the asymptotic expansion

(1 + x)
1
2 = 1 +

x

2
− 1

8
x2 + o(x2)

we get

2
√

1 + 2ri
x · ei + ri

x · ri
x = 2

[
1 +

1
2
(
2ri

x · ei + ri
x · ri

x

)
− 1

8
(
2ri

x · ei + ri
x · ri

x

)2
+ o(|ri

x|2)
]

= 2 + 2ri
x · ei + ri

x · ri
x − (ri

x · ei)2 + o(|ri
x|2).

So it holds that

hi(|Ri
x| − 1)2 = hi

(
1 + 2ri

x · ei + ri
x · ri

x + 1− 2
√

1 + 2ri
x · ei + ri

x · ri
x

)
= hi(ri

x · ei)2 + o(|ri
x|2).

Since

κ2
i =

|Ri
x|2|Ri

xx|2 − (Ri
x ·Ri

xx)2

|Ri
x|6

=
(1 + 2ri

x · ei + ri
x · ri

x)(ri
xx · ri

xx)− (ri
xx · ei + ri

x · ri
xx)2

|Ri
x|6

=
1

|Ri
x|6
[
[(ri

xx · ri
xx)− (ri

xx · ei)2] + 2[(ri
x · ei)(ri

xx · ri
xx)− (ri

xx · ei)(ri
x · ri

xx)]
]

+
(ri

x · ri
x)(ri

xx · ri
xx)− (ri

x · ri
xx)2

|Ri
x|6

and
1

|Ri
x|6

− 1 =
1− |Ri

x|6

|Ri
x|6

=
1

|Ri
x|6
[
1− (1 + 2ri

x · ei + ri
x · ri

x)3
]

= −2ri
x · ei + ri

x · ri
x

|Ri
x|6

[
1 + (1 + 2ri

x · ei + ri
x · ri

x) + (1 + 2ri
x · ei + ri

x · ri
x)2
]
,
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so we have

κ2
i =

[(ri
xx · ri

xx)−(ri
xx · ei)

2]+2[(ri
x · ei)(r

i
xx · ri

xx)−(ri
xx · ei)(r

i
x · ri

xx)]+[(ri
x · ri

x)(ri
xx · ri

xx) − (ri
x · ri

xx)2)]

|Ri
x|6

Substituting above into the energy function (1.6.1) and retaining only quadratic terms yield
an asymptotic formula

Lq({ri}) =
1
2

n∑
i=1

∫ `i

0

[ρi|ri
t|2 +Hir

i
x · ri

x +Kir
i
xx · ri

xx]dx (1.6.3)

where
Hi = hieie

T
i , Ki = EIi

[
I − eie

T
i

]
(1.6.4)

are symmetric matrices, eT
i denotes the transpose of the column vector ei. This is a linearization

form of nonlinear system R, which expresses the movement of the structure relative to its
equilibrium position.

Since ri(x, t) is the relative displacement of the i-th member, the energy function of the
relative movement of the system is

E(t) =
1
2

n∑
i=1

∫ `i

0

[ρir
i
t · ri

t +Hir
i
x · ri

x +Kir
i
xx · ri

xx]dx. (1.6.5)

We will deduce the dynamic equations of relative movement of the system by use method of
the energy function similar to [96]. With time development the energy change of the system is

dE(t)
dt

=
n∑

i=1

∫ `i

0

[ρir
i
tt · ri

t +Hir
i
tx · ri

x +Kir
i
txx · ri

xx]dx

=
n∑

i=1

∫ `i

0

[ρir
i
t · ri

tt −Hir
i
t · ri

xx +Kir
i
t · ri

xxxx]dx

+
n∑

i=1

{
Hir

i
t · ri

x

∣∣`i

0
+Kir

i
tx · ri

xx

∣∣`i

0
−Kir

i
t · ri

xxx

∣∣`i

0

}
=

n∑
i=1

∫ `i

0

ri
t · [ρir

i
tt −Hir

i
xx +Kir

i
xxxx]dx

+
n∑

i=1

ri
t · [Hir

i
x −Kir

i
xxx]

∣∣`i

0
+

n∑
i=1

Kir
i
tx · ri

xx

∣∣`i

0

=
n∑

i=1

∫ `i

0

ri
t · [ρir

i
tt −Hir

i
xx +Kir

i
xxxx]dx

+
∑
a∈V

∑
i∈J(a)

ri
t(a) · εi(a)[Hir

i
x(a)−Kir

i
xxx(a)] +

∑
a∈V

∑
i∈J(a)

ri
tx(a) · εi(a)[Kir

i
xx(a)].

Clearly, there is no external force acting on the system, the energy of the elastic system is
conservation, i.e., dE(t)

dt = 0. Therefore the motion of each member of the system is governed
by the partial differential equation:

ρir
i
tt = Hir

i
xx −Kir

i
xxxx, x ∈ (0, `i). (1.6.6)



12 CHAPTER 1. COMPLEX DYNAMIC SYSTEMS

When the geometric structure of the system continues at each multiple node a, the relative
displacements satisfy condition

ri(a, t) = rj(a, t), ∀i, j ∈ J(a) (1.6.7)

which means that the displacement of the structure at node a is continuous. Hence the associ-
ated dynamic condition is ∑

i∈J(a)

εi(a)[Hir
i
x −Kir

i
xxx](a, t) = 0 (1.6.8)

that means the forces balance of the system at a.
Assume that the structure satisfies the prefect geometric condition, i.e.,

ri
x(a, t) = rj

x(a, t), ∀i, j ∈ J(a), (1.6.9)

which means the each member has same rotation at node a during the whole process, then the
corresponding dynamic condition is given by∑

i∈J(a)

εi(a)Kir
i
xx(a, t) = 0, (1.6.10)

that shows the moment balance of the system at a.
Similarly, when the geometry structure of the system has a gap at node a, but it satisfies

condition: ∑
i∈J(a)

ri(a, t) = 0, (1.6.11)

this implies that the structure is not continuous at node a, then the associated dynamic condi-
tion is

εi(a)[Hir
i
x(a, t)−Kir

i
xxx(a, t)] = εj(a)[Hjr

j
x(a, t)−Kjr

j
xxx(a, t)], ∀i, j ∈ J(a) (1.6.12)

which means that the forces of the structure at node a remain continuity. In addition, the
geometric structure of the system satisfies condition∑

i∈J(a)

εi(a)ri
x(a, t) = 0, (or

∑
i∈J(a)

ri
x(a, t) = 0) (1.6.13)

then corresponding dynamic condition is given by

Kir
i
xx(a, t) = Kjr

j
xx(a, t), (or εi(a)Kir

i
xx(a, t) = εj(a)Kjr

j
xx(a, t)) ∀i, j ∈ J(a), (1.6.14)

that shows the moment continuity.

REMARK 1.6.1 The equality (1.6.11) can be explained as the flow balance condition. In fact,
if ri(x, t) represents a flow, at the node a we can write it into∑

i∈J(a)

ri(a, t) =
∑

i∈Jin(a)

ri(a, t) +
∑

i∈Jout(a)

ri(a, t) = 0

where J in(a) denotes the incoming flows and Jout(a) denote the outgoing flows. This is the
Kirchhoff’s law.
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If a is simple node of the system, then the following nodal types are possible:
1) controlled node, for instance, it satisfies ri(a, t) · ei = ui(t), ri(a, t) · e⊥i = 0,

ri
x(a, t) · e⊥i = wi(t)

(1.6.15)

2) fixed node, that means that the structure has neither displacement and nor rotation, i.e.,

ri(a, t) = 0, ri
x(a, t) · e⊥i = 0. (1.6.16)

3) free node, on which there is no geometric restriction, and hence the dynamic conditions
are

ri
x(a, t) · ei = ri

xx(a, t) · e⊥i = ri
xxx(a, t) · e⊥i = 0. (1.6.17)

Once the geometric structure of the system at nodes are chosen, the associated dynamic con-
dition are then determined uniquely.

REMARK 1.6.2 As before, we can propose various different joint conditions at a node a,
hence it forms different model at the junction.

1.6.2 Planar motion

Although we have supposed that the elastic structure moves in a fixed plane, we do not appoint
which plane the motion retains in. Let graph G be in a plane Π. If the motion of the elastic
structure remains in the plane Π, it is called undergoing a planar motion. In this case, the
vectors ei and e⊥i are in the same plane Π. Here we consider two types of the structure:
inextensible and extensible.

Inextensible structure

Assume that the structure is inextensible and the parameter x is the arc length of member ei.
Then the position function of the member ei associated arc x at time t is

Ri(x, t) = Ri
0 + xei + ui(x, t)ei + wi(x, t)e⊥i , ri(x, t) = ui(x, t)ei + wi(x, t)e⊥i .

In this case, the continuity condition of the structure R at the node a is

ri(a, t) = rj(a, t), ∀i, j ∈ J(a).

For instance, ri(`i, t) = rj(0, t), i.e.,

ui(`i, t)ei + wi(`i, t)e⊥i = uj(0, t)ej + wj(0, t)e⊥j .

Both sides of the above equality are the different representation of the same point in distinct
local coordinate. This relationship also shows that uj(0, t) (corresponding wj(0, t)) depends
upon both ui(`i, t) and wi(`i, t). In this case, the function values ui(`i, t) and uj(0, t) are not
equal. Similarly, so are functions wi and wj . Whatever r(x, t) always is continuous, so the
function (ui, wi) must appear as a coupled pair.
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Now we deduce the differential equations satisfied by ui and wi. Since ri(x, t) = ui(x, t)ei +
wi(x, t)e⊥i , so

Hir
i
xx = hieie

τ
i r

i
xx = hi(ri

xx, ei)ei = hiu
i
xx(x, t)ei

and
Kir

i
xxxx = EIi(I − eie

τ
i )ri

xxxx = EIir
i
xxxx − EIi(ri

xxxx, ei)ei = EIiw
i
xxxxe

⊥
i .

Therefore, the vector-valued equation

ρir
i
tt = Hir

i
xx −Kir

i
xxxx

is equivalent to the following scale equations ρiu
i
tt(x, t) = hiu

i
xx(x, t), x ∈ (0, `i)

ρiw
i
tt(x, t) = −EIiwi

xxxx(x, t), x ∈ (0, `i)
(1.6.18)

Define the mappings by

πj : [0, `j ] → ej , j = 1, 2, · · · , N

it is called the parametrization realization of edge ej . For a ∈ V , denote π−1
i (a) = 0, or `i if

i ∈ J(a). Set ei = (cosαi, sinαi), then e⊥i = (− sinαi, cosαi). Thus the geometric continuity
condition (1.6.7) and the dynamic conditions (1.6.8) are respectively

ui(π−1
i (a), t) cosαi − wi(π−1

i (a), t) sinαi = uj(π−1
j (a), t) cosαj − wj(π−1

j (a), t) sinαj ,

ui(π−1
i (a), t) sinαi + wi(π−1

i (a), t) cosαi = uj(π−1
j (a), t) sinαj + wj(π−1

j (a), t) cosαj ,

∀i, j ∈ J(a),
(1.6.19)

and 
∑

i∈J(a)

εi(a)[hiu
i
x(π−1

i (a), t) cosαi + EIiw
i
xxx(π−1

i (a), t) sinαi] = 0,∑
i∈J(a)

εi(a)[hiu
i
x(π−1

i (a), t) sinαi − EIiw
i
xxx(π−1

i (a), t) cosαi] = 0.
(1.6.20)

The geometric condition (1.6.9) and dynamic condition (1.6.10) become
ui

x(π−1
i (a), t) cosαi − wi

x(π−1
i (a), t) sinαi = uj

x(π−1
j (a), t) cosαj − wj

x(π−1
j (a), t) sinαj ,

ui
x(π−1

i (a), t) sinαi + wi
x(π−1

i (a), t) cosαi = uj
x(π−1

j (a), t) sinαj + wj
x(π−1

j (a), t) cosαj

∀i, j ∈ J(a).
(1.6.21)

and 
−

∑
i∈J(a)

εi(a)EIiwi
xx(π−1

i (a), t) sinαi = 0,∑
i∈J(a)

εi(a)EIiwi
xx(π−1

i (a), t) cosαi = 0.
(1.6.22)

Similarly, we also can write the equations (1.6.11)–(1.6.14) into the scale function form.
Although the equations obtained are separated about u and w, the geometric conditions and
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dynamic conditions are coupled at the multiple node. It is a common property of the multi-link
structure. Observe that the coordinate functions u and w may be discontinuous at multiple
node. But (u,w) together with the direction are continuous, i.e.,

ui(x, t) cosαi − wi(x, t) sinαi, ui(x, t) sinαi + wi(x, t) cosαi

are continuous functions. So we can not desire that u and w are independent.

Extensible structure

If the structure is extensible, then x is merely a parameter which is independent of arc length.
In this case, the position of component Ri associated x is

Ri(x, t) = Ri
0 + xei + wi(x, t)e⊥i , ri(x, t) = wi(x, t)e⊥i .

It only has a displacement along e⊥i direction. At the join-point a, one has

wi(π−1
i (a), t) = wj(π−1

j (a), t), i, j ∈ J(a).

So the structure function is continuous with respect to x. Note that the tangent vector at x is

Ri
x(x, t) = ei + wi

x(x, t)e⊥i .

Usually, at a multiple node a, they do not satisfy the conditions

wi
x(π−1

i (a), t) = wj
x(π−1

j (a), t), ∀i, j ∈ J(a).

More practice condition is that there exists a constant group {γi(a), i ∈ J(a)} which depend
upon both the geometric structure and connecting type of the structure such that∑

i∈J(a)

γi(a)Ri
x(a, t) = 0.

For example, there is a group numbers {γi(a)} such that
∑

i∈J(a) γi(a)ei = 0. Then the
corresponding dynamic condition will become

γ−1
i wi

xx(π−1
i (a), t) = γ−1

j wj
xx(π−1

j (a), t), ∀i, j ∈ J(a).

In this case, the equations of the system are given by

ρiw
i
tt(x, t) = −EIiwi

xxxx(x, t), x ∈ (0, `i)

wi(π−1
i (a), t) = wj(π−1

j (a), t), ∀i, j ∈ J(a),∑
i∈J(a) γi(a)wi

x(π−1
i (a), t) = 0,

γ−1
i (a)EIiwi

xx(π−1
i (a), t) = γ−1

j (a)EIjwj
xx(π−1

j (a), t), ∀i, j ∈ J(a)∑
i∈J(a)EIiw

i
xxx(π−1

i (a), t) = 0.

(1.6.23)

Also we can attach certain dynamic conditions and geometric conditions at the simple nodes.

REMARK 1.6.3 In the extensible structure one does not see much more structure condition.
One can understand the structure to be Γ = {(x,w)

∣∣ x ∈ G}.
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1.6.3 Vertical motion

Here one considers another type of planar motion of the structure. Let graph G be in a plane Π
and e⊥ be the unit normal vector of Π. If the motion of each element i in the elastic structure
remains in the plane determined by ei and e⊥, one calls it undergoing a vertical movement. For
the vertical movement one still divides the structure into two cases: inextensible and extensible.
For the inextensible case, its movement includes vertical motion and planar motion in essential,
it belongs to the general motion. So we only need to consider the extensible case.

Assume that G is a planar graph, and x is the parameter of the edges, every member ei of
the structure is extensible, the position of the element ei associated arc x at time t is

Ri(x, t) = Ri
0 + xei + wi(x, t)e⊥.

In this case, the continuity condition of the structure R at the node a is

Ri(a, t) = Rj(a, t), ∀i, j ∈ J(a).

It has only a displacement along e⊥ direction. So, at an interior node a, one has

wi(π−1
i (a), t) = wj(π−1

j (a), t), i, j ∈ J(a).

The corresponding dynamic condition is given by∑
i∈J(a)

EIiw
i
xxx(a, t) = 0.

Since the tangent vector at x is Ri
x(x, t) = ei + wi

x(x, t)e⊥, one can require the structure
condition at a multiple node a, for instance, ball joint condition, that is, no restriction on
rotation of structure. In this case, wi

x(π−1
i (a), t) may be arbitrary, the corresponding dynamic

condition is given by
EIiw

i
xx(π−1

i (a), t) = 0, ∀i ∈ J(a).

Moreover, we impose the fixed node conditions at the simple nodes. Therefore, the motion of
the elastic structure is governed by the partial differential equations

ρiw
i
tt(x, t) = −EIiwi

xxxx(x, t), x ∈ (0, `i)

wi(π−1
i (a), t) = wj(π−1

j (a), t), ∀i, j ∈ J(a),

EIiw
i
xx(π−1

i (a), t) = 0, ∀i ∈ J(a)∑
i∈J(a)

EIiw
i
xxx(π−1

i (a), t) = 0

wi(a, t) = wi
x(a, t) = 0, i ∈ J(a),#J(a) = 1.

(1.6.24)

with certain initial conditions of the structure.

REMARK 1.6.4 From discussion above we see that if the structure is extensible, the pla-
nar motion and the vertical motion have no difference in the equations involving their node
conditions. Such a form is closely related to the differential equation on graphs.
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Now we consider such a case that, at the node a, we divide the rotation angle into two parts:
positive and negative. We regard the positive part as incoming flow and negative the outgoing
flow. At vertex ai, the incoming satisfies addition rule, i.e.,

wx(ai, t) =
∑

j∈Jin(a)

a+
ijw

j
x(ai, t)

and the outgoing flow satisfies the transmission rule

wj
x(ai, t) = a−ijwx(ai, t), j ∈ Jout(ai),

∑
j∈Jout(a)

a−ij = 1.

In this case, the rotation angles at the vertex ai satisfy∑
j∈J(a)

aijw
j
x(ai, t) = 0.

the corresponding dynamic conditions are

wxx(ai, t) =
∑

j∈Jout(a)

(a−ij)
−1wj

xx(ai, t),

and
wj

xx(ai, t) = (a+
ij)
−1wxx(ai, t), j ∈ J in(ai).

In the above, wx(a, t) and wxx(a, t) are merely notions, they have no actual meaning.
Suppose that the system has fixed boundary conditions. Then the motion of the system is

governed by 

ρiw
i
tt(x, t) = −EIiwi

xxxx(x, t), x ∈ (0, `i)

wi(π−1
i (a), t) = wj(π−1

j (a), t), ∀i, j ∈ J(a),

wx(ai, t) =
∑

j∈Jin(a) a
+
ijw

j
x(ai, t)

wj
x(ai, t) = a−ijwx(ai, t), j ∈ Jout(ai),

wxx(ai, t) =
∑

j∈Jout(a) a
−
ijEIjw

j
xx(ai, t)

wj
xx(ai, t) = a+

ijwxx(a), j ∈ J in(a)∑
i∈J(a)

EIiw
i
xxx(π−1

i (a), t) = 0,

wi(a, t) = wi
x(a, t) = 0, i ∈ J(a),#J(a) = 1.

(1.6.25)

REMARK 1.6.5 The content of this section comes from research report of the first author,
which was completed during visiting the Hong Kong University in 2006. As further works,
Xu, Mastorakis and Yung in [122] [123] and [124] discussed the properties of the star-shaped
networks of Euler-Bernoulli beams.



Chapter 2

Graph and Function Defined on

Graphs

2.1 Graph theory

2.1.1 Basic notions in graph theory

A graph consists of a set V , a set E and a mapping Φ from E to V ×V , denote it by G = (V,E).
The elements of V and E are said to be the vertices and edges of the graph respectively, the
mapping Φ is called the incidence mapping associated with the graph. If V and E are both
finite sets , G is called a finite graph. Otherwise, it is said to be infinite.

Graphs G1 = (V1, E1) and G2 = (V2, E2) are said to be isomorphic to each other if there
exists a 1-1 correspondences between V1 and V2 and E1 and E2 which preserve incidences. If
G is isomorphic to a geometric graph G′ ⊂ Rn, then G′ is said to be a geometric realization of
G. A graph is said to be planar if and only if it has a geometric realization in R2.

If e ∈ E, Φ : e ∼ v&w, v and w are called the endpoints of e. If e ∼ v&v, i.e., v is a sole
endpoint of e, then e is said to be a loop. If e1 ∼ v&w and e2 ∼ v&w, then e1 and e2 are called
parallel edges. A graph G is said to be simple if it has neither loop and nor parallel edges. A
graph G is said to be connected if for every pair of distinct vertices there exits a sequence of
edges that join these vertices.

A graph G is said to be a directed graph if Φ(e) = (v, w) is a ordered pair, the edge e is
said to be a directed edge, and v is called the starting vertex (or tail) and w the final vertex (
or head). If v ∈ V , there is no edge connected it, then v is said to be an isolated vertex.

Let G be a geometric graph and each e ∈ E have finite arc length `e, denote |e| = `e. For
e ∼ v&w, one can parameterize it by its arc length, i.e., xe(s) ∈ e, s ∈ (0, `e) with xe(0) = v,
xe(`e) = w, or, xe(0) = w, xe(`e) = v. With this parameterization, the graph is called a metric
graph. If e is a directed edge, then the direction of edge coincides with the parameter increasing.
In this manner, the directed edge Φ(e) = (v, w) always denotes xe(s) ∈ e, xe(0) = v, xe(`e) = w

18
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Let G be a metric graph with the vertex set V = {a1, a2, · · · , am} and the edge set E =
{e1, e2, · · · , en}. One defines the outgoing incidence matrix (outgoing mapping) Φ− by

φ−ij =

 1, if xj(0) = ai

0, otherwise
(2.1.1)

and the incoming incidence matrix (incoming mapping) Φ+ by

φ+
ij =

 1, if xj(`j) = ai

0, otherwise.
(2.1.2)

Obviously, Φ+ = (φ+
ij) and Φ− = (φ−ij) are m×n matrices, they have exactly one nonzero entry

in each column if G has no isolated vertex. In addition, they have the following properties.

PROPOSITION 2.1.1 Let G be a directed graph, then the incoming and outgoing incidence
matrices have the following properties:

1)
n∑

k=1

φ−ik is the number of outgoing edges at ai;

2)
n∑

k=1

φ+
ik is the number of incoming edges at ai;

3) for each k 6= j,
n∑

i=1

φ±kiφ
±
ji = 0;

4) for each k,
n∑

i=1

φ+
kiφ

−
ki is the number of loop at vertex ak;

5) for any k 6= j,
n∑

i=1

φ−kiφ
+
ji is the number of parallel edges starting at ak and ending aj .

Let G be a directed graph without loop. Then the relation between the vertices and the
edges has a matrix representation

a1

a2

a3

...

am

e1 e2 e3 · · · en

φ11

φ21

φ31

...

φm1

φ12

φ22

φ32

...

φm2

φ13

φ23

φ33

...

φm3

· · ·

· · ·

· · ·
...

· · ·

φ1n

φ2n

φ3n

...

φmn


,

(2.1.3)

denote it by Φ = (φij)m×n = Φ+ − Φ−, and call it the incidence matrix of G.

REMARK 2.1.1 When G has a loop, it can not be represented by the incidence matrix.

Let G be a graph with vertex set V and edge set E. For each a ∈ V , denote by J(a) the
index set of edges having incident at vertex a. #J(a) denotes the number of elements in J(a),
it is called the degree of a. If a ∈ V is an isolated vertex, then #J(a) = 0.

Suppose that G has no isolated vertex, then for each a ∈ V , it holds that #J(a) > 0. One
can classify the vertex of V in following manner:
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1) a subset of V consists of all vertices satisfying #J(a) = 1, denote by ∂G. ∂G is called
the boundary (exterior vertices) of G;

2) a subset of V consists of all vertices satisfying #J(a) > 1, denoted by Vint. Vint is called
the node (interior vertex) set of G.

In the sequel, we consider only the graph G satisfying #J(a) > 0 for all a ∈ V , which means
G has no isolated vertex. Hence, it holds that V = Vint ∪ ∂G.

Let G be a directed graph with V = {a1, a2, · · · , am} and E = {e1, e2, · · · , en}. For each
vertex a ∈ V , denote by J+(a) the index set of the incoming edges, i.e., j ∈ J+(a) if there
exists an edge ej such that a is its final vertex (or head). Similarly, denote by J−(a) the index
set of the outgoing edges, j ∈ J−(a) if there exists an edge ej such that a is its starting point(or
tail). Then one has J(a) = J+(a) ∪ J−(a).

EXAMPLE 2.1.1 Let G be a planar directed graph, whose structure be shown in Fig. 2.1.1

Q
Q

Q
QQk
a4

�
�

�
��+a1
Q

Q
Q

QQs

�
�

�
�
��
a5
������:

a2
�

�
�

��3

a3

e1 e2

e3

e4

e6
e5

Fig. 2.1.1 A directed graph without boundary

The directed edges are defined by

Φ(e1) = (a1, a2) Φ(e2) = (a2, a3) Φ(e3) = (a3, a4)

Φ(e4) = (a4, a1) Φ(e5) = (a1, a5) Φ(e6) = (a5, a2)

The incidence matrix Φ is

a1

a2

a3

a4

a5

e1 e2 e3 e4 e5 e6

−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

1

0

0

−1

0

−1

0

0

0

1

0

1

0

0

−1


The index sets of the edges at vertices are

J(a1) = {4, 1, 5} J(a2) = {1, 6, 2} J(a3) = {2, 3}

J(a4) = {3, 4} J(a5) = {5, 6}

and the index sets of incoming and outgoing edges are

J+(a1) = {4} J−(a1) = {1, 5} J+(a2) = {1, 6} J−(a2) = {2}

J+(a3) = {2} J−(a3) = {3} J+(a4) = {3} J−(a4) = {4}

J+(a5) = {5} J−(a5) = {6}
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2.1.2 Algebraic structure of a graph

In preceding subsection one sees that for any one directed graph, it always is represented by
the incidence matrices Φ+ and Φ−. Conversely, from the incidence matrices Φ+ and Φ− one
can reconstruct a graph. In this sense, a graph is equivalent to the incidence matrices Φ+ and
Φ−, which are said to be the structure matrices of G. In this subsection, one will investigate
the structure of a graph.

Firstly we calculate the matrices Φ+(Φ+)T , Φ−(Φ−)T and Φ−(Φ+)T , they are m×m ma-
trices. Using Proposition 2.1.1, one has

Φ+(Φ+)T =


φ+

11 φ+
12 · · · φ+

1n

φ+
21 φ+

22 · · · φ+
2n

· · ·
. . . . . .

...

φ+
m1 φ+

m2 · · · φ+
mn




φ+

11 φ+
21 · · · φ+

m1

φ+
12 φ+

22 · · · φ+
m2

· · ·
. . . . . .

...

φ+
1n φ+

2n · · · φ+
mn



=



n∑
j=1

φ+
1jφ

+
1j

n∑
j=1

φ+
1jφ

+
2j · · ·

n∑
j=1

φ+
1jφ

+
mj

n∑
j=1

φ+
2jφ

+
1j

n∑
j=1

φ+
2jφ

+
2j · · ·

n∑
j=1

φ+
2jφ

+
mj

· · ·
. . . . . .

...
n∑

j=1

φ+
mjφ

+
1j

n∑
j=1

φ+
mjφ

+
2j · · ·

n∑
j=1

φ+
mjφ

+
mj



=


#J+(a1) 0 · · · 0

0 #J+(a2) · · · 0

· · ·
. . . . . .

...

0 0 · · · #J+(am)

 = D+,

similarly,

Φ−(Φ−)T =


#J−(a1) 0 · · · 0

0 #J−(a2) · · · 0

· · ·
. . . . . .

...

0 0 · · · #J−(am)

 = D−.

Therefore, one has

Φ+(Φ+)T + Φ−(Φ−)T =


#J(a1) 0 · · · 0

0 #J(a2) · · · 0

· · ·
. . . . . .

...

0 0 · · · #J(am)

 (2.1.4)

Denote Φ+(Φ+)T + Φ−(Φ−)T = D and call it the vertex degree matrix of G. Obviously, if G
has no isolated vertex, then D is an invertible matrix.
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For Φ−(Φ+)T , a direct calculation gives

Φ−(Φ+)T =


φ−11 φ−12 · · · φ−1n

φ−21 φ−22 · · · φ−2n

· · ·
. . . . . .

...

φ−m1 φ−m2 · · · φ−mn




φ+

11 φ+
21 · · · φ+

m1

φ+
12 φ+

22 · · · φ+
m2

· · ·
. . . . . .

...

φ+
1n φ+

2n · · · φ+
mn



=



n∑
j=1

φ−1jφ
+
1j

n∑
j=1

φ−1jφ
+
2j · · ·

n∑
j=1

φ−1jφ
+
mj

n∑
j=1

φ−2jφ
+
1j

n∑
j=1

φ−2jφ
+
2j · · ·

n∑
j=1

φ−2jφ
+
mj

· · ·
. . . . . .

...
n∑

j=1

φ−mjφ
+
1j

n∑
j=1

φ−mjφ
+
2j · · ·

n∑
j=1

φ−mjφ
+
mj


.

Similarly, one has

Φ+(Φ−)T =



n∑
j=1

φ+
1jφ

−
1j

n∑
j=1

φ+
1jφ

−
2j · · ·

n∑
j=1

φ+
1jφ

−
mj

n∑
j=1

φ+
2jφ

−
1j

n∑
j=1

φ+
2jφ

−
2j · · ·

n∑
j=1

φ+
2jφ

−
mj

· · ·
. . . . . .

...
n∑

j=1

φ+
mjφ

−
1j

n∑
j=1

φ+
mjφ

−
2j · · ·

n∑
j=1

φ+
mjφ

−
mj


= (Φ−(Φ+)T )T .

Let `(ak) be the subset of E that each element e ∈ `(ak) is a loop at ak. Define the loop
diagonal matrix Dl by

Dl =


#`(a1) 0 · · · 0

0 #`(a2) · · · 0

· · ·
. . . . . .

...

0 0 · · · #`(am)

 . (2.1.5)

Obviously, #`(ak) =
n∑

j=1

φ+
kjφ

−
kj for each k according to Proposition 2.1.1.

In order to analyze the structure of a graph, one defines the vertex adjacency matrix of G
by

a1

a2

...

...

am

a1 a2 · · · · · · am

0

a21

...

...

am1

a12

0
...
...

am2

· · ·

· · ·
. . .
...

· · ·

· · ·

· · ·
...

. . .

· · ·

a1m

a2m

...

...

0


(2.1.6)
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where aij is defined by

aij =

 1 there exists an edge connecting ai and aj

0, otherwise
(2.1.7)

Denote it by A = (aij), which is a symmetric matrix.
Since Φ+(Φ−)T + Φ−(Φ+)T is a symmetric matrix, one defines the matrix P by

P = Φ+(Φ−)T + Φ−(Φ+)T − 2Dl −A. (2.1.8)

P also is a symmetric matrix and is called the parallel edge pattern of G. Thus one has

Φ+(Φ−)T + Φ−(Φ+)T = 2Dl + P +A.

Therefore, for any graph G one has

(Φ+ − Φ−)(Φ+ − Φ−)T = D − (2D` + P +A)

and
(Φ+ + Φ−)(Φ+ + Φ−)T = D + 2D` + P +A.

If G is a simple graph (without loop and parallel edges), then

Φ+(Φ−)T + Φ−(Φ+)T = A

and
ΦΦT = (Φ+ − Φ−)(Φ+ − Φ−)T = D −A.

Summarizing above discussion, one has the following definition.

DEFINITION 2.1.1 Let G be a directed graph with the vertex set V = {a1, a2, · · · , am} and
the edge set E = {e1, e2, · · · , en}, Φ+ and Φ− be the structure matrices of G. The matrix given
by

D = Φ+(Φ+)T + Φ−(Φ−)T = diag(#J(a1),#J(a2), · · · ,#J(am)) (2.1.9)

is called the vertex degree matrix of G.
The matrix defined by

Dl = diag(#`(a1),#`(a2), · · · ,#`(am)) (2.1.10)

is called the loop degree matrix of G.
The matrix A = (aij) defined by

aii = 0, aij =

 1 there exists an edge connecting ai and aj

0, otherwise
(2.1.11)

is called the vertex adjacency matrix of G;
The matrix defined by

P = Φ+(Φ+)T + Φ−(Φ−)T − 2Dl −A (2.1.12)

is called the parallel edge pattern matrix of G.
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From Definition 2.1.1 one sees that the matrices D, Dl, A and P are independent of the
direction of G. So they also are character of the undirected graph. Note that the matrix A

gives the vertex adjacency pattern. Based on A, using P and Dl one can determine location of
loops and parallel edges.

EXAMPLE 2.1.2 Let G be a planar directed graph, whose structure be shown in Fig. 2.1.2

Q
Q

Q
QQk
• a4�

�
�

��+e5�
�

�
��3

a2

Q
Q

Q
QQs

-����a1

e7

a3
�

�
�

��3

�
�

�
��3
•a5"!
# 
e9	

e1x

e1 e2

e8

e3

e4

�����e6

Fig. 2.1.2 A complex directed graph without boundary

The structure matrices are

Φ− =



1 0 0 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 0 0

0 1 0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 0 0 0

0 0 1 0 0 0 0 0 0 1



Φ+ =



1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0

0 0 1 1 0 0 0 0 0 0

0 1 0 0 0 0 0 0 1 1


and hence

Φ+(Φ−)T + Φ−(Φ+)T =



2 1 0 0 0

1 0 1 2 0

0 1 2 0 2

0 2 0 0 1

0 0 2 1 2


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The vertex degree diagonal matrix and the loop diagonal matrix of G are

D =



3 0 0 0 0

0 4 0 0 0

0 0 5 0 0

0 0 0 3 0

0 0 0 0 5


, Dl =



1 0 0 0 0

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1


;

the parallel edge pattern and the vertex adjacency matrix of G

P =



0 0 0 0 0

0 0 0 1 0

0 0 0 0 1

0 1 0 0 0

0 0 1 0 0


, A =



0 1 0 0 0

1 0 1 1 0

0 1 0 0 1

0 1 0 0 1

0 0 1 1 0


.

Using these information one can redraw the picture of G. �

2.1.3 Spectral graph

Spectral graph theory is an important content of algebraic structure of graph G. One of main
tasks in graph theory is to deduce essential properties and structure of a graph from its graph
spectrum. In this subsection one only introduce several notions in spectral graph theory.

DEFINITION 2.1.2 Let G be a simple directed graph with the vertex set V = {a1, a2, · · · , am}
and the edge set E = {e1, e2, · · · , en}, Φ+ and Φ− be the structure matrices of G. Let D and A
be defined as before, and Φ = Φ+ − Φ− be the incidence matrix of G. The matrix defined by

Â = (
√
D)−1A(

√
D)−1 (2.1.13)

is said to be the normalized adjacency matrix of G;
The matrix defined by

L = D −A (2.1.14)

is said to be the Laplace matrix of G; The matrix

L̂ = (
√
D)−1L(

√
D)−1 (2.1.15)

is called the normalized Laplace matrix of G.
The matrix defined by

|L| = D +A (2.1.16)

is said to be the signless Laplace matrix of G; The matrix

|L̂| = (
√
D)−1|L|(

√
D)−1 (2.1.17)

is called the normalized signless Laplace matrix of G.
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From Definition 2.1.2 we can see that the following result is true.

PROPOSITION 2.1.2 Let G be a simple direct graph with the vertex set V = {a1, a2, · · · , am}
and the edge set E = {e1, e2, · · · , en}, and let Φ be the incidence matrix of G. Then one has

1) L = ΦΦT = (Φ+ − Φ−)(Φ+ − Φ−)T = D −A;
2) |L| = (Φ+ + Φ−)(Φ+ + Φ−)T ;
3) L̂ = I − Â and |L̂| = I + Â

hence L, |L|, L̂ and |L̂| are non-negative matrices.

The following proposition gives the spectrum of the matrices Â, L̂ and |L̂|, and the relations
among them.

PROPOSITION 2.1.3 Let G be a simple graph with the vertex set V = {a1, a2, · · · , am} and
the edge set E = {e1, e2, · · · , en}, Φ be the incidence matrix of G. Then the following statements
hold:

1) σ(Â) ⊂ [−1, 1], σ(Â) = {λ̂1, λ̂2, · · · , λ̂m}, and λm = 1 is an eigenvalue with eigenvector√
De where e = [1, 1, 1, · · · , 1]T ;
2) σ(L̂) ⊂ [0, 2], σ(L̂) = {µ̂1, µ̂2, · · · , µ̂m}, and µ1 = 0 is an eigenvalue with eigenvector√

De;
3) σ(|L̂|) ⊂ [0, 2], σ(|L̂|) = {ν̂1, ν̂2, · · · , ν̂m}, and νm = 2 is an eigenvalue with eigenvector√

De;
4) If anyone of spectra of A, Â, L, L̂, |L|, and |L̂| is known, so are all the spectra.

EXAMPLE 2.1.3 Let G be a planar simple graph, whose structure be shown in Fig. 2.1.3
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•
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a4a5

a2

Fig. 2.1.3. A graph with multi-circle

Clearly, the vertex degree matrix D and vertex adjacency matrix A are

D =



4 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 3 0

0 0 0 0 3


, A =



0 1 1 1 1

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0


.
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For graph G one has the following matrices and their spectra:

A =



0 1 1 1 1

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0


, Â =



0 1
2
√

3
1

2
√

3
1

2
√

3
1

2
√

3

1
2
√

3
0 1

3 0 1
3

1
2
√

3
1
3 0 1

3 0
1

2
√

3
0 1

3 0 1
3

1
2
√

3
1
3 0 1

3 0


σ(A) = {−2, 1−

√
5, 0, 0, 1 +

√
5} σ(Â) = {− 2

3 ,−
1
3 , 0, 0, 1}

L =



4 −1 −1 −1 −1

−1 3 −1 0 −1

−1 −1 3 −1 0

−1 0 −1 3 −1

−1 −1 0 −1 3


L̂ =



1 −1
2
√

3
−1
2
√

3
−1
2
√

3
−1
2
√

3

−1
2
√

3
1 −1

3 0 −1
3

−1
2
√

3
−1
3 1 −1

3 0
−1
2
√

3
0 −1

3 1 −1
3

−1
2
√

3
−1
3 0 −1

3 1


σ(L) = {0, 3, 3, 5, 5} σ(L̂) = {0, 1, 1, 4

3 ,
5
3}

|L| =



0 1 1 1 1

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0


, |L̂| =



0 1 1 1 1

1 0 1 0 1

1 1 0 1 0

1 0 1 0 1

1 1 0 1 0


σ(L) = {1, 9−

√
17

2 , 3, 3, 9+
√

17
2 } σ(L̂) = { 1

3 ,
2
3 , 1, 1, 2}

REMARK 2.1.2 The spectral graph theory has important applications in natural science, for
examples, in Astronomy, the astronomers used the stellar spectra to determine the make-up
of distant stars; in Chemistry, the eigenvalues were associated with the stability of molecules.
More information about the spectral graph theory and its applications we refer to [27],[52] and
[76] and the references therein.

2.1.4 Geometric structure of a graph

Let G be a directed graph with the vertex set V = {a1, a2, · · · , am} and the edge set E =
{e1, e2, · · · , en}, and Φ± be its structure matrices. Assume that G has no isolated vertex. Here
one concerns with the connection relation of edge-edge of a graph G. For each ej ∈ E, e+j
denotes its head of ej( final point), and e−j indicates its tail (starting point). One considers a



28 CHAPTER 2. GRAPH AND FUNCTION DEFINED ON GRAPHS

2n× 2n matrix Ψ, the edge-edge intersection matrix,

e+1

e+2
...

e+n

e−1

e−2
...

e−n



e+1 e+2 · · · e+n e−1 e−2 · · · e−n

ψ11 ψ12 · · · ψ1n ψ1,n+1 ψ1,n+2 · · · ψ1,2n

ψ21 ψ22 · · · ψ2n ψ2,n+1 ψ2,n+2 · · · ψ2,2n

... · · · · · ·
...

... · · · · · ·
...

ψn1 ψn2 · · · ψnn ψn,n+1 ψn,n+2 · · · ψn,2n

ψ(n+1),1 ψ(n+1),2 · · · ψ(n+1),n ψn+1,n+1 ψn+1,n+2 · · · ψn+1,2n

ψn+2,1 ψn+2,2 · · · ψn+2,n ψn+2,n+1 ψn+2,n+2 · · · ψn+2,2n

... · · · · · ·
...

... · · · · · ·
...

ψ2n,1 ψ2n,2 · · · ψ2n,n ψ2n,n+1 ψ2n,n+2 · · · ψ2n,2n


where the entries ψij are defined by

ψii = 1, ∀i = 1, 2, · · · , 2n,

and

ψrk =

 1, if one of e±i ∩ e
+
j 6= ∅ and e±i ∩ e

−
j 6= ∅holds

0 if one of e±i ∩ e
±
j = ∅holds,

The matrix Ψ presents the intersection relation of endpoints of edge-edge.

For a directed graph, one can see that if e+k and e+i have a common vertex, then
m∑

j=1

φ+
jkφ

+
ji =

1; if e+k and e+i have no common vertex, it holds that
m∑

j=1

φ+
jkφ

+
ji = 0, i.e.,

m∑
j=1

φ+
jkφ

+
ji =

 1 e+k ∩ e
+
i 6= ∅,

0 e+k ∩ e
+
i = ∅.

Similarly, one has the relations

m∑
j=1

φ−jkφ
−
ji =

 1 e−k ∩ e
−
i 6= ∅,

0 e−k ∩ e
−
i = ∅

and
m∑

j=1

φ+
jkφ

−
ji =

 1 e+k ∩ e
−
i 6= ∅,

0 e+k ∩ e
−
i = ∅.

In order to represent matrix Ψ using the structure matrices, one now calculates products of
the structure matrices of G

(Φ+)T Φ+ =



φ+
11 φ+

21 · · · · · · φ+
m1

φ+
12 φ+

22 · · · · · · φ+
m2

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ+
1n φ+

2n · · · · · · φ+
mn





φ+
11 φ+

12 · · · · · · φ+
1n

φ+
21 φ+

22 · · · · · · φ+
2n

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ+
m1 φ+

m2 · · · · · · φ+
mn


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=



m∑
j=1

φ+
j1φ

+
j1

m∑
j=1

φ+
j1φ

+
j2 · · · · · ·

m∑
j=1

φ+
j1φ

+
jn

m∑
j=1

φ+
j2φ

+
j1

m∑
j=1

φ+
j2φ

+
j2 · · · · · ·

m∑
j=1

φ+
j2φ

+
jn

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ+
jnφ

+
j1

m∑
j=1

φ+
jnφ

+
j2 · · · · · ·

m∑
j=1

φ+
jnφ

+
jn



=



1
m∑

j=1

φ+
j1φ

+
j2 · · · · · ·

m∑
j=1

φ+
j1φ

+
jn

m∑
j=1

φ+
j2φ

+
j1 1 · · · · · ·

m∑
j=1

φ+
j2φ

+
jn

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ+
jnφ

+
j1

m∑
j=1

φ+
jnφ

+
j2 · · · · · · 1


;

(Φ−)T Φ− =



φ−11 φ−21 · · · · · · φ−m1

φ−12 φ−22 · · · · · · φ−m2

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ−1n φ−2n · · · · · · φ−mn





φ−11 φ−12 · · · · · · φ−1n

φ−21 φ−22 · · · · · · φ−2n

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ−m1 φ−m2 · · · · · · φ−mn



=



m∑
j=1

φ−j1φ
−
j1

m∑
j=1

φ−j1φ
−
j2 · · · · · ·

m∑
j=1

φ−j1φ
−
jn

m∑
j=1

φ−j2φ
−
j1

m∑
j=1

φ−j2φ
−
j2 · · · · · ·

m∑
j=1

φ−j2φ
−
jn

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ−jnφ
−
j1

m∑
j=1

φ−jnφ
−
j2 · · · · · ·

m∑
j=1

φ−jnφ
−
jn



=



1
m∑

j=1

φ−j1φ
−
j2 · · · · · ·

m∑
j=1

φ−j1φ
−
jn

m∑
j=1

φ−j2φ
−
j1 1 · · · · · ·

m∑
j=1

φ−j2φ
−
jn

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ−jnφ
−
j1

m∑
j=1

φ−jnφ
−
j2 · · · · · · 1


;
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(Φ+)T Φ− =



φ+
11 φ+

21 · · · · · · φ+
m1

φ+
12 φ+

22 · · · · · · φ+
m2

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ+
1n φ+

2n · · · · · · φ+
mn





φ−11 φ−12 · · · · · · φ−1n

φ−21 φ−22 · · · · · · φ−2n

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ−m1 φ−m2 · · · · · · φ−mn



=



m∑
j=1

φ+
j1φ

−
j1

m∑
j=1

φ+
j1φ

−
j2 · · · · · ·

m∑
j=1

φ+
j1φ

−
jn

m∑
j=1

φ+
j2φ

−
j1

m∑
j=1

φ+
j2φ

−
j2 · · · · · ·

m∑
j=1

φ+
j2φ

−
jn

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ+
jnφ

−
j1

m∑
j=1

φ+
jnφ

−
j2 · · · · · ·

m∑
j=1

φ+
jnφ

−
jn


and

(Φ−)T Φ+ =



m∑
j=1

φ−j1φ
+
j1

m∑
j=1

φ−j1φ
+
j2 · · · · · ·

m∑
j=1

φ−j1φ
+
jn

m∑
j=1

φ−j2φ
+
j1

m∑
j=1

φ−j2φ
+
j2 · · · · · ·

m∑
j=1

φ−j2φ
+
jn

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ−jnφ
+
j1

m∑
j=1

φ−jnφ
+
j2 · · · · · ·

m∑
j=1

φ−jnφ
+
jn


= ((Φ+)T Φ−)T .

Therefore, one has

Ψ =

 (Φ+)T Φ+ (Φ+)T Φ−

(Φ−)T Φ+ (Φ−)T Φ−

 . (2.1.18)

The matrix Ψ has the following property.

PROPOSITION 2.1.4 Let G be a directed graph with the vertex set V and the edge set
E = {e1, e2, · · · , en}. Suppose that G has no isolated vertex. Let the matrix Ψ be given by
(2.1.18), then

1) The rank of matrix Ψ is the number of vertices of G, i.e., rank(Ψ) = #V ;

2)
2n∑
i=1

ψij is the number of edges at some vertex. In particular,
n∑

i=1

ψij is the number of

incoming edges at the vertex;
n∑

i=1

ψn+i,j is the number of outgoing edges at the vertex.

3) Let Ψj denote the jth column vector of Ψ, i.e., Ψj = (ψ1j , ψ2j , · · · , ψ2n,j)T . Then for
any k, j ∈ {1, 2, · · · , 2n}, the inner product (Ψk,Ψj)R2n satisfies

(Ψk,Ψj)R2n =

 ψkj

2n∑
i=1

ψik, Ψk andΨj are linearly dependent

0, Ψk andΨj are linearly independent
= ψkj

2n∑
i=1

ψik (2.1.19)
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In the case of linearly dependence, it holds that Ψk = Ψj.

The matrix Ψ implicates the relation of vertices of G. Form it one can not see explicitly the
adjacency relation of V .

EXAMPLE 2.1.4 Let G be the directed graph given by Example 2.1.1,

Q
Q

Q
QQk
a4

�
�

�
��+a1
Q

Q
Q

QQs

�
�

�
�
��
a5
������:

a2
�

�
�

��3

a3

e1 e2

e3

e4

e6
e5

Fig. 2.1.4. A directed graph without boundary

The intersection matrix Ψ is

e+1

e+2

e+3

e+4

e+5

e+6

e−1

e−2

e−3

e−4

e−5

e−6

e+1 e+2 e+3 e+4 e+5 e+6 e−1 e−2 e−3 e−4 e−5 e−6

1

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

1

0

0

0

0

1

0

1

0

0

0

0

0

0

0

1

0

0

1

0

0

0

1

0

1

0

0

0

0

1

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

1


REMARK 2.1.3 The edge-edge intersection matrix can describe more complex graph, for
example, a graph has loops and parallel edges.

THEOREM 2.1.1 Let G be a directed graph without insolated vertex, and Ψ be the intersec-
tion matrix of edge-edge of G. Then the following statements are true.

1) Ψ is a non-negative matrix;
2) the number of positive eigenvalue of Ψ (taking multiplicity into account) is equal to the

number of vertices of G, each positive eigenvalue is the degree of some vertex;
3) the eigenvectors of Ψ corresponding to positive eigenvalues are the column vector of Ψ,

they form an orthogonal group in R2n;
4) Using the linearly independent group of eigenvector of Ψ one can reconstruct the graph

G.
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Proof 1) For any ξ = (ξ1, ξ2) ∈ R2n,

(Ψξ, ξ)R2n = (Φ+)T Φ+ξ1 + (Φ+)T Φ−ξ2, ξ1)Rn + (Φ−)T Φ+ξ1 + (Φ−)T Φ−ξ2, ξ2)Rn

= (Φ+ξ1,Φ+ξ1)Rn + 2(Φ−ξ2,Φ+ξ1)Rn + (Φ−ξ2,Φ−ξ2)Rn ≥ 0.

2) and 3). Since Ψ is a non-negative matrix, its eigenvalues are nonnegative. Let Ψj denote
the jth column vector of Ψ, i.e., Ψj = (ψ1j , ψ2j , · · · , ψ2n,j)T . Then using (2.1.19) one gets that

ΨΨj = ((Ψ1,Ψj), (Ψ2,Ψj), · · · , (Ψ2n,Ψj))
T =

2n∑
i=1

ψij (ψ1j , ψ2j , · · · , ψ2n,j)
T =

2n∑
i=1

ψijΨj .

According to Proposition 2.1.4,
2n∑
i=1

ψij is the degree of some vertex of G. So, λ =
2n∑
i=1

ψij is an

eigenvalue of Ψ, and Ψj is an eigenvector.
4) Let Ψj1 ,Ψj2 , · · · ,Ψjm be the linearly independent row vectors. One decomposes Ψjk

=
(Ψ+

jk
,Ψ−jk

), where Ψ+
jk

and Ψ−jk
are n-dimensional vectors.

Define a new incidence matrix by

a′1

a′2
...
...

a′m



e+1 e+2 · · · e+n e−1 e−2 · · · e−n

ψj1,1 ψj1,2 · · · ψj1,n ψj1,n+1 ψj1,n+2 · · · ψj1,2n

ψj2,1 ψj2,2 · · · ψj2,n ψj2,n+1 ψj1,n+2 · · · ψj2,2n

... · · ·
. . .

... · · · · · ·
. . .

...
... · · ·

. . .
... · · · · · ·

. . .
...

ψjm,1 ψjm,2 · · · ψjm,n ψjm,n+1 ψjm,n+2 · · · ψjm,2n


.

Set

Φ̂+ =



ψj1,1 ψj1,2 · · · ψj1,n

ψj2,1 ψj2,2 · · · ψj2,n

... · · ·
. . .

...
... · · ·

. . .
...

ψjm,1 ψjm,2 · · · ψjm,n


m×n

Φ̂− =



ψj1,n+1 ψj1,n+2 · · · ψj1,2n

ψj2,n+1 ψj2,n+2 · · · ψj2,2n

... · · ·
. . .

...
... · · ·

. . .
...

ψjm,n+1 ψjm,n+2 · · · ψjm,2n


m×n

.

Then the connection relation of vertex of G is given by Φ̂+(Φ̂−)T :
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a′1

a′2

...

...

a′m



a′1 a′2 · · · · · · a′m
n∑

k=1

ψj1,kψj1,n+k

n∑
k=1

ψj1,kψj2,n+k · · · · · ·
n∑

k=1

ψj1,kψjm,n+k

n∑
k=1

ψj2,kψj1,n+k

n∑
k=1

ψj2,kψj2,n+k · · · · · ·
n∑

k=1

ψj2,kψjm,n+k

... · · ·
. . .

...
... · · ·

. . .
...

n∑
k=1

ψjm,kψj1,n+k

n∑
k=1

ψjm,kψj2,n+k · · · · · ·
n∑

k=1

ψjm,kψjm,n+k


m×m

this is not a symmetric matrix. The vertex adjacency matrix of G is

Φ̂+(Φ̂−)T + Φ̂−(Φ̂+)T .

This is symmetric matrix. �

2.2 A function defined on graph

Let G be a metric graph with the vertex set V = {a1, a2, · · · , am} and the edge set E =
{e1, e2, · · · , en} with edge length set {`1, `2, · · · , `n}.

Let u(x) be a function defined on E. For each ej ∈ E, we define the parameterization
realization of u(x) on ej by

uj(s) = u(x(s)), s ∈ (0, `j).

If limit lims→0 uj(s) (lims→`j
uj(s)) exists, denote it by uj(0)( uj(`j), respectively).

Define the function spaces L2(E) and Hk(E) by

L2(E) = {f(x)
∣∣ fj(s) ∈ L2(0, `j)}

Hk(E) = {f(x) ∈ L2(E)
∣∣ fj(s) ∈ Hk(0, `j)}.

Let u(x) be a function defined on E. We can define a function

w(x) = u(x`j), x ∈ (0, 1), x`j ∈ ej .

w(x) is said to be a normalized function on E. In the sequel, one always uses the normalized
function. The restriction of w on ej denotes wj . For a ∈ V ,

lim
s→1

wj(s) = wj(1), if j ∈ J+(a),

lim
s→0

wj(s) = wj(0), if j ∈ J−(a).

Define a mapping w from V to Cm(m = #V ) by

w : (a1, a2, · · · , am) → (w(a1), w(a2) · · · , w(am)) ∈ Cm.

DEFINITION 2.2.1 Let G be a metric graph with vertex set V and edge set E. u(x) is said
to be a function defined on G if u(x) has definition on E and V , i.e., u : G = V ∪ E → R.
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2.2.1 Continuity condition

Let u(x) be a function defined on E and w be a function defined on V . Set

U(x) = (u1(x), u2(x), · · · , un(x))T , W (v) = (w(a1), w(a2), · · · , w(am))T .

Consider the relation

u1(0)

u2(0)

u3(0)
...

un(0)


=



φ−11 φ−21 · · · φ−m1

φ−12 φ−22 · · · φ−m2

φ−13 φ−23 · · · φ−m3

...
. . . . . .

...

φ−1n φ−2n · · · φ−mn




w(a1)

w(a2)
...

w(am)


which means that the outgoing are equal to the value of w at vertices, i.e.,

uj(0) = w(ak), ∀j ∈ J−(ak), k = 1, 2, · · · ,m.

So one can rewrite it into U(0) = [Φ−]TW (v).
The relation 

u1(1)

u2(1)

u3(1)
...

un(1)


=



φ+
11 φ+

12 · · · φ+
1m

φ+
21 φ+

22 · · · φ+
2m

φ+
31 φ+

32 · · · φ+
3m

...
. . . . . .

...

φ+
n1 φ+

n2 · · · φ+
nm




w(a1)

w(a2)
...

w(am)


means that the incoming are equal to the value of w at vertices, i.e.,

uj(1) = w(ak), ∀j ∈ J+(ak), k = 1, 2, · · · ,m.

This also is a continuity condition. It can be written into U(1) = [Φ+]TW (v).

DEFINITION 2.2.2 A function u(x) defined on G is said to be the incoming continuous at
a ∈ V if u(x) is continuous on E and has limits at two endpoints of each edge in E, moreover
it satisfies

uj(1) = u(a), ∀ j ∈ J+(a).

It is said to be the outgoing continuous at a if u(x) is continuous on E and has limits at two
endpoints of each edge in E, and

ui(0) = u(a), ∀ i ∈ J−(a).

For a multiple node a, u(x) is said to be continuous at a if lim
x→a

u(x) = u(a) or equivalently

u(a) = uj(1) = ui(0), ∀i ∈ J−(a), j ∈ J+(a).
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A function u defined on G is said to be a continuous function if it is continuous on E, and
continuous at very interior vertex a ∈ Vint, and at each boundary vertex ai ∈ ∂G, it holds that

lim
s→1

u(s) = uj(1) = u(ai), if j ∈ J+(ai),

lim
s→0

u(s) = uk(0) = u(ai), if k ∈ J−(ai).

One denotes the set of all continuous function on G by C(G).

If u(x) is continuous on G, then one has

U(1) = (Φ+)TU(v), U(0) = (Φ−)TU(v). (2.2.1)

For simplicity, one can write the continuity of u as there is a vector d ∈ Cm such that

U(1) = (Φ+)T d, U(0) = (Φ−)T d. (2.2.2)

In order to obtain a direct relation between U(1) and U(0), from equality (2.2.1) one gets
that

Φ+U(1) = Φ+(Φ+)TU(v) = D+U(v), Φ−U(0) = Φ−(Φ−)TU(v) = D−U(v)

and hence
U(v) = D−1[Φ+U(1) + Φ−U(0)].

Substituting it into (2.2.1) leads to [(Φ+)TD−1Φ+ − I]U(1) + (Φ+)TD−1Φ−U(0) = 0,

(Φ−)TD−1Φ+U(1) + [(Φ−)TD−1Φ− − I]U(0) = 0.
(2.2.3)

For simplification, one denotes D = diag(d1, d2, · · · , dm). Now one calculates the product of
the structure matrices of G

(Φ+)TD−1Φ+ =



φ+
11 φ+

21 · · · · · · φ+
m1

φ+
12 φ+

22 · · · · · · φ+
m2

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ+
1n φ+

2n · · · · · · φ+
mn





d−1
1 φ+

11 d−1
1 φ+

12 · · · · · · d−1
1 φ+

1n

d−1
2 φ+

21 d−1
2 φ+

22 · · · · · · d−1
2 φ+

2n

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

d−1
m φ+

m1 d−1
m φ+

m2 · · · · · · d−1
m φ+

mn



=



m∑
j=1

φ+
j1d

−1
j

m∑
j=1

φ+
j1φ

+
j2d

−1
j · · · · · ·

m∑
j=1

φ+
j1φ

+
jnd

−1
j

m∑
j=1

φ+
j2φ

+
j1d

−1
j

m∑
j=1

φ+
j2φ

+
j2d

−1
j · · · · · ·

m∑
j=1

φ+
j2φ

+
jnd

−1
j

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ+
jnφ

+
j1d

−1
j

m∑
j=1

φ+
jnφ

+
j2d

−1
j · · · · · ·

m∑
j=1

φ+
jnφ

+
jnd

−1
j


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=



m∑
j=1

φ+
j1d

−1
j ψ11

m∑
j=1

φ+
j1d

−1
j ψ12 · · · · · ·

m∑
j=1

φ+
j1d

−1
j ψ1n

m∑
j=1

φ+
j2d

−1
j ψ21

m∑
j=1

φ+
j2d

−1
j ψ22 · · · · · ·

m∑
j=1

φ+
j2d

−1
j ψ2n

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ+
jnd

−1
j ψn1

m∑
j=1

φ+
jnd

−1
j ψn21 · · · · · ·

m∑
j=1

φ+
jnd

−1
j ψnn



=



m∑
j=1

φ+
j1d

−1
j 0 · · · · · · 0

0
m∑

j=1

φ+
j2d

−1
j · · · · · · 0

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

0 0 · · · · · ·
m∑

j=1

φ+
jnd

−1
j


(Φ+)T Φ+

(Φ−)TD−1Φ− =



φ−11 φ−21 · · · · · · φ−m1

φ−12 φ−22 · · · · · · φ−m2

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ−1n φ−2n · · · · · · φ−mn





φ−11d
−1
1 φ−12d

−1
1 · · · · · · φ−1nd

−1
1

φ−21d
−1
2 φ−22d

−1
2 · · · · · · φ−2nd

−1
2

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ−m1d
−1
m φ−m2d

−1
m · · · · · · φ−mnd

−1
m



=



m∑
j=1

φ−j1d
−1
j

m∑
j=1

φ−j1φ
−
j2d

−1
j · · · · · ·

m∑
j=1

φ−j1φ
−
jnd

−1
j

m∑
j=1

φ−j2φ
−
j1d

−1
j

m∑
j=1

φ−j2φ
−
j2d

−1
j · · · · · ·

m∑
j=1

φ−j2φ
−
jnd

−1
j

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ−jnφ
−
j1d

−1
j

m∑
j=1

φ−jnφ
−
j2d

−1
j · · · · · ·

m∑
j=1

φ−jnφ
−
jnd

−1
j



=



m∑
j=1

φ−j1d
−1
j ψn+1,n+1

m∑
j=1

φ−j1d
−1
j ψn+1,n+2 · · · · · ·

m∑
j=1

φ−j1d
−1
j ψn+1,2n

m∑
j=1

φ−j2d
−1
j ψn+2,n+1

m∑
j=1

φ−j2d
−1
j ψn+2,n+2 · · · · · ·

m∑
j=1

φ−j2d
−1
j ψn+2,2n

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ−jnd
−1
j ψ2n,n+1

m∑
j=1

φ−jnd
−1
j ψ2n,n+2 · · · · · ·

m∑
j=1

φ−jnd
−1
j ψ2n,2n


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=



m∑
j=1

φ−j1d
−1
j 0 · · · · · · 0

0
m∑

j=1

φ−j2d
−1
j · · · · · · 0

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

0 0 · · · · · ·
m∑

j=1

φ−jnd
−1
j


(Φ−)T Φ−

(Φ+)TD−1Φ− =



φ+
11 φ+

21 · · · · · · φ+
m1

φ+
12 φ+

22 · · · · · · φ+
m2

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ+
1n φ+

2n · · · · · · φ+
mn





φ−11d
−1
1 φ−12d

−1
1 · · · · · · φ−1nd

−1
1

φ−21d
−1
2 φ−22d

−1
2 · · · · · · φ−2nd

−1
2

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ−m1d
−1
m φ−m2d

−1
m · · · · · · φ−mnd

−1
m



=



m∑
j=1

φ+
j1φ

−
j1d

−1
j

m∑
j=1

φ+
j1φ

−
j2d

−1
j · · · · · ·

m∑
j=1

φ+
j1φ

−
jnd

−1
j

m∑
j=1

φ+
j2φ

−
j1d

−1
j

m∑
j=1

φ+
j2φ

−
j2d

−1
j · · · · · ·

m∑
j=1

φ+
j2φ

−
jnd

−1
j

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ+
jnφ

−
j1d

−1
j

m∑
j=1

φ+
jnφ

−
j2d

−1
j · · · · · ·

m∑
j=1

φ+
jnφ

−
jnd

−1
j



=



m∑
j=1

φ+
j1d

−1
j ψ1,n+1

m∑
j=1

φ+
j1d

−1
j ψ1,n+2 · · · · · ·

m∑
j=1

φ+
j1d

−1
j ψ1,2n

m∑
j=1

φ+
j2d

−1
j ψ2,n+1

m∑
j=1

φ+
j2d

−1
j ψ2,n+2 · · · · · ·

m∑
j=1

φ+
j2d

−1
j ψ2,2n

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ+
jnd

−1
j ψn,n+1

m∑
j=1

φ+
jnd

−1
j ψn,n+2 · · · · · ·

m∑
j=1

φ+
jnd

−1
j ψn,2n



=



m∑
j=1

φ+
j1d

−1
j 0 · · · · · · 0

0
m∑

j=1

φ+
j2d

−1
j · · · · · · 0

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

0 0 · · · · · ·
m∑

j=1

φ+
jnd

−1
j


(Φ+)T Φ−
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and

(Φ−)TD−1Φ+ =



φ−11 φ−21 · · · · · · φ−m1

φ−12 φ−22 · · · · · · φ−m2

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ−1n φ−2n · · · · · · φ−mn





φ+
11d

−1
1 φ+

12d
−1
1 · · · · · · φ+

1nd
−1
1

φ+
21d

−1
2 φ+

22d
−1
2 · · · · · · φ+

2nd
−1
2

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

φ+
m1d

−1
m φ+

m2d
−1
m · · · · · · φ+

mnd
−1
m



=



m∑
j=1

φ−j1d
−1
j ψn+1,1

m∑
j=1

φ−j1d
−1
j ψn+1,2 · · · · · ·

m∑
j=1

φ−j1d
−1
j ψn+1,n

m∑
j=1

φ−j2d
−1
j ψn+2,1

m∑
j=1

φ−j2d
−1
j ψn+2,2 · · · · · ·

m∑
j=1

φ−j2d
−1
j ψn+2,n

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

m∑
j=1

φ−jnd
−1
j ψ2n,1

m∑
j=1

φ−jnd
−1
j ψ2n,2 · · · · · ·

m∑
j=1

φ−jnd
−1
j ψ2n,n



=



m∑
j=1

φ−j1d
−1
j 0 · · · · · · 0

0
m∑

j=1

φ−j2d
−1
j · · · · · · 0

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

0 0 · · · · · ·
m∑

j=1

φ−jnd
−1
j


(Φ−)T Φ+

Note that the matrices

m∑
j=1

φ±j1d
−1
j 0 · · · · · · 0

0
m∑

j=1

φ±j2d
−1
j · · · · · · 0

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

0 0 · · · · · ·
m∑

j=1

φ±jnd
−1
j


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are invertible, in particular, their inverse are given by

m∑
j=1

φ±j1dj 0 · · · · · · 0

0
m∑

j=1

φ±j2dj · · · · · · 0

... · · ·
. . . · · ·

...
... · · · · · ·

. . .
...

0 0 · · · · · ·
m∑

j=1

φ±jndj


:= Φ±(D).

So formula (2.2.3) can rewritten into (Φ+)T Φ+ − Φ+(D) (Φ+)T Φ−

(Φ−)T Φ+ (Φ−)T Φ− − Φ−(D)

 U(1)

U(0)

 = 0. (2.2.4)

The coefficients matrix gives the connection relation between both ends of the vector-valued
function U(x) .

EXAMPLE 2.2.1 Herein we consider a continuous function y(x) defined on a graph G given
by Example 2.1.1,

Q
Q

Q
QQk
a4

�
�

�
��+a1
Q

Q
Q

QQs

�
�

�
�
��
a5
������:

a2
�

�
�

��3

a3

e1 e2

e3

e4

e6
e5

Fig. 2.2.1. A directed graph without boundary

The connective conditions are

y(a1) = y1(0) = y4(1) = y5(0); y(a2) = y2(0) = y6(1) = y1(1); y(a3) = y2(1) = y3(0);

y(a4) = y3(1) = y4(0); y(a5) = y5(1) = y6(0).

The incidence matrix Φ

a1

a2

a3

a4

a5

e1 e2 e3 e4 e5 e6

−1

1

0

0

0

0

−1

1

0

0

0

0

−1

1

0

1

0

0

−1

0

−1

0

0

0

1

0

1

0

0

−1





40 CHAPTER 2. GRAPH AND FUNCTION DEFINED ON GRAPHS

The connective conditions are represented into the matrices form

y1(1)

y2(1)

y3(1)

y4(1)

y5(1)

y6(1)


=



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0





y(a1)

y(a2)

y(a3)

y(a4)

y(a5)


and 

y1(0)

y2(0)

y3(0)

y4(0)

y5(0)

y6(0)


=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1





y(a1)

y(a2)

y(a3)

y(a4)

y(a5)


.

The matrix D is given by

D =



3 0 0 0 0

0 3 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 2


and hence

Φ+(D) =



3 0 0 0 0 0

0 2 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 2 0

0 0 0 0 0 3


, Φ−(D) =



3 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 2 0 0

0 0 0 0 3 0

0 0 0 0 0 2


.

Further one has

(Φ+)T Φ+ =



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0





0 0 0 1 0 0

1 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0


=



1 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 1


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(Φ−)T Φ− =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1





1 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1


=



1 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

1 0 0 0 1 0

0 0 0 0 0 1


and

(Φ−)T Φ+ =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1





0 0 0 1 0 0

1 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0


=



0 0 0 1 0 0

1 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


Thus the boundary relation is given by

−2 0 0 0 0 1 0 1 0 0 0 0

0 −1 0 0 0 0 0 0 1 0 0 0

0 0 −1 0 0 0 0 0 0 1 0 0

0 0 0 −2 0 0 1 0 0 0 1 0

0 0 0 0 −1 0 0 0 0 0 0 1

1 0 0 0 0 −2 0 1 0 0 0 0

0 0 0 1 0 0 −2 0 0 0 1 0

1 0 0 0 0 1 0 −2 0 0 0 0

0 1 0 0 0 0 0 0 −1 0 0 0

0 0 1 0 0 0 0 0 0 −1 0 0

0 0 0 1 0 0 1 0 0 0 −2 0

0 0 0 0 1 0 0 0 0 0 0 −1





y1(1)

y2(1)

y3(1)

y4(1)

y5(1)

y6(1)

y1(0)

y2(0)

y3(0)

y4(0)

y5(0)

y6(0)



= 0.

�
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2.2.2 Flow continuous condition

If u(x) is a function on E, then the relation

w(a1)

w(a2)

w(a3)
...

w(am)


=



φ−11 φ−12 · · · φ−1n

φ−21 φ−22 · · · φ−2n

φ−31 φ−32 · · · φ−3n

...
. . . . . .

...

φ−m1 φ−m2 · · · φ−mn





u1(0)

u2(0)

u3(0)
...

un(0)


denotes the outgoing at each aj , i.e.,

w(aj) =
n∑

k=1

φ−jkuk(0) =
∑

k∈J−(aj)

uk(0);

and the relation 

w(a1)

w(a2)

w(a3)
...

w(am)


=



φ+
11 φ+

12 · · · φ+
1n

φ+
21 φ+

22 · · · φ+
2n

φ+
31 φ+

32 · · · φ+
3n

...
. . . . . .

...

φ+
m1 φ+

m2 · · · φ+
mn





u1(1)

u2(1)

u3(1)
...

un(1)


denotes the incoming at aj , i.e.,

w(aj) =
n∑

k=1

φ+
jkuk(1) =

∑
k∈J+(aj)

uk(1).

DEFINITION 2.2.3 Let u(x) be a function defined on G and continuous on E(include end-
points of each edge). Set

U(x) = (u1(x), u2(x), · · · , un(x))T , U(v) = (u(a1), u(a2), · · · , u(am))T .

If u(x) satisfies condition

u(aj) =
n∑

k=1

φ+
jkuk(1) =

∑
k∈J+(aj)

uk(1), (2.2.5)

then u(x) is said to be the incoming flow continuous at vertex aj(Kirchhoff law); if for each
aj ∈ Vint, it holds that

u(aj) =
∑

k∈J+(aj)

uk(1), ∀aj ∈ Vint (2.2.6)

then u(x) is called the incoming flow continuous (Kirchhoff law) on Vint.
If u(x) at vertex aj satisfies condition

u(aj) =
n∑

k=1

φ−jkuk(0) =
∑

k∈J−(aj)

uk(0), (2.2.7)
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then u(x) is said to be the outgoing flow continuous at aj(Kirchhoff law); If u(x) at each
aj ∈ Vint satisfies

u(aj) =
∑

i∈J−(aj)

ui(0), ∀aj ∈ Vint (2.2.8)

then u(x) is called the outgoing flow continuous (Kirchhoff law) on Vint.
If u(x) satisfies the condition at vertex aj ∈ Vint

u(aj) =
∑

i∈J−(aj)

ui(0) =
∑

i∈J+(aj)

ui(1), (2.2.9)

then u(x) is said to be the flow continuous (Kirchhoff law) at aj.
If u(x) satisfies the condition

u(ai) = ui(0), i ∈ J−(ai), or (= ui(1), i ∈ J+(ai)), ∀ai ∈ ∂G (2.2.10)

then u(x) is said to be continuous on the boundary ∂G.

REMARK 2.2.1 The flow continuous condition has obviously physical meaning. If a is a
multiple node, u(a) =

∑
j∈J+(a) uj(1) means that the amount of flow at the node is equal to the

total incoming flow. If there is no sink and source at the node, then the total outgoing flow is
u(a) =

∑
j∈J−(a) uj(0).

Here one should mention that the flow continuous condition on Vint is in fact only defined
on its interior nodes, at the boundary ∂G it does not satisfy the flow continuous condition,
this is because it has only incoming or outgoing flow continuous condition. Therefore, the
incoming flow continuity on Vint is not equivalent to U(v) = Φ+U(1), also the outgoing flow
condition on Vint is not equivalent to U(v) = Φ−U(0) if G has nonempty boundary. If G has
no boundary, and for each aj ∈ V there are at least one incoming edge and one outgoing edge,
then U(v) = Φ+U(1) and U(v) = Φ−U(0) denote the incoming and outgoing flow continuity,
respectively.

The following example shows that if G has nonempty boundary, then flow continuous con-
dition is not satisfied at the boundary.

EXAMPLE 2.2.2 Let G be a planar graph that has structure shown as Fig. 2.2.2
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Fig. 2.2.2. A network with nonempty boundary
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The directed edges are defined by

e1 = (a1, a5) e2 = (a2, a6) e3 = (a3, a7) e4 = (a10, a4)

e5 = (a5, a6) e6 = (a6, a8) e7 = (a5, a7) e8 = (a7, a8)

e9 = (a8, a9) e10 = (a9, a10) e11 = (a8, a10)

Obviously, the boundary of G is ∂G = {a1, a2, a3, a4}.
Let y(x) be a function defined on G, whose restriction on ej be yj(x). Assume that yj(x) is

continuous on ej ,j = 1, 2, · · · , n. The conditions

y1(0) = y(a1), y2(0) = y(a2), y3(0) = y(a3), y4(1) = y(a4)

mean that y(x) is continuous on boundary of G; and the connective conditions are

y1(1) = y(a5) = y5(0) + y7(0), y6(0) = y(a6) = y5(1) + y2(1),

y7(1) + y3(1) = y(a7) = y8(0), y8(1) + y6(1) = y(a8) = y9(0) + y11(0),

y9(1) = y(a9) = y10(0), y11(1) + y10(1) = y(a10) = y4(0).

If one uses the representation of the incidence matrix, then one has



y(a1)

y(a2)

y(a3)

y(a4)

y(a5)

y(a6)

y(a7)

y(a8)

y(a9)

y(a10)



=



1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 0 0 0 0





y1(0)

y2(0)

y3(0)

y4(0)

y5(0)

y6(0)

y7(0)

y8(0)

y9(0)

y10(0)

y11(0)


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and 

y(a1)

y(a2)

y(a3)

y(a4)

y(a5)

y(a6)

y(a7)

y(a8)

y(a9)

y(a10)



=



∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 1 1





y1(1)

y2(1)

y3(1)

y4(1)

y5(1)

y6(1)

y7(1)

y8(1)

y9(1)

y10(1)

y11(1)


where the row including ∗ denotes that this can not represent. If one supposes that y(x) takes
zero values on ∂G, then ∗ = 0, the flow continuous conditions on G can write into

U(v) = Φ+U(1) = Φ−U(0).

If G has no boundary, this always is true. �

Now one assumes that a function u(x) defined on G is continuous on boundary ∂G, and flow
continuous at all interior nodes Vint. In order to give a matrix representation of relationship
between U(1), U(0) and U(v), one calculates the following matrices

(Φ+)T Φ+ =



m∑
j=1

φ+
j1φ

+
j1

m∑
j=1

φ+
j1φ

+
j2 · · ·

m∑
j=1

φ+
j1φ

+
jn

m∑
j=1

φ+
j2φ

+
j1

m∑
j=1

φ+
j2φ

+
j2 · · ·

m∑
j=1

φ+
j2φ

+
jn

· · ·
. . . . . .

...
m∑

j=1

φ+
jnφ

+
j1

m∑
j=1

φ+
jnφ

+
j2 · · ·

m∑
j=1

φ+
jnφ

+
jn


then

(Φ+)T Φ+U(1) =



n∑
k=1

m∑
j=1

φ+
j1φ

+
jkuk(1)

n∑
k=1

m∑
j=1

φ+
j2φ

+
jkuk(1)

...
n∑

k=1

m∑
j=1

φ+
jnφ

+
jkuk(1)


=



m∑
j=1

φ+
j1u(aj)

m∑
j=1

φ+
j2u(aj)

...
m∑

j=1

φ+
jnu(aj)


= (Φ+)TU(v).

where one has used the incoming flow continuous condition u(aj) =
n∑

k=1

φ+
jkuk(1) at all vertices

of G (if there is no incoming flow at aj , one always has
n∑

k=1

φ+
jkuk(1) = 0).



46 CHAPTER 2. GRAPH AND FUNCTION DEFINED ON GRAPHS

Similarly, one has

(Φ−)T Φ− =



m∑
j=1

φ−j1φ
−
j1

m∑
j=1

φ−j1φ
+
j2 · · ·

m∑
j=1

φ−j1φ
−
jn

m∑
j=1

φ−j2φ
−
j1

m∑
j=1

φ−j2φ
−
j2 · · ·

m∑
j=1

φ−j2φ
−
jn

· · ·
. . . . . .

...
m∑

j=1

φ−jnφ
−
j1

m∑
j=1

φ−jnφ
−
j2 · · ·

m∑
j=1

φ−jnφ
−
jn


and

(Φ−)T Φ−U(0) =



n∑
k=1

m∑
j=1

φ−j1φ
−
jkuk(0)

n∑
k=1

m∑
j=1

φ−j1φ
−
jkuk(0)

...
n∑

k=1

m∑
j=1

φ−j1φ
−
jkuk(0)


=



m∑
j=1

φ−j1u(aj)
m∑

j=1

φ−j1u(aj)

...
m∑

j=1

φ−j1u(aj)


= (Φ−)TU(v)

where one has used the outgoing flow continuous condition u(aj) =
n∑

k=1

φ−jkuk(0) at all vertices

of G (if there is no outgoing flow at aj , one always has
n∑

k=1

φ−jkuk(0) = 0). Therefore one has

the following result.

PROPOSITION 2.2.1 Let G be a directed graph, and u(x) be a function defined on G with
the normalized parametrization. If u(x) is continuous on boundary and flow continuous on Vint,
then one has

(Φ+)T Φ+U(1) = (Φ+)TU(v), (Φ−)T Φ−U(0) = (Φ−)TU(v). (2.2.11)

If G has no boundary , then Φ+(Φ+)T and Φ−(Φ−)T are full rank diagonal matrix, one can
deduces from (2.2.11) that Φ+U(1) = U(v) and Φ−U(0) = U(v).

In order to obtain a direct relation between U(1) and U(0), from (2.2.11) one gets that

Φ+(Φ+)T Φ+U(1) = D+U(v), Φ−(Φ−)T Φ−U(0) = D−U(v)

and hence
D−D+Φ+U(1)−D+D−Φ−U(0) = 0

and
U(v) = D−1[D+Φ+U(1) +D−Φ−U(0)].

Substituting them into (2.2.11) yield

(Φ+)T Φ+U(1) = (Φ+)TD−1[D+Φ+U(1) +D−Φ−U(0)],

(Φ−)T Φ−U(0) = (Φ−)TD−1[D+Φ+U(1) +D−Φ−U(0)].
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A calculation similar to previous shows that

(Φ+)TD−1D+Φ+ = Φ+(D−1D+)(Φ+)T Φ+,

(Φ+)TD−1D−Φ− = Φ+(D−1D−)(Φ+)T Φ−,

(Φ−)TD−1D+Φ+ = Φ−(D−1D+)(Φ−)T Φ+,

(Φ−)TD−1D−Φ− = Φ−(D−1D−)(Φ−)T Φ−.

Thus one gets that

[Φ+(D−1D+)− I](Φ+)T Φ+U(1) + Φ+(D−1D−)(Φ+)T Φ−U(0) = 0,

Φ−(D−1D+)(Φ−)T Φ+U(1) + (Φ−(D−1D−)− 1)(Φ−)T Φ−U(0) = 0.

Note that

Φ+(D−1D+) = Φ+(D−1)Φ+(D+), Φ+(D−1D−) = Φ+(D−1)Φ+(D−),

Φ−(D−1D+) = Φ−(D−1)Φ−(D+), Φ−(D−1D−) = Φ−(D−1)Φ−(D−).

Therefore, one has

Φ+(D−)(Φ+)T Φ+U(1) + Φ+(D−)(Φ+)T Φ−U(0) = 0,

Φ−(D+)(Φ−)T Φ+U(1) + Φ−(D+)(Φ−)T Φ−U(0) = 0,

i.e.,  Φ+(D−)(Φ+)T Φ+ Φ+(D−)(Φ+)T Φ−

Φ−(D+)(Φ−)T Φ+ Φ−(D+)(Φ−)T Φ−

 U(1)

U(0)

 = 0 (2.2.12)

2.2.3 Weighted flow condition

In the definition of flow continuous condition at node ai, one sees that the value of function at
the node is equal to the total incoming flow:

u(ai) =
∑

j∈J+(ai)

uj(1).

However, for the outgoing flow uk(0), one can assign a weighted wik on it, for example,

φ−ikuk(0) = w−iku(ai) = w−ik

∑
j∈J+(ai)

uj(1). (2.2.13)

Let w−ij satisfy the following conditions

0 ≤ w−ij ≤ 1, w−ij = φ−ijw
−
ij ,

n∑
j=1

w−ij = 1, (2.2.14)

then w−ij expresses a proportion of the flow leaving the vertex ai into the edge ej . In this case,
one still has ∑

k∈J−(ai)

uk(0) = u(ai) =
∑

j∈J+(ai)

uj(1).
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Denote this weighted matrix by Φ−w , it is said to be the weighted outgoing incidence matrix,
which is column stochastic.

Here one calculates the m×m matrix Φ−(Φ−w)T ,

Φ−(Φ−w)T =


φ−11 φ−12 · · · φ−1n

φ−21 φ−22 · · · φ−2n

· · ·
. . . . . .

...

φ−m1 φ−m2 · · · φ−mn




w11 w21 · · · wm1

w12 w22 · · · wm2

· · ·
. . . . . .

...

w1n w2n · · · wmn



=



n∑
j=1

φ−1jw1j

n∑
j=1

φ−1jw2j · · ·
n∑

j=1

φ−1jwmj

n∑
j=1

φ−2jw1j

n∑
j=1

φ−2jw2j · · ·
n∑

j=1

φ−2jwmj

· · ·
. . . . . .

...
n∑

j=1

φ−mjw1j

n∑
j=1

φ−mjw2j · · ·
n∑

j=1

φ−mjwmj



=


1 0 · · · 0

0 1 · · · 0

· · ·
. . . . . .

...

0 0 · · · 1

 = Im,

that is,
Φ−(Φ−w)T = Im. (2.2.15)

More generally one always assigns a matrix associated with the incidence matrix, W− =
(w−ij) and W+ = (w+

ij), respectively, by

w±ij = φ±ijw
±
ij . (2.2.16)

If A = (aij) is a m×n matrix, then the m×n matrix Φ+ •A has such a property, where A •B
denotes the Hadamard product of both matrices, which is defined by A •B = (aijbij).

2.2.4 Linearly nodal condition

Let u(x) be a function defined on a graph G. For each a ∈ Vint, when #J(a) ≥ 3, the connection
condition of u(x) at a may be very complicated. Here one still considers the linearly connective
condition. One can decompose theses edges jointed a into several groups: the edges in each
group have one continuity—-the flow continuous condition or continuous condition, these groups
have one of flow continuous and continuity condition.

EXAMPLE 2.2.3 we consider a function y(x) defined on a graph G that is given by
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Fig. 2.2.3. A star-shape graph

with connective conditions at a

y1(1) + y3(1) + y7(1) = y(a), y2(1) + y3(1) + y7(1) = y(a),

y5(0) + y6(0) = y(a), y4(0) = y(a)

From connective conditions one can see that: in incoming direction
1) the group {y1(1), y2(1)} is continuous connection;
2) the group {y3(1), y7(1)} is the incoming flow continuous connection;
3) the groups {y1(1), y2(1)} and {y3(1), y7(1)} form the incoming flow continuous at node

a.
And in the outgoing direction,
4) {y5(0), y6(0)} forms the outgoing flow continuous condition; and
5) {y5(0), y6(0)} and y4(0) form the continuity condition. �

In preceding treatment, one always seeks for the certain continuity at the node of graph G
in the sense of flow continuity or classical continuity. Now one finds out the other form of the
connection conditions.

For an interior node a ∈ Vint, when the function u(x) satisfies the flow continuous condition,
one has two equations

u(a) =
∑

j∈J+(a)

uj(1), u(a) =
∑

s∈J−(a)

us(0),

eliminating u(a) one gets that
∑

j∈J+(a) uj(1)−
∑

s∈J−(a) us(0) = 0. When the function satisfies
the continuous condition, one has #J(a) = #J+(a) + #J−(a) = p+ q equations, i.e.,

uj(1) = u(a), j ∈ J+(a), ui(0) = u(a), i ∈ J−(a).

Eliminating the mid-variable u(a) leads to p+q−1 many linearly independent equations. When
the node has the connection condition of other types, for instance, the condition described as
in Example2.2.3, the number of linear equations is an integer in [2, p+ q].

In general, let a ∈ Vint, p = #J+(a) and q = #J−(a) be the degree of incoming and
outgoing connection respectively, the value of uj(1); j ∈ J+(a), ui(0); i ∈ J−(a) forms a vector
in Rp+q. Assume that they have a linear relation, then the linearly nodal condition can write
into HU = eu(a) where H is a (p+ q)× (p+ q) matrix and U = (uj(a); j ∈ J(a)) is a vector,
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i.e., 

a11 a12 · · · a1p b11 · · · b1q

a21 a22 · · · a2p b21 · · · b2q

... · · · · · ·
...

... · · ·
...

ap1 ap2 · · · app bp1 · · · bpq

c11 c12 · · · c1p d11 · · · d1q

c21 c22 · · · c2p d21 · · · d2q

... · · · · · ·
...

... · · ·
...

cq1 cq2 · · · cqp dq1 · · · dqq





uj1(1)

uj2(1)
...

ujp(1)

ui1(0)

ui2(0)
...

uiq
(0)



=



1

1
...

1

1

1
...

1



u(a) (2.2.17)

The matrix

H =

 A B

C D


has rank rank(H) ∈ [2, p+ q].

REMARK 2.2.2 Let G be a directed metric graph, and u(x) denote a liquid distributed on
G. In this sense, the edges are viewed as branches of stream, uj(x) denotes the distribution of
the liquid on the edge ej, u(a) denotes the source or sink flow at interior node a. Assume that
the liquid is continuous on the boundary, i.e., uj(1) = u(a), a ∈ ∂G, j ∈ J+(a) which means
that the amount of incoming flow is equal to the sink flow at the boundary, or ui(1) = u(a), a ∈
∂G, i ∈ J−(a) which means that the amount of outgoing flow is equal to the one of the source.
At an interior node ak ∈ Vint, the linearly nodal condition means that the difference amount
between incoming and outgoing is equal to that of the source or sink flow, i.e.,∑

j∈J+(a)

ckjφ
+
kjuj(1)−

∑
i∈J−(a)

ckiφ
−
kiui(0) = u(ak).

Note that this equality can not give a more detail relation among the branches. So as shown in
(2.2.17) one needs some more relations to determine which branch is the mainly contributing
one to source or a sink.

Let G be a directed graph and Ψ be the intersection matrix of edge-edge of G. Define the
matrices by

Ψ+ =

 (Φ+)T Φ+

(Φ−)T Φ+


2n×n

, Ψ− =

 (Φ+)T Φ−

(Φ−)T Φ−


2n×n

. (2.2.18)

Let M2n×n(Ψ+) be the set of matrices that has pattern Ψ+, i.e.,

M2n×n(Ψ+) = {A ∈ M2n×n

∣∣ A •Ψ+ = A}. (2.2.19)

Similarly, M2n×n(Ψ−) is the set of matrices that has pattern Ψ−, i.e.,

M2n×n(Ψ−) = {B ∈ M2n×n

∣∣ B •Ψ− = B}. (2.2.20)
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Now let u(x) be a function defined on the graph G with normalized parameterization. One
coincides the function u with a vector-valued function by

U(x) = [u1(x), u2(x), · · ·un(x)]T , U(v) = [u(a1), u(a2), · · ·u(am)]T .

Then the linearly nodal connection condition can be written as

(C1, C2)

 U(1)

U(0)

 =

 (Φ+)T

(Φ−)T

U(v), C1 ∈ M2n×n(Ψ+), C2 ∈ M2n×n(Ψ−) (2.2.21)

where C1 and C2 are called the connection matrix of the function u. Sometimes C = (C1, C2)
is said to be the connection matrix.

PROPOSITION 2.2.2 Let G be a directed graph and Ψ be the intersection matrix of edge-
edge of G. Let C = (C1, C2) ∈ M2n×2n(Ψ), then C is a connection matrix of u(x) defined on
G if and only if the following conditions satisfied

1) If
∑2n

j=1 ψij = 1, then
∑2n

j=1 cij 6= 0, this means that at the boundary point ai ∈ ∂G, the
coefficient is not zero;

2) #∂G+ 2#Vint ≤ rank(C) ≤ 2n;

REMARK 2.2.3 The matrix Ψ presents a connection relation of edge-edge in G, it does not
denote relation between the edges and the vertices; The connection matrix C gives the relation
between the vertices and the edges jointed with vertex. So the matrix C gives more detail
structure of the graph G.

2.2.5 Nonlinear node condition

Let u(x) be a function defined on a graph G. In previous subsections one always seeks for
certain continuity at a node of graph G in the sense of classical function. However, it is just
such a continuity so that one losses some important property of the network—node dynamics.

Let

U(s) = (u1(s), u2(s), · · · , un(s))T , W (v) = (w(a1), w(a2), · · · , w(am))T .

The vector-valued function U(s) denotes the dynamic behavior of edges of the graph and W (v)
denotes the behavior of vertices of the graph.

The behavior of a vertex depends upon the incidence edges, usually, it depends nonlinearly
on the values of incoming and outgoing, one can write it into

F (uj(1); j ∈ J+(a), ui(0); i ∈ J−(a), w(a)) = 0. (2.2.22)

The flow continuous, weighted flow continuous and continuity are the special case of (2.2.22),
they are linearly dependence of the incoming and outgoing.

Now let w(a) be the value at vertex a. One considers the outgoing at node a,

ui(0) =
βi

2
(|w(a) + pi| − |w(a)− pi|), i ∈ J−(a), (2.2.23)
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this is a piecewise linear function, where βi is the transmission rate.
If the value w(a) depends on the incoming and outgoing, then one can write it into

g(w(a)) +
∑

j∈J+(a)

αjf(uj(1)) +
∑

i∈J−(a)

βiui(0) + z(a) = 0. (2.2.24)

the first term is the dynamic characteristic of the vertex, the second is the input template, the
third is the output template, the final term is a constant value dependent the vertex a.



Chapter 3

Ordinary Differential Equations

on Graphs

Let G be a directed metric graph with vertex set V = {a1, a2, · · · , am} and edge set E =
{e1, e2, · · · , en}, and let u(x) be a function defined on G, uj(s) be its normalized realization on
the edge ej ∈ E. If u(x) satisfies the differential equation on each ej ∈ E

L(uj) = pj,0uj,sk(s) + pj,1uj,sk−1(s) + · · ·+ pj,kuj(s) = fj(s), s ∈ (0, 1)

where usk denotes dku(s)
dsk , and pj,k are the functions defined on the edge ej with appropriate

continuity conditions, fj(s) are given functions, then u(x) is called satisfying the differential
equation on E.

The differential equations are always defined on E, one needs some connection and boundary
conditions to determine uniquely a solution. Due to restriction of graph G, the connection
conditions at the vertices become an important component to solve the differential equations.

3.1 First order linear differential equation

Let us consider first order differential equation

p(x)u′(x) + q(x)u(x) = f(x), x ∈ E

or equivalently, on each edge ej , j = 1, 2, · · · , n,

pj(s)u′j(s) + qj(s)uj(s) = fj(s), s ∈ (0, 1), pj(s) > 0. (3.1.1)

Obviously, the general solutions to (3.1.1) are given by

uj(s) = uj(0) exp
{
−
∫ s

0

qj(r)
pj(r)

dr

}
+
∫ s

0

fj(t)
pj(t)

exp
{
−
∫ s

t

qj(r)
pj(r)

dr

}
dt, j = 1, 2, · · · , n.

(3.1.2)

53
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It is well known that, for first order ordinary equation on finite interval [a, b], one can
determine uniquely a solution provided that one gives a value of the function at some point in
[a, b], for example, the boundary condition u(a) = ξ. Obviously, if one gives a value at each
edge ek, one also determines uniquely a solution of (3.1.1). The question is that combination
of these solutions needs not to be a solution on G, this is because there are some restrictions at
interior node of G. Therefore, one must study the solvability of first order differential equation
on a graph G.

Define the diagonal matrices P (s) and Q(s) by

P (s) = diag(p1(s), p2(s), · · · , pn(s)), Q(s) = diag(q1(s), q2(s), · · · , qn(s))

and define vector-valued functions

U(s) = (u1(s), u2(s), · · · , un(s))T , F (s) = (f1(s), f2(s), · · · , fn(s))T .

Then the first-order differential equations on E can be rewritten into a vector-valued differential
equation

P (s)U ′(s) +Q(s)U(s) = F (s)

and the formal solution is given by

U(s) = S(s, 0)U(0) +
∫ s

0

S(s, r)P−1(r)F (r)dr (3.1.3)

where S(s, r) = diag
(
exp

{
−
∫ s

r
qj(t)
pj(t)

dt
})

is the fundamental matrix of the first-order differen-
tial equation.

3.1.1 Continuous solution

Here one considers the case that u(x) is continuous function on G, i.e., there exists a vector
d ∈ Cm such that

U(1) = (Φ+)T d, U(0) = (Φ−)T d.

Substituting the formal solution into above yields

[(Φ+)T − S(1, 0)(Φ−)T ]d = F̂ (1) (3.1.4)

where F̂ (1) =
∫ 1

0
S(1, r)P−1(r)F (r)dr. Therefore, the differential equation has a continuous

solution on G if and only if the algebraic equation (3.1.4) is solvable, this requires F̂ (1) ∈
R([(Φ+)T − S(1, 0)(Φ−)T ]).

Note that [(Φ+)T−S(1, 0)(Φ−)T ] is a n×m matrix, F̂ (1) ∈ Cn. One discusses the solvability
of (3.1.4) according to relation between n and m.

1) If m < n, one has that rank[(Φ+)T − S(1, 0)(Φ−)T ] ≤ m, then (3.1.4) is not solvable for
any F̂ (1) ∈ Cn;

2) If m ≥ n, i.e., #V ≥ #E, then (3.1.4) is solvable for any F̂ (1) ∈ Cn if and only if
rank([(Φ+)T − S(1, 0)(Φ−)T ]) = n.
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Let (3.1.4) be solvable, and d0 be its a particular solution. Then the general solutions are
of the form

d = d0 +
k∑

j=1

cjdj , dj ∈ N [(Φ+)T − S(1, 0)(Φ−)T ] (3.1.5)

where k = dimN [(Φ+)T − S(1, 0)(Φ−)T ] and {dj}k
j=1 is an independent group of the subspace

N [(Φ+)T − S(1, 0)(Φ−)T ]. And hence the general solution of (3.1.3) is given by

U(s) = S(s, 0)(Φ−)T d0 +
k∑

j=1

cjS(s, 0)(Φ−)T dj +
∫ s

0

S(s, r)P−1(r)F (r)dr.

In this case, one needs k many conditions to determine uniquely a solution of (3.1.1). Therefore,
one has the following result.

THEOREM 3.1.1 Let G be a directed metric graph. The differential equations

P (s)U ′(s) +Q(s)U(s) = F (s), s ∈ (0, 1) (3.1.6)

has the continuous solution on G for any F ∈ L2(G) if and only if

rank([(Φ+)T − S(1, 0)(Φ−)T ]) = n. (3.1.7)

When (3.1.7) holds, the general solution of the homogeneous equations are given by

U(s) =
k∑

j=1

cjS(s, 0)(Φ−)T dj , dj ∈ N ([(Φ+)T − S(1, 0)(Φ−)T ]) (3.1.8)

where cj ∈ C and k = dimN ([(Φ+)T − S(1, 0)(Φ−)T ]).

Observing that the solvability of differential equations defined on E is independent of direc-
tions of the edges, herein the directions are only used to parameterize the function u(x). So G
can be anyone graph.

One now assumes that G is a connected graph. According to Theorem 3.1.1, the necessary
condition for the differential equations having a continuous solution for any F ∈ L2(G) is
m ≥ n, i.e., #V ≥ #E. In this case, G is a tree or a cycle since G is connected.

THEOREM 3.1.2 If G is a tree, given a value of u at the boundary point a, the differential
equation

p(x)u′(x) + q(x)u(x) = f(x), f ∈ L2(G), u(a) = ξ, a ∈ ∂G

has uniquely a continuous solution on G.

Proof Suppose that G is a tree, a is the root of G, then one has m = n + 1 and (Φ+)T −
S(1, 0)(Φ−)T is a n ×m matrix and rank((Φ+)T − S(1, 0)(Φ−)T ) = n. Thus there exists an
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n× n invertible matrix K such that

K[(Φ+)T − S(1, 0)(Φ−)T ] =



1 0 0 0 · · · 0 k1

0 1 0 0 · · · 0 k2

0 0 1 0 · · · 0 k3

...
...

...
. . . · · ·

...
...

...
...

... · · ·
. . .

...
...

0 0 0 0 0 1 kn


Thus from the equality

[(Φ+)T − S(1, 0)(Φ−)T ]d = F̂ (1)

one gets that 

1 0 0 0 · · · 0 k1

0 1 0 0 · · · 0 k2

0 0 1 0 · · · 0 k3

...
...

...
. . . · · ·

...
...

...
...

... · · ·
. . .

...
...

0 0 0 0 0 1 kn





d1

d2

d3

...

...

dm


=



F̃1

F̃2

F̃3

...

...

F̃n


i.e., 

d1 + k1dm = F̃1

d2 + k2dm = F̃2

d3 + k3dm = F̃3

· · · · · ·

dn + kndm = F̃n

Obviously, if dm = ξ, then dj , j = 1, 2, · · · , n are determined via dm and F̃j . �

Now one supposes that G is a cycle, then (Φ+)T − S(1, 0)(Φ−)T is a n × n matrix. In
this case one needs some restriction conditions on functions pj(s) and qj(s) so that the matrix
satisfies rank((Φ+)T − S(1, 0)(Φ−)T ) = n. When it holds, (Φ+)T − S(1, 0)(Φ−)T is invertible
matrix, hence the algebraic equations

[(Φ+)T − S(1, 0)(Φ−)T ]d = F̂ (1)

has unique a solution d ∈ Cn

d = [(Φ+)T − S(1, 0)(Φ−)T ]−1F̂ (1).

This means that one need not any initial condition for solving equation (3.1.1). Thus the
solution is given by

U(s) = S(s, 0)(Φ−)T [(Φ+)T − S(1, 0)(Φ−)T ]−1F̂ (1) +
∫ s

0

S(s, r)P−1(r)F (r)dr.
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In order to show the solvability condition of differential equation on a cycle, one considers
the following example.

EXAMPLE 3.1.1 For the sake of simplicity, one considers a cycle with four edges, see Fig.
3.1.1

Q
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Q
QQk
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�
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�
��+a1
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a2
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��3
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y4

y1 y2

y3

Fig. 3.1.1. A continuous network on a cycle

the differential equations are given by

y′j(s)− αjy(s)j = fj(s), j = 1, 2, 3, 4.

A direct calculation shows

(Φ+)T − S(1, 0)(Φ−)T =


−eα1 1 0 0

0 −eα2 1 0

0 0 −eα3 1

1 0 0 −eα4


and hence

det


−eα1 1 0 0

0 −eα2 1 0

0 0 −eα3 1

1 0 0 −eα4

 = e

4P
j=1

αj

− 1.

Therefore, the solvability condition is
4∑

j=1

αj 6= 0. �

REMARK 3.1.1 For first-order differential equations on a graph G, if one wants to solve
uniquely these equations, one needs n many conditions. If the solution is continuous on G, then
number of continuity condition of linearly independent in the interior nodes is

m∑
k=1

[#J+(ak) + #J−(ak)− 1] =
m∑

k=1

#J(ak)−m.

Note that
m∑

j=1

#J(aj) = 2n. When m < n, one has
m∑

k=1

#J(ak)−m > n, this means that there

exist so many restrictions on the equations. Therefore, the equations may have no solution. If
m ≥ n, one has

m∑
k=1

#J(ak)−m ≤ n.

So one needs m− n many initial (or boundary) conditions to determine uniquely a solution.
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3.1.2 Flow continuous solution

Here one considers the function satisfying flow continuous condition at all interior nodes and
continuity conditions on boundary of G. In this case, the connection relation are given by

(Ψ+)T Ψ+U(1) = (Ψ+)TU(v), (Ψ−)T Ψ−U(0) = (Ψ−)TU(v)

or equivalently, ∑
j∈J+(ak)

uj(1)−
∑

i∈J−(ak)

ui(0) = 0, ∀ak ∈ Vint.

Since, for each j ∈ {1, 2 · · · , n},

uj(1) = exp{
∫ 1

0

qj(s)
pj(s)

ds}uj(0) +
∫ 1

0

fj(s)
pj(s)

exp{
∫ s

0

qj(r)
pj(r)

dr}ds = sj(1, 0)uj(0) + f̂j ,

substituting into the connection conditions lead to∑
j∈J+(ak)

sj(1, 0)uj(0)−
∑

i∈J−(ak)

ui(0) =
∑

j∈J+(ak)

f̂j , ak ∈ Vint

or
n∑

j=1

[φ+
kjsj(1, 0)− φ−kj ]uj(0) =

n∑
j=1

φ+
kj f̂j , ak ∈ Vint.

It has #Vint = h many linearly independent conditions. Without loss of generality one can
assume that the first h vertices are the interior nodes, then one has

n∑
j=1

[φ+
kjsj(1, 0)− φ−kj ]uj(0) =

n∑
j=1

φ+
kj f̂j , k = 1, 2, · · · , h. (3.1.9)

Let Û(0) = (û1(0), û2(0), · · · , ûn(0)) be a particular solution to (3.1.9), and Ui0 = (vi1, vi2, · · · , vin), i =
1, 2, · · · , n− h be the linearly independent solutions to the homogeneous equations

n∑
j=1

[φ+
kjsj(1, 0)− φ−kj ]vj = 0, k = 1, 2, · · · , h,

then the general flow continuous solution to the equation is

U(s) = S(s, 0)Û(0) +
n−h∑
i=1

ciS(s, 0)Ui0 +
∫ s

0

S(s, t)P−1(t)F (t)dt.

Therefore, one needs (n − h) many initial conditions if one wants to determine uniquely a
solution of flow continuity.

EXAMPLE 3.1.2 Consider a tree with seven edges as shown in Fig. 3.1.2
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Fig. 3.1.2. A tree-shaped flow network

the differential equation on each edge ej is

y′j(s)− αjyj(s) = fj(s), j ∈ {1, 2, · · · , 7}

By directly solving the equations, one gets the general solution of the form

y(x) =



y1(s) = y1(0)eα1s +
∫ s

0
eα1(s−t)f1(s)ds, s ∈ (0, 1)

y2(s) = αy1(1)eα2s +
∫ s

0
eα2(s−t)f2(s)ds, s ∈ (0, 1)

y3(s) = (1− α)y1(1)eα3s +
∫ s

0
eα3(s−t)f3(s)ds, s ∈ (0, 1)

y4(s) = βy2(1)eα4s +
∫ s

0
eα4(s−t)f4(s)ds, s ∈ (0, 1)

y5(s) = (1− β)y2(1)eα5s +
∫ s

0
eα5(s−t)f5(s)ds, s ∈ (0, 1)

y6(s) = γy3(1)eα6s +
∫ s

0
eα6(s−t)f6(s)ds, s ∈ (0, 1)

y7(s) = (1− γ)y3(1)eα7s +
∫ s

0
eα7(s−t)f7(s)ds, s ∈ (0, 1)

where y1(0) is an inflow condition, and α, β and γ are stochastic parameters, they present a
distribution of the flow at the interior nodes. �

3.1.3 Solution to linearly nodal condition

In this subsection one considers the more complex case that there are many restrictive conditions
at each vertex. For each vertex a ∈ Vint, one takes the linear nodal conditions as follows

∑
j∈J+(a) α1juj(1)−

∑
i∈J−(a) β1iui(0) = 0∑

j∈J+(a) α2juj(1)−
∑

i∈J−(a) β2iui(0) = 0

· · · · · · ,∑
j∈J+(a) αhjuj(1)−

∑
i∈J−(a) βhiui(0) = 0

(3.1.10)

where h = h(a) satisfying 1 ≤ h ≤ #J(a)− 1.
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To obtain a simple form, one rewrites (3.1.10) into following form for a = ak,

∑n
j=1 α1jφ

+
kjuj(1)−

∑n
i=1 β1iφ

−
kiui(0) = 0∑n

j=1 α2jφ
+
kjuj(1)−

∑n
i=1 β2iφ

−
kiui(0) = 0

· · · · · · ,∑n
j=1 αhjφ

+
kjuj(1)−

∑n
i=1 βhjφ

−
kiui(0) = 0

(3.1.11)

Define matrices

Aak
= (αrjφ

+
kj), Bak

= (βriφ
+
ki), Aak

∈ Mh(ak)×n, Bak
∈ Mh(ak)×n

Then the linear nodal conditions (3.1.11) can be written as

Aak
U(1)−Bak

U(0) = 0, ak ∈ Vint

where rank(Aak
, Bak

) = h(ak). Using representation of the general solution

U(s) = S(s, 0)U(0) +
∫ s

0

S(s, t)P−1(t)F (t)dt,

one gets
Aak

S(1, 0)U(0)−Bak
U(0) = Aak

F̂ (1), ak ∈ Vint. (3.1.12)

Thus one has p =
∑

ak∈Vint
h(ak) many number of independent equations. Note that 1 ≤

h(ak) ≤ #J(ak)− 1, so

#Vint ≤ p =
∑

ak∈Vint

h(ak) ≤
∑

ak∈Vint

[#J(ak)− 1] = 2n−m.

Let q = #Vint. Without loss of generality one can assume that ak, k = 1, 2, · · · , q are the
interior nodes. Set

C =


Aa1S(1, 0)−Ba1

Aa2S(1, 0)−Ba2

· · · · · ·

AaqS(1, 0)−Baq


p×n

, C1 =


Aa1

Aa2

· · ·

Aaq


p×n

,

one has algebraic equations
CU(0) = C1F̂ (1).

Clearly, if p > n, then the algebraic equations might have no solution due to rank(C) ≤
min{p, n}. This means that there exist too many restrictions on the equations. If p = n, then
the algebraic equations have unique a solution

U(0) = C−1C1F̂ (1).

This shows that one need not have any initial or boundary condition. In this case, the unique
a solution is given by

U(s) = S(s, 0)C−1C1F̂ (1) +
∫ s

0

S(s, t)P−1(t)F (t)dt.
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If q ≤ p < n, then the homogeneous algebraic equations have (n − p) many linearly in-
dependent solutions. Let Û be a particular solution to (3.1.12), and Ui0, i = 1, 2 · · ·n − p be
the independent solutions to the homogeneous equations, i.e., Ui0 ∈ N (C), then the general
solution of the algebraic equations (3.1.12) are given by

U(0) = Û +
n−p∑
j=1

cjUj0.

Therefore, the general solution to (3.1.1) satisfying the equations (3.1.10) are

U(s) = S(s, 0)Û +
n−p∑
i=1

cjS(s, 0)Ui0 +
∫ s

0

S(s, t)P−1(t)F (t)dt.

To determine uniquely a solution to (3.1.1) under the condition (3.1.10), one needs (n−p) many
boundary conditions.

REMARK 3.1.2 The results in this section show that the solvability of first-order ordinary
differential equation on graph G is essentially different from that on an interval. The solvability
is strongly dependent upon the structure of the graph G and continuity assumption of the solution
at the junction. Therefore, one must treat carefully the differential equations on a graph.

3.2 Second order differential equations

Let G be a metric graph with vertex set V = {a1, a2, · · · , am} and edge set E = {e1, e2, · · · , en}.
In this section one considers second-order ordinary differential equations on G. For each edge
ej ∈ E, the differential equation is given by

uj,ss(s) + pj(s)uj,s + qj(s)uj(s) = fj(s), s ∈ (0, 1). (3.2.1)

Let ϕj(s) and ψj(s) be the fundamental solutions to homogeneous equation

uj,ss(s) + pj(s)uj,s(s) + qj(s)uj(s) = 0

satisfying conditions ϕj(0) = 1, ϕ′j(0) = 0 and ψj(0) = 0, ψ′j(0) = 1, respectively. Then the
general solution to (3.2.1) and its differential are given by

uj(s) = uj(0)ϕj(s) + u′j(0)ψj(s)−
∫ s

0

Sj(s, r)fj(r)dr

u′j(s) = uj(0)ϕ′j(s) + u′j(0)ψ′j(s)−
∫ s

0

∂sSj(s, r)fj(r)dr

where

Sj(s, t) =
ψj(s)ϕj(t)− ϕj(s)ψj(t)
ψ′j(t)ϕj(t)− ϕ′j(t)ψj(t)

.

Obviously, one needs 2n many conditions to determine uniquely a solution to (3.2.1).
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3.2.1 Continuous solution on G

Suppose that u(x) is continuous on G, i.e., u ∈ C(G), then one has

uj(a) = ui(a) = u(a), ∀i ∈ J−(a), j ∈ J+(a), a ∈ Vint.

The continuity implies the condition number
m∑

j=1

[#J(a)− 1] = 2n−m,

it remains m many conditions. Therefore, one proposes at most one condition for its derivative
at each vertex a ∈ V .

In order to obtain the connective condition of derivative functions at each vertex a ∈ Vint,
let O(a) be a neighborhood of a. We define the function class C∞0 (O(a)) with support set in
O(a) by

v(x) =


1, |x− a| ≤ ε,

v̂(x), ε ≤ |x− a| ≤ 2ε

0, |x− a| ≥ 2ε.

where v̂(x) is a C∞ function on O(a) ∩ ek provided that ek is an edge jointed a. Now let v(x)
be a function in C∞0 (O(a)). Then integrating over O(a) yields∫

O(a)∩G

(uxx(x)) + p(x)ux(x) + q(x)u(x))v(x)dx

=
∑

j∈J+(a)

[ujs(a)vj(a)]−
∑

j∈J−(a)

[uj,s(a)vj(a)]

−
∫

O(a)∩G

[ux(x)vx(x)− p(x)ux(x)v(x)− q(x)u(x)v(x)]dx

= v(a)

 ∑
j∈J+(a)

ujs(a)−
∑

i∈J−(a)

ui,s(a)


−
∫

O(a)∩G

[ux(x)vx(x)− p(x)ux(x)v(x)− q(x)u(x)v(x)]dx.

So a natural condition at each a ∈ Vint is∑
j∈J+(a)

ujs(a)−
∑

i∈J−(a)

ui,s(a) = 0.

If #Vint 6= m, then one only needs to impose m − #Vint = #∂G many conditions at the
boundary of G.

The discussion above gives merely a correct condition number for the differential equations
(3.2.1) having a continuous solution. However, it is not a sufficient condition for the solvability.
In what follows, one will discuss the solvability of the differential equations.

More generally one assumes that the node conditions are∑
j∈J+(ak)

αk,jφ
+
kjuj,s(1)−

∑
i∈J−(ak)

βk,iφ
−
kiui,s(0) + γku(ak) = 0, k = 1, 2, · · · ,m (3.2.2)
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where αk,j ,βk,j and γk are constants.
Now let

U(s) = (u1(s), u2(s), · · · , un(s)), U(v) = (u(a1), u(a2), · · · , u(am)).

Then the continuity conditions are

U(1) = (Φ+)TU(v), U(0) = (Φ−)TU(v),

and the conditions (3.2.2) can be written into

AU ′(1)−BU ′(0) + ΓU(v) = 0, A ∈ Mm×n(Φ+), B ∈ Mm×n(Φ−) (3.2.3)

where Γ is the m×m diagonal matrix, and rank(A,B,Γ) = m.
Note that the general solutions of (3.2.1) can rewrite into the vector form

U(s) = Φ(s)U(0) + Ψ(s)U ′(0)−
∫ s

0

S(s, t)F (t)dt

where

Φ(s) = diag(ϕ1(s), ϕ2(s), · · · , ϕn(s)), Ψ(s) = diag(ψ1(s), ψ2(s), · · · , ψn(s))

and
S(s, t) = diag(S1(s, t), S2(s, t), · · · , Sn(s, t)).

Thus one has  [(Φ+)T − Φ(1)(Φ−)T ]U(v)−Ψ(1)U ′(0) = Ŝ(1)

[AΦ′(1)(Φ−)T + Γ]U(v) + [AΨ′(1)−B]U ′(0) = AŜ′(1)
(3.2.4)

where Φ± are the incidence matrices of G, and

Ŝ(1) =
∫ 1

0

S(1, t)F (t)dt, Ŝ′(1) =
∫ 1

0

∂sS(1, t)F (t)dt.

Therefore, the differential equations have unique a solution if and only if the determinant of
coefficients matrix of (3.2.4) is not vanishing, i.e.,∣∣∣∣∣∣ [(Φ+)T − Φ(1)(Φ−)T ] −Ψ(1)

[AΦ′(1)(Φ−)T + Γ] [AΨ′(1)−B]

∣∣∣∣∣∣ 6= 0 (3.2.5)

Therefore, one has the following result.

THEOREM 3.2.1 Let differential equations be given as in (3.2.1). Then the equations have
a continuous solution on G satisfying the condition (3.2.3) if and only if (3.2.5) is satisfied.
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3.2.2 Linearly nodal conditions

Here one considers more general connection conditions for the equations (3.2.1). For each node
a ∈ V , there are #J(a) many edges jointed it. For each f ∈ H2(E), the function at vertex a
forms a vector

f̂(a) = (fj1(a), fj2 , · · · , fjd
(a); f ′j1(a), f

′
j2 , · · · , f

′
jd

(a))T

where jk ∈ J(a), d = #J(a) is the degree of vertex a and f (i)
jk

(a) = lims→1 f
(i)
jk

(s) if jk ∈ J+(a)

or f (i)
jk

(a) = lims→0 f
(i)
jk

(s) if jk ∈ J−(a). These vectors form a 2d(a)-dimensional linear space.
One can define a functional on H2(E), by

βa(f) =
d∑

r=1

(αrfjr (a) + βrf
′
jr

(a)), f ∈ H2(E).

If one distinguishes the incoming edges and the outgoing edges, then it can be rewritten as

βa(f) =
p∑

r=1

αrfjr
(1) +

q∑
s=1

bsfjs
(0) +

p∑
r=1

crf
′
jr

(1) +
q∑

s=1

βsf
′
js

(0)

where p = #J+(a) and q = #J−(a). There are at most 2d(a) many linearly independent
functionals at the vertex a ∈ V . From discussion of continuous solution one sees that one
needs at most #J(a) = p + q many conditions to determine uniquely a solution. So one can
choose #J(a) = d many linearly independent functionals βa,1, βa,2, · · · , βa,d as the restriction
conditions:

βa,k(f) = 0, k = 1, 2, · · · , d(a)

or simply write into an operator from H2(E) to Cd(a)

Ba(f) = Baf̂(a) = B1,af̂(a) +B2,af̂
′(a) = 0.

Further, one uses the vector-valued form:

F (s) = (f1(s), f2(s), · · · , fn(s))T ,

the restrictive condition can be written into

Ba(f) = AaF (1) +BaF (0) + CaF
′(1) +DaF

′(0) = 0, (3.2.6)

where Aa, Ba, Ca, Da are the d(a) × n matrices and rank(Aa, Ba, Ca, Da) = d(a) = #J(a).
Therefore, one gets

∑m
k #J(ak) = 2n many linearly independent conditions:

Bak
(f) = 0, k = 1, 2, · · · ,m. (3.2.7)

Therefore, the equations (3.2.1) with restrictive conditions (3.2.7) have unique a solution for
each f ∈ H2(E) if and only if the algebraic equations

[AaΦ(1) + CaΦ′(1) +Ba]U(0) + [AaΨ(1) + CaΨ′(1) +Da]U ′(0) = 0, ∀a ∈ V. (3.2.8)

have unique an zero solution. Therefore, one has the following result.
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THEOREM 3.2.2 The second-order differential equations (3.2.1) defined on E under the
restrictive conditions

Ba(f) = AaU(1) +BaU(0) + CaU
′(1) +DaU

′(0) = 0, rank(Aa, Ba, Ca, Da) = #J(a)

have unique a solution for each f ∈ H2(E) if and only if the algebraic equations

[AaΦ(1) + CaΦ′(1) +Ba]U(0) + [AaΨ(1) + CaΨ′(1) +Da]U ′(0) = 0, ∀a ∈ V.

have unique an zero solution.

Now let us recall the structural matrix Ψ of the graph G,

Ψ =

 (Φ+)T Φ+ (Φ+)T Φ−

(Φ−)T Φ+ (Φ−)T Φ−


2n×2n

.

One decomposes the matrix Ψ as Ψ = (Ψ+,Ψ−), where Ψ+ and Ψ− are the 2n × n matrices.
In order to normalize the conditions (3.2.7), one arranges the conditions in the following way

n∑
r=1

αj,rfr(1) +
r∑

r=1

bj,sf
′
r(1) +

n∑
s=1

cj,rfr(0) +
n∑

s=1

dj,sf
′
s(0) = 0, j = 1, 2, · · · , n, n+ 1, · · · , 2n

such that they are embedded the structure matrix pattern (Φ+)T Φ+ (Φ+)T Φ+ (Φ+)T Φ− (Φ+)T Φ−

(Φ−)T Φ+ (Φ−)T Φ+ (Φ−)T Φ+ (Φ−)T Φ−

 = (Ψ+,Ψ+,Ψ−,Ψ−).

Setting
A = (αj,r)2n×n, B = (bj,r)2n×n, C = (cj,s)2n×n, D = (dj,s)2n×n,

one has
A,B ∈ M2n×n(Ψ+) = {A = (aji) ∈ M2n×n

∣∣ Ψ+ •A = A}

and
C,D ∈ M2n×n(Ψ−) = {C = (cji) ∈ M2n×n

∣∣ Ψ− • C = C}

where A • B denotes the Hadamard product which is defined by A • B = (aijbij). Thus the
conditions (3.2.7) can be rewritten into

(A B C D)


F (1)

F ′(1)

F (0)

F ′(0)

 = 0

and rank(A,B,C,D) = 2n. This form is said to be the normalized the connected condition.



66 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS ON GRAPHS

3.3 Second-order differential operator and its adjoint

It is well known that the solvability of the second-order differential equation on finite interval is
closely related to the linear operator determined by the equation. The Fredholm theory of linear
differential operators defined on the finite interval says that the solvability determined via its
adjoint operator. In developing physical models one often needs to know its adjoint state when
a differential operator is defined on a given graph, for instance, quantum-mechanical problems
associated with advances in micro-electronic fabrication [2][36][37][40]. This section provides a
description of adjoint operator of second-order differential operator defined on a graph G.

Let G be a metric graph with vertex set V and the edge set E = {e1, e2, · · · , en}. Suppose
that the formal differential operator on each ej is defined by

Luj = uj,ss(s) + pj(s)uj,s(s) + qj(s)uj(s), s ∈ (0, 1), j ∈ {1, 2, · · · , n} (3.3.1)

where pj and qj are real continuous functions.
For each u ∈ H2(E), one coincides it with the vector-valued function

U(s) = (u1(s), u2(s), · · · , un(s)), s ∈ (0, 1).

Define diagonal matrices

P (s) = diag(p1(s), p2(s), · · · , pn(s)), Q(s) = diag(q1(s), q2(s), · · · , qn(s))

Then the formal differential operator L can be rewritten into

LU(s) = U ′′(s) + P (s)U ′(s) +Q(s)U(s), (3.3.2)

and the space L2(G) is equivalent to L2[(0, 1),Cn].
Suppose that the vertex connection conditions are given by

AU(1) +BU ′(1) + CU(0) +DU ′(0) = 0, rank(A,B,C,D) = 2n, (3.3.3)

this is a normalized connection condition. Thus the formal differential operator (3.3.2) together
with (3.3.3) define an operator on G:

D(L) = {U ∈ H2((0, 1),Cn)
∣∣ AU(1) +BU ′(1) + CU(0) +DU ′(0) = 0}. (3.3.4)

For any U ∈ D(L), F ∈ H2((0, 1),Cn), we have

(LU,F )L2 =
∫ 1

0

(U ′′(s) + P (s)U ′(s) +Q(s)U(s), F (s))Cnds

= (U ′(1), F (1))Cn − (U ′(0), F (0))Cn − (U(1), F ′(1))cn + (U(0), F ′(0))Cn

+(P (1)U(1), F (1))Cn − (P (0)U(0), F (0))Cn

+
∫ 1

0

(U(s), F ′′(s)− (P (s)F (s))′ +Q(s)F (s))Cnds

= −(U(1), F ′(1)− P (1)F (1))Cn + (U ′(1), F (1))Cn

+(U(0), F ′(0)− P (0)F (0))Cn − (U ′(0), F (0))Cn

+
∫ 1

0

(U(s), F ′′(s)− (P (s)F (s))′ +Q(s)F (s))Cnds.
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Obviously, L∗ on E is of the form

L∗F = F ′′(s)− (P (s)F (s))′ +Q(s)F (s) (3.3.5)

and F ∈ D(L∗) if and only if

0 = (U(1),−F ′(1) + P (1)F (1))Cn + (U ′(1), F (1))Cn

+(U(0), F ′(0)− P (0)F (0))Cn + (U ′(0),−F (0))Cn , ∀U ∈ D(L).

On the other hand, we get from U ∈ D(L) that

(U(1), A∗X)Cn + (U ′(1), B∗X)Cn + (U(0), C∗X)Cn + (U ′(0), D∗X)Cn = 0, ∀X ∈ C2n.

Thus there is an X ∈ C2n such that

A∗X = −F ′(1) + P (1)F (1), B∗X = F (1), C∗X = F ′(0)− P (0)F (0), D∗X = −F (0).

Suppose that the restriction condition in domain of L∗ is of the form

ÂF (1) + B̂F ′(1) + ĈF (0) + D̂F ′(0) = 0

where Â, B̂, Ĉ, D̂ ∈ M2n×n, then

0 = ÂF (1) + B̂F ′(1) + ĈF (0) + D̂F ′(0)

= Â[B∗X] + B̂[−A∗X + P (1)B∗X] + Ĉ[−D∗X] + D̂[C∗X − P (0)D∗X]

= [ÂB∗ − B̂A∗ + B̂P (1)B∗ + D̂C∗ − ĈD∗ − D̂P (0)D∗]X.

Therefore, A,B,C,D and Â, B̂, Ĉ, D̂ satisfy relation

ÂB∗ − B̂A∗ + B̂P (1)B∗ + D̂C∗ − ĈD∗ − D̂P (0)D∗ = 0. (3.3.6)

Note that if we denote the formal differential operator (3.3.5) by L+, then we have

(LU,F )L2 − (U,L+F )L2 = [U,F ]

where [U,F ] is a non-degenerate quadratic form involving the boundary values and first-order
derivatives of functions U and F . Formula (3.3.6) gives a condition such that [U,F ] ≡ 0.
The following example shows an expression of non-degenerate quadratic form [U,F ] in single
interval.

EXAMPLE 3.3.1 Consider second order differential operator defined on (a, b) by

Lf = f ′′(x) + p(x)f ′(x) + q(x)f(x), x ∈ (a, b)

where p(x), q(x) are real continuous functions on [a, b]. For any f, g ∈ H2[a, b], one has∫ b

a

[Lf(x)g(x)− f(x)L+g(x)]dx

= f ′(b)g(b)− f ′(a)g(a) + f(a)g′(a)− f(b)g′(b)

+f(b)p(b)g(b)− f(a)p(a)g(a)

=

〈 p(b) 1

−1 0

 f(b)

f ′(b)

 ,
 g(b)

g′(b)

〉
C2

−

〈 p(a) 1

−1 0

 f(a)

f ′(a)

 ,
 g(a)

g′(a)

〉
C2



68 CHAPTER 3. ORDINARY DIFFERENTIAL EQUATIONS ON GRAPHS

so we have

[f, g] =

〈 p(b) 1

−1 0

 f(b)

f ′(b)

 ,
 g(b)

g′(b)

〉
C2

−

〈 p(a) 1

−1 0

 f(a)

f ′(a)

 ,
 g(a)

g′(a)

〉
C2

.

Note that the matrices

S(x) =

 p(x) 1

−1 0

 , x ∈ (a, b)

are skew-adjoint on C2. So [f, g] is also skew-symmetric quadratic form.

Note that the connective conditions (3.3.3) do not obviously depend on the structure of G.
Sometimes one use the following notion to distinguish property of L at each vertex.

DEFINITION 3.3.1 Let G be a metric graph and let φ : G→ C denote a C∞ function which
has compact support in G and is constant in an open neighborhood of each vertex. Let L be a
formal differential on the edges of G. L is said to be local operator if for every φ, φf is in the
domain of L whenever f is.

When G is a finite graph, the continuity conditions and linearly nodal conditions at internal
nodes are the local property. Hence the operator determined by these conditions are local
operators. As shown in subsection 3.2.1, if L is a local operator on the graph G, then one can
treat it in small open neighborhood of vertex a as an operator defined on a star-shaped graph
with zero boundary conditions.

EXAMPLE 3.3.2 Schrödinger operators on graphs Let G = (V,E) be a metric graph.
On each edge ej ∈ E, Schrödinger operator is defined as

Lfj(x) = −f ′′j (x) + pj(x)fj(x), x ∈ (0, 1)

where we assume the continuous vertex conditions, i.e., there are #J(a) − 1 independent con-
ditions at each vertex a,

fj(a) = fi(a), j ∈ J+(a), i ∈ J−(a)

and an independent dynamic condition∑
j∈J+(a)

f ′j(1)−
∑

k∈J−(a)

f ′k(0) = 0. (3.3.7)

L is a self-adjoint operator in L2(G). In particular, L is a local operator on G.

REMARK 3.3.1 More discussion about Schrödinger operator on graphs (Quantum graphs),
we refer to Kuchment’s works, e.g., see [64] and [65].

REMARK 3.3.2 There is a classical description of adjoint operator (involving self-adjoint
extensions) in terms of boundary conditions [25, pp.284–297] for regular ordinary differential
operators acting on L2[a, b]. This theory has a close connection with the abstract treatment of
self-adjoint extensions of symmetric operators [101, pp. 140–141]. Note that the differential
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operator L defined on a graph G is actually a group of ordinary differential operators on intervals
whose lengths are given by the arc lengths of the edges in graph G. The general treatment is
somewhat deficient for differential operators on graphs, since the role of the vertices of the graph
G is unclear. In particular, when G is an infinite graph, the description of the differential
operator defined on it appears particularly awkward. Usually one need to impose additional
restrictions on the domain of L. Under the assumption that the edge lengths of G have a positive
lower bound and each vertex receives at most finite many edges, Robert Carlson in [20] gave a
complete character for the domain of the adjoint of a local operator L when the coefficients of
the operator are bounded and satisfy some mild additional regularity assumptions.



Chapter 4

Partial Differential Equations on

Graphs

In this chapter one discusses three classes of elastic systems on metric graphs: one dimensional
wave equation, Euler-Bernoulli beam and Timoshenko beam. For these systems, our purpose is
to find out reasonable vertex conditions so that these systems describe the physical phenomena,
which means that these systems are the energy conservation without exterior disturbance and
forces. In this chapter, one will give a correct number of independent conditions at each vertex
and the most general form of the local vertex conditions and whole vertex conditions according
to the nodal equilibrium and structure equilibrium of the systems, respectively.

4.1 wave equation on graph

LetG be a metric graph with vertex set V = {a1, a2, · · · , am} and the edge set E = {e1, e2, · · · , en}
with |ej | = `j . Let u(x, t) be a function defined on G × R+, uj(x, t) be its parameterization
realization on ej × R+. If uj(x, t), j ∈ {1, 2, · · · , n}, satisfy the partial differential equation

mj(x)
∂2uj(x, t)

∂t2
=

∂

∂x

(
Tj(x)

∂uj(x, t)
∂x

)
− qj(x)uj(x, t), x ∈ (0, `j), (4.1.1)

where mj(x), Tj(x) are positive continuous function and qj(x) are nonnegative continuous
functions, then u(x, t) is called satisfying the wave equation on E.

REMARK 4.1.1 For a function u(x, t) satisfied the wave equation, we can define its normal-
ized realization on ej by

wj(s, t) = uj(s`j , t), s ∈ (0, 1).

Then we have
∂wj(s, t)

∂s
= `j

∂uj(s`j , t)
∂x

70
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∂

∂x

(
Tj(s`j)

∂uj(s`j , t)
∂x

)
=

1
`j

∂(Tj(s`j)uj,x(s`j , t))
∂s

=
1
`2j

∂

∂s

(
Tj(s`j)

∂wj(s, t)
∂s

)
.

So without loss of generality we can assume that wj(s, t) satisfies the wave equation

mj(s)
∂2wj(s, t)

∂t2
=

∂

∂s

(
Tj(s)

∂wj(s, t)
∂s

)
− qj(s)wj(s, t), s ∈ (0, 1). (4.1.2)

The function wj(s, t) is called the normalized realization of u(x, t). In the sequel, we always use
the normalized realization of a function.

The partial differential equations are always defined on E, we need some connective and
boundary conditions and initial data to determine uniquely a solution.

4.1.1 Nodal condition

Let G be a metric graph with vertex set V = {a1, a2, · · · , am} and edge set E = {e1, e2, · · · , en}.
We consider the self-adjoint property of the differential operator in L2(G)

Lwj = (Tj(s)wj,s(s))s − qj(s)wj(s), s ∈ (0, 1), j = 1, 2, · · · , n; (4.1.3)

For any F ∈ H2(E), W ∈ H2(E),

(LW,F )L2 − (W,LF )L2 =
n∑

j=1

∫
ej

(Tj(s)wj,s(s))sfj(s)ds−
n∑

k=1

∫
ek

wk(s)(Tk(s)fk,s)sds

=
n∑

j=1

Tj(1)[wj,s(1)fj(1)− wj(1)fj,s(1)]−
n∑

j=1

Tj(0)[wj,s(0)fj(s)− wj(0)fj,s(0)]

=
m∑

i=1

 ∑
j∈J+(ai)

Tj(1)[wj,s(1)fj(1)− wj(1)fj,s(1)]−
∑

k∈J−(ai)

Tk(0)[wk,s(0)fk(0)− wk(0)fk,s(0)]


Set J+(ai) = {j1, j2, · · · , jp}, J−(ai) = {k1, k2, · · · , kq}. For each W ∈ H2(E), one define local
column vectors at ai by

W+(ai) = [wj1(1), wj2(1), · · · , wjp
(1)]T , W−(ai) = [wk1(0), wk2(0), · · · , wkq

(0)]T ,

and

W ′
+(ai) = [wj1,s(1), wj2,s(1), · · · , wjp,s(1)]T , W ′

−(ai) = [wk1,s(0), wk2,s(0), · · · , wkq,s(0)]T .

Define the diagonal matrices T+(ai) = diag(Tj1(1), Tj2(1), · · · , Tjp
(1)),

T−(ai) = diag(Tk1(0), Tk2(0), · · · , Tkq
(0))

(4.1.4)

and the bond matrices

Q+(ai) =

 0 T+(ai)

−T+(ai) 0


2p×2p

(4.1.5)



72 CHAPTER 4. PARTIAL DIFFERENTIAL EQUATIONS ON GRAPHS

Q−(ai) =

 0 T−(ai)

−T−(ai) 0


2q×2q

. (4.1.6)

With help of these notations, we can write the vertex condition into following ∑
j∈J+(ai)

Tj(1)[wj,s(1)fj(1)− wj(1)fj,s(1)]−
∑

k∈J−(ai)

Tk(0)[wk,s(0)fk(0)− wk(0)fk,s(0)]


=

(
T+(ai)W ′

+(ai), F+(ai)
)

Cp −
(
T+(ai)W+(ai), F ′+(ai)

)
Cp

−
(
T−(ai)W ′

−(ai), F−(ai)
)

Cq +
(
T−(ai)W−(ai), F ′−(ai)

)
Cq

=

 0 T+(ai)

−T+(ai) 0

 W+(ai)

W ′
+(ai)

 ,
 F+(ai)

F ′+(ai)


C2p

−

 0 T−(ai)

−T−(ai) 0

 W−(ai)

W ′
−(ai)

 ,
 F−(ai)

F ′−(ai)


C2q

=
(
Q+(ai)[W+,W

′
+]T (ai), [F+, F

′
+]T (ai)

)
C2p −

(
Q−(ai)[W−,W

′
−]T (ai), [F−, F ′−]T (ai)

)
C2q .

Therefore,

(LW,F )L2 − (W,LF )L2 =
m∑

i=1

(
Q+(ai)[W+,W

′
+]T (ai), [F+, F

′
+]T (ai)

)
−

m∑
i=1

(
Q−(ai)[W−,W

′
−]T (ai), [F−, F ′−]T (ai)

)
. (4.1.7)

4.1.2 Nodal condition for the dynamic equilibrium

THEOREM 4.1.1 Let the formal differential operator L be defined by (4.1.3), and let Q+(a)
and Q−(a) be defined by (4.1.5) and (4.1.6), respectively. Then the following statements are
true

1) For each node a ∈ V , there are p + q = #J(a) many linearly independent conditions,
which have the form

Aa[W+(a),W ′
+(a)]T +Ba[W−(a),W ′

−(a)]T = 0 (4.1.8)

where Aa = A(p+q)×2p and Ba = B(p+q)×2q;
2) The operator L with nodal conditions (4.1.8) is nodal equilibrium, i.e.,(

Q+(a)Ŵ+(a), F̂+(a)
)

C2p
−
(
Q−(a)Ŵ−(a), F̂−(a)

)
C2q

= 0 (4.1.9)

where Ŵ+(a) = [W+(a),W ′
+(a)]T and Ŵ−(a) = [W−(a),W ′

−(a)]T , if and only if Aa and Ba

satisfy the condition
AaQ−1

+ (a)A∗a = BaQ−1
− (a)B∗a. (4.1.10)

3) If for each a ∈ V the matrices Aa and Ba satisfy (4.1.10) and rank(Aa, Ba) = p+q, then
L with nodal conditions (4.1.8) is a self-adjoint operator.
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Proof For each a ∈ V , there are (p + q) many edges jointing it. Since the single vertex
condition is a local property, one can regard the vertex as the center of a star shape graph
with fixed boundary conditions. Therefore, we have (p + q) many second order differential
equations, and hence there are at most (p+q) number the connection conditions at a since they
already have (p+ q) many Dirichlet boundary conditions. So there are at most (p+ q) linearly
independent conditions at vertex a.

Suppose that the nodal conditions are given by (4.1.8). Set Ŵ+(a) = [W+(a),W ′
+(a)]T and

Ŵ−(a) = [W−(a),W ′
−(a)]T , (4.1.8) can be rewritten into

AaŴ+(a) +BaŴ−(a) = 0.

Then for any X ∈ C(p+q), it holds that

(AaŴ+(a), X)C(p+q) + (BaŴ−(a), X)C(p+q) = 0. (4.1.11)

If the operator L with nodal conditions (4.1.8) is nodal equilibrium, i.e., for any W,F ∈ H2(E)
satisfying (4.1.8), it holds that(

Q+(a)Ŵ+(a), F̂+(a)
)

C2p
−
(
Q−(a)Ŵ−(a), F̂−(a)

)
C2q

= 0, (4.1.12)

comparing (4.1.11) to (4.1.12), we get that there exists an X ∈ C(p+q) such that

−Q+(a)F̂+(a) = A∗aX, Q−(a)F̂−(a) = B∗aX

where we have used equalities Q∗±(a) = −Q±(a), this leads to

F̂+(a) = −Q−1
+ (a)A∗aX, F̂−(a) = Q−1

− (a)B∗aX.

Thus, we have

0 = AaF̂+(a) +BaF̂−(a) = −AaQ−1
+ (a)A∗aX +BaQ−1

− (a)B∗aX, ∀X ∈ C(p+q).

So (4.1.10) holds.
Conversely, suppose that Aa and Ba in (4.1.8) satisfy the condition (4.1.10), W ∈ H2(E)

is a function satisfying the condition AaŴ+(a) + BaŴ−(a) = 0. By using condition (4.1.10),
there exists some one X ∈ C(p+q) such that

Ŵ+(a) = Q−1
+ (a)A∗aX, Ŵ−(a) = −Q−1

− (a)B∗aX.

Thus we have
Q+(a)Ŵ+(a) = A∗aX, −Q−(a)F̂−(a) = B∗aX,

Let F ∈ H2(E) be anyone function satisfying AaF̂+(a) +BaF̂−(a) = 0. Then(
Q+(a)Ŵ+(a), F̂+(a)

)
C2p

−
(
Q−(a)Ŵ−(a), F̂−(a)

)
C2q

=
(
A∗X, F̂+(a)

)
C2p

+
(
B∗X, F̂−(a)

)
C2q

=
(
X,AF̂+(a)

)
C(p+q)

+
(
X,BF̂−(a)

)
C(p+q)

=
(
X,AF̂+(a) +BF̂−(a)

)
C(p+q)

= 0,
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this shows that the node is equilibrium.
Now one assumes that for each a ∈ V , the matrices Aa and Ba satisfy the condition (4.1.10).

Define a subset of L2(G) by

D(L) = {W ∈ H2(E)
∣∣ AaŴ+(a) +BaŴ−(a) = 0,∀a ∈ V }.

From (4.1.7) one sees that L with D(L) is a symmetric operator. Since, for each a ∈ V ,
rank(Aa, Ba) = p+ q = #J(a), this condition implies that if W ∈ H2(E) satisfies conditions

(iI + L)W = 0, and AaŴ+(a) +BaŴ−(a) = 0, ∀a ∈ V,

we can deduce that W ≡ 0. Therefore, L is a self adjoint operator. �

THEOREM 4.1.2 Let L be defined as (4.1.3) and let Q±(a) be defined by (4.1.5) and (4.1.6)
respectively. Suppose that for each a ∈ V matrices Aa = A(p+q)×2p and Ba = B(p+q)×2q satisfy
the condition (4.1.10) and rank(Aa, Ba) = p + q. Define the operator L0 by L0 = −L with
domain

D(L0) = {W ∈ H2(E)
∣∣ AaŴ+(a) +BaŴ−(a) = 0,∀a ∈ V } (4.1.13)

where Ŵ+(a) and Ŵ−(a) for each W ∈ H2(E) are defined as before. Then L0 is a nonnegative
operator if and only if Aa and Ba satisfy the condition

AaEpQ−1
+ (a)A∗a = BaEqQ−1

− (a)B∗a (4.1.14)

where

Ep =

 Ip 0

0 0


2p×2p

, Eq =

 Iq 0

0 0


2q×2q

.

Proof For any W ∈ H2(E), we have

−(LW,W )L2 = −
n∑

j=1

∫
ej

(Tj(s)wj,s(s))swj(s)ds+
n∑

j=1

∫
ej

qj(s)|wj(s)|2ds

= −
n∑

j=1

Tj(s)[wj,s(s)wj(s)]
∣∣1
0

+
m∑

j=1

∫
ej

[Tj(s)|wj,s(s))|2 + qj(s)|wj(s)|2]ds

= −
m∑

i=1

 ∑
j∈J+(ai)

Tj(1)wj,s(1)wj(1)−
∑

k∈J−(ai)

Tk(0)wk,s(0)wk(0)


+

n∑
j=1

∫
ej

[Tj(s)|wj,s(s)|2 + qj(s)|wj(s)|2]ds.

Since  ∑
j∈J+(ai)

Tj(1)wj,s(1)wj(1)−
∑

k∈J−(ai)

Tk(0)wk,s(0)wk(0)


=

(
T+(ai)W ′

+(ai),W+(ai)
)

Cp −
(
T−(ai)W ′

−(ai),W−(ai)
)

Cq
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=

 Ip 0

0 0

 0 T+(ai)

−T+(ai) 0

 W+(ai)

W ′
+(ai)

 ,
 W+(ai)

W ′
+(ai)


−

 Iq 0

0 0

 0 T−(ai)

−T−(ai) 0

 W−(ai)

W ′
−(ai)

 ,
 W−(ai)

W ′
−(ai)


=

(
EpQ+(ai)Ŵ+(ai), Ŵ+(ai)

)
−
(
EqQ−(ai)Ŵ−(ai), Ŵ−(ai)

)
where

Ep =

 Ip 0

0 0


2p×2p

, Eq =

 Iq 0

0 0


2q×2q

,

when W ∈ D(L), one has

Ŵ+(ai) = Q−1
+ (ai)A∗ai

X, Ŵ−(ai) = −Q−1
− (ai)B∗ai

X, X ∈ C(p+q)

and hence
EpQ+(ai)Ŵ+(ai) = EpA

∗
ai
X, EqQ−(ai)Ŵ−(ai) = −EqB

∗
ai
X.

Thus,  ∑
j∈J+(ai)

Tj(1)wj,s(1)wj(1)−
∑

k∈J−(ai)

Tk(0)wk,s(0)wk(0)


=

(
EpQ+(ai)Ŵ+(ai), Ŵ+(ai)

)
C2p

−
(
EqQ−(ai)Ŵ−(ai), Ŵ−(ai)

)
C2q

=
(
EpA

∗
ai
X,Q−1

+ (ai)A∗ai
X
)

C2p −
(
EqB

∗
ai
X,Q−1

− (ai)B∗ai
X
)

C2q

=
(
X,AaiEpQ−1

+ (ai)A∗ai
X −BaiEqQ−1

− (ai)B∗ai
X
)

C(p+q) .

Since Aai
Q−1

+ (ai)A∗ai
= Bai

Q−1
− (ai)B∗ai

, we have the equality

[AaiEpQ−1
+ (ai)A∗ai

−BaiEqQ−1
− (ai)B∗ai

]∗ = AaiEpQ−1
+ (ai)A∗ai

−BaiEqQ−1
− (ai)B∗ai

.

Therefore, L0 is nonnegative if and only if

Aai
EpQ−1

+ (ai)A∗ai
= Bai

EqQ−1
− (ai)B∗ai

.

The proof is then complete. �

In Theorem 4.1.1, the condition rank(Aa, Ba) = p + q for any a ∈ V is a assumption of
condition number that is used to ensure that L has no defect number, while AaQ−1

+ (a)A∗a =
BaQ−1

− (a)B∗a,∀a ∈ V are used to ensure the self-adjoint-ness of L. For operator L0, the
conditions AaEpQ−1

+ (a)A∗a = BaEqQ−1
− (a)B∗a,∀a ∈ V are used to ensure the nonnegativity of

L0. In what follows, one will show that condition AaEpQ−1
+ (a)A∗a = BaEqQ−1

− (a)B∗a implies
AaQ−1

+ (a)A∗a = BaQ−1
− (a)B∗a.

Since

Q−1
+ (a) =

 0 −T−1
+ (a)

T−1
+ (a) 0


2p×2p

, Q−1
− (a) =

 0 −T−1
− (a)

T−1
− (a) 0


2q×2q
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EpQ−1
+ (a) =

 0 −T−1
+ (a)

0 0


2p×2p

, EqQ−1
− (a) =

 0 −T−1
− (a)

0 0


2q×2q

Aa =

 A11 A12

A21 A22


(p+q)×2p

, Ba =

 B11 B12

B21 B22


(p+q)×2q

A∗a =

 A∗11 A∗21

A∗12 A∗22


2p×(p+q)

, B∗a =

 B∗11 B∗21

B∗12 B∗22


2q×(p+q)

,

a direct calculation gives

0 = AaEpQ−1
+ (a)A∗a −BaEqQ−1

− (a)B∗a

=

 A11 A12

A21 A22


(p+q)×2p

 0 −T−1
+ (a)

0 0


2p×2p

 A∗11 A∗21

A∗12 A∗22


2p×(p+q)

−

 B11 B12

B21 B22


(p+q)×2q

 0 −T−1
− (a)

0 0


2q×2q

 B∗11 B∗21

B∗12 B∗22


2q×(p+q)

= −

 A11T
−1
+ (a)A∗12 −B11T

−1
− (a)B∗12 A11T

−1
+ (a)A∗22 −B11T

−1
− (a)B∗22

A21T
−1
+ (a)A∗12 −B21T

−1
− (a)B∗12 A21T

−1
+ (a)A∗22 −B21T

−1
− (a)B∗22


(p+q)×(p+q)

this gives an explicit expression of (4.1.14). Thus we have

A11T
−1
+ (a)A∗12 −B11T

−1
− (a)B∗12 = 0, A11T

−1
+ (a)A∗22 −B11T

−1
− (a)B∗22 = 0

A21T
−1
+ (a)A∗12 −B21T

−1
− (a)B∗12 = 0, A21T

−1
+ (a)A∗22 −B21T

−1
− (a)B∗22 = 0.

Taking the dual operation for above equations leads to

A12T
−1
+ (a)A∗11 −B12T

−1
− (a)B∗11 = 0, A22T

−1
+ (a)A∗11 −B22T

−1
− (a)B∗11 = 0

A12T
−1
+ (a)A∗21 −B12T

−1
− (a)B∗21 = 0, A22T

−1
+ (a)A∗21 −B22T

−1
− (a)B∗21 = 0.

A straightforward calculation gives

AaQ−1
+ (a)A∗a −BaQ−1

− (a)B∗a

=

 A12T
−1
+ (a)A∗11 −B12T

−1
− (a)B∗11 A12T

−1
+ (a)A∗21 −B12T

−1
− (a)B∗21

A22T
−1
+ (a)A∗11 −B22T

−1
− (a)B∗11 A22T

−1
+ (a)A∗21 −B22T

−1
− (a)B∗21


(p+q)×(p+q)

= 0.

Therefore, the following result is true.

COROLLARY 4.1.1 Let G be a metric graph and L be the formal differential operator on E
defined by (4.1.3). Set L0 = −L with domain

D(L0) =
{
W ∈ H2(E)

∣∣ AaŴ+(a) +BaŴ−(a) = 0, AaEpQ−1
+ A∗a = BaEqQ−1

− (a)B∗a,∀a ∈ V
}
,

where Ŵ+(a) and Ŵ−(a) for each W ∈ H2(E) are defined as before. Then L0 is a nonnegative
operator on L2(G). In particular, it is a positive definite operator if qj(s) are positive functions.
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REMARK 4.1.2 In the nodal equilibrium condition, one requires the condition

(Q+(a)Ŵ+(a), F̂+(a))C2p − (Q−(a)Ŵ−(a), F̂−(a))C2q = 0

at each node a. Usually, in mechanics, L0 should be a positive operator, for example, in the
equation (4.1.2), so the coefficient matrices Aa and Ba at each node a satisfy the nodal condi-
tions AaEpQ−1

+ (a)A∗a = BaEqQ−1
− (a)B∗a. Since this relation is independent of the other vertices,

it is called the local structure condition (or the local vertex condition).

Now one recalls the structural matrix Ψ of G,

Ψ =

 (Φ+)T Φ+ (Φ+)T Φ−

(Φ−)T Φ+ (Φ−)T Φ−


2n×2n

the matrix shows the intersection of endpoint of edge-edge. One decomposes the matrix Ψ as
Ψ = (Ψ+,Ψ−), where Ψ+ and Ψ− are the 2n×n matrix. Define the connective pattern matrices

Ψ+ = (Ψ+,Ψ+), Ψ− = (Ψ−,Ψ−) (4.1.15)

Denote the matrices set by

M2n×2n(Ψ±) = {A = (aij) ∈ M2n×2n

∣∣ Ψ± •A = A}

where A •B denotes the Hadamard product which is defined by A •B = (aijbij).
One coincides a function W ∈ H2(E) with a vector-valued function W defined by

W (s) = [w1(s), w2(s), w3(s), · · · , wn(s)]T , s ∈ (0, 1).

By an appropriate arrangement, the local vertex conditions of graph G are written into the
form

AŴ (1) +BŴ (0) = 0, A ∈ M2n×2n(Ψ+), B ∈ M2n×2n(Ψ−). (4.1.16)

where

Ŵ (1) =

 W (1)

W ′(1)

 , Ŵ (0) =

 W (0)

W ′(0)


4.1.3 The structural equilibrium condition

In this subsection one discusses the case that the node may not be equilibrium but its structure
is equilibrium. we called it the structural equilibrium condition (or whole vertex condition).

Let G be a metric graph with edge set E = {ej ; j = 1, 2, · · · , n}. For W ∈ L2(E), one
coincides W with a vector-valued function W (s) = [w1(s), w2(s), · · · , wn(s)]T .

Let L be defined by (4.1.3). Define the diagonal matrices

T(s) = diag [T1(s), T2(s), · · · , Tn(s)] , Q(s) = diag [q1(s), q2(s), · · · , qn(s)] ,

then L can be rewritten into the matrix form

L =
d

ds

(
T(s)

d

ds

)
−Q(s).
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For any W,F ∈ L2(G),

W (s) = [w1(s), w2(s), · · · , wn(s)]T , F (s) = [f1(s), f2(s), · · · , fn(s)]T , s ∈ (0, 1)

one has

(W,F )L2 =
∫

G

W (x)F (x)dx =
n∑

j=1

∫ 1

0

wj(s)fj(s)dx =
∫ 1

0

(W (s), F (s))Cnds.

Thus

(LW,F )L2 − (W,LF )L2 =
∫ 1

0

(LW (s), F (s))Cnds−
∫ 1

0

(W (s),LF (s))Cnds

= (T(1)W ′(1), F (1))Cn − (T(0)W ′(0), F (0))Cn

−(T(1)W (1), F ′(1))Cn + (T(0)W (0), F ′(0))Cn

=

 0 T(1)

−T(1) 0

 W (1)

W ′(1)

 ,
 F (1)

F ′(1)


C2n

−

 0 T(0)

−T(0) 0

 W (0)

W ′(0)

 ,
 F (0)

F ′(0)


C2n

.

Now let A and B be the 2n× 2n matrices, the connection condition are given by

AŴ (1) +BŴ (0) = 0, rank(A,B) = 2n (4.1.17)

where Ŵ (1) = [W (1),W ′(1)]T and Ŵ (0) = [W (0),W ′(0)]T .

THEOREM 4.1.3 Let the formal differential operator L be defined as (4.1.3) and let L on
graph G have the connective condition (4.1.17). Then L is structural self-adjoint if only if A
and B satisfy the condition

A

 0 T(1)

−T(1) 0

−1

A∗ = B

 0 T(0)

−T(0) 0

−1

B∗. (4.1.18)

Proof Set

T (s) =

 0 T(s)

−T(s) 0

 .
Then

(LW,F )L2 − (W,LF )L2 = (T (1)Ŵ (1), F̂ (1))C2n − (T (0)Ŵ (0), F̂ (0))C2n

and (4.1.18) becomes
AT −1(1)A∗ = BT −1(0)B∗.

Suppose that L is structural self-adjoint, i.e., for any W,F ∈ H2(E) satisfying (4.1.17), it
holds that

(T (1)Ŵ (1), F̂ (1))C2n − (T (0)Ŵ (0), F̂ (0))C2n = 0.
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For any X ∈ C2n, from (4.1.17) we get

(AŴ (1), X)C2n + (BŴ (0), X)C2n = 0.

Comparing both equalities above we have

T ∗(1)F̂ (1) = A∗X, T ∗(0)F̂ (0) = −B∗X.

Thus
F̂ (1) = −T −1(1)A∗X, F̂ (0) = T −1(0)B∗X.

Hence
0 = AF̂ (1) +BF̂ (0) = −AT −1(1)A∗X +BT −1(0)B∗X,

(4.1.18) follows from this equality.
Conversely, we suppose that (4.1.18) holds. For any X ∈ C2n, let W ∈ H2(E) satisfy the

condition
Ŵ (1) = T −1(1)A∗X, Ŵ (0) = −T −1(0)B∗X,

then W satisfies (4.1.17). Thus for any F ∈ H2(E),

(LW,F )L2 − (W,LF )L2 =
(
T (1)Ŵ (1), F̂ (1)

)
C2n

−
(
T (0)Ŵ (0), F̂ (0)

)
C2n

=
(
X,AF̂ (1) +BF̂ (0)

)
C2n

.

Therefore, (LW,F )− (W,LF ) = 0 if and only if AF̂ (1) +BF̂ (0) = 0. �

THEOREM 4.1.4 Let L be defined as before and let the connective condition be given by
(4.1.18). Then −L is a structural positive operator if only if A,B ∈ M2n×2n satisfy the condi-
tions rank(A,B) = 2n and

AEn

 0 T(1)

−T(1) 0

−1

A∗ = BEn

 0 T(0)

−T(0) 0

−1

B∗ (4.1.19)

where

En =

 In 0

0 0


2n×2n

.

Proof Let A,B ∈ M2n×2n satisfy the conditions rank(A,B) = 2n and (4.1.19). Firstly we
prove that A and B also satisfy the condition (4.1.18).

Note that

AEn

 0 T(1)

−T(1) 0

−1

A∗ −BEn

 0 T(0)

−T(0) 0

−1

B∗

= A

 0 −T−1(1)

0 0

A∗ −B

 0 −T−1(0)

0 0

B∗
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and

0 =

AEn

 0 T(1)

−T(1) 0

−1

A∗ −BEn

 0 T(0)

−T(0) 0

−1

B∗


∗

= A

 0 0

−T−1(1) 0

A∗ −B

 0 0

−T−1(0) 0

B∗
= −A(I − En)

 0 T(1)

−T(1) 0

−1

A∗ +B(I − En)

 0 T(0)

−T(0) 0

−1

B∗.

Therefore, one has

A

 0 T(1)

−T(1) 0

−1

A∗ −B

 0 T(0)

−T(0) 0

−1

B∗

= AEn

 0 T(1)

−T(1) 0

−1

A∗ −BEn

 0 T(0)

−T(0) 0

−1

B∗

+A(I − En)

 0 T(1)

−T(1) 0

A∗ −B(I − En)

 0 T(0)

−T(0)0 0

−1

B∗ = 0.

The condition (4.1.18) follows.
Let L have the connective condition

A

 W (1)

W ′(1)

+B

 W (0)

W ′(0)

 = 0, A,B ∈ M2n×2n,

then it is a self-adjoint operator according to Theorem 4.1.3. So there exists an X ∈ C2n such
that  W (1)

W ′(1)

 =

 0 T(1)

−T(1) 0

−1

A∗X,

and  W (0)

W ′(0)

 = −

 0 T(0)

−T(0) 0

−1

B∗X.

Thus one has

(LW,W ) +
∫ 1

0

(T(s)W ′(s),W ′(s))Cn + (Q(s)W (s),W (s))Cnds

= (T(1)W ′(1),W (1))Cn − (T(0)W ′(0),W (0))Cn

=

En

 0 T(1)

−T(1) 0

 W (1)

W ′(1)

 ,
 W (1)

W ′(1)


C2n
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−

En

 0 T(0)

−T(0) 0

 W (0)

W ′(0)

 ,
 W (0)

W ′(0)


C2n

=

EnA
∗X,

 0 T(1)

−T(1) 0

−1

A∗X


C2n

−

EnB
∗X,

 0 T(0)

−T(0) 0

−1

B∗X


C2n

=

X,AEn

 0 T(1)

−T(1) 0

−1

A∗X −BEn

 0 T(0)

−T(0) 0

−1

B∗X


C2n

Therefore, −L is structural positive if and only if

−(LW,W ) =
∫ 1

0

(T(s)W ′(s),W ′(s))Cn + (Q(s)W (s),W (s))Cnds

which is equivalent to

AEn

 0 T(1)

−T(1) 0

−1

A∗ = BEn

 0 T(0)

−T(0) 0

−1

B∗.

The desired result follows. �

REMARK 4.1.3 The structural equilibrium condition is whole vertex condition. If L has local
vertex conditions, then it also satisfies the structural equilibrium condition. But the structural
equilibrium need not to be the nodal equilibrium.

Note that the structural equilibrium condition requires the function values and its derivative
at different vertices, so the connection condition usually can not be represented by the structural
pattern matrix Ψ±.

EXAMPLE 4.1.1 Let G be a metric graph, whose structure is shown as Fig.4.1.1.

a1 y3(x)

y2(x)
y1(x)

a3

a2

@
@

@
@

@
@

�
�

�
�

�
�

Fig. 4.1.1 A triangle circuit

Let L be the formal second-order differential operator on G defined as

Lyj(x) = y′′j (x)− qj(x)yj(x), x ∈ (0, 1), j = 1, 2, 3

where qj(x) are nonnegative continuous functions.
Suppose that D(L) consists of all function y(x) ∈ H2(E) satisfy the following conditions

y1(0) = y3(1), y1(1) = y2(0), y2(1) = y3(0)
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and 
y1(0) = α[y′1(1)− y′2(0)]− β[y′2(1)− y′3(0)],

y2(0) = −α[y′3(1)− y′1(0)] + γ[y′2(1)− y′3(0)],

y3(0) = β[y′3(1)− y′1(0)]− γ[y′1(1)− y′2(0)].

Then −L is a structural positive operator.

This is because

(Ly, y)L2 +
3∑

j=1

∫ 1

0

[|y′j(s)|2 + qj(s)|yj(s)|2]ds

=
3∑

j=1

∫ 1

0

y′′j (s)y(s)ds+
3∑

j=1

∫ 1

0

|y′j(s)|2ds

=
3∑

j=1

y′j(1)yj(1)−
3∑

j=1

y′j(0)yj(0)

= [y′3(1)y3(1)− y′1(0)y1(0)] + [y′2(1)y2(1)− y′3(0)y3(0)] + [y′1(1)y1(1)− y′2(0)y2(0)]

= [y′3(1)− y′1(0)]y1(0) + [y′2(1)− y′3(0)]y3(0) + [y′1(1)− y′2(0)]y2(0)

= [y′3(1)− y′1(0)](α[y′1(1)− y′2(0)]− β[y′2(1)− y′3(0)])

+[y′2(1)− y′3(0)](β[y′3(1)− y′1(0)]− γ[y′1(1)− y′2(0)])

+[y′1(1)− y′2(0)](−α[y′3(1)− y′1(0)] + γ[y′2(1)− y′3(0)]) = 0.

Obviously, L is the structural equilibrium, but not the nodal equilibrium. �

4.1.4 Wave equation on metric graphs

Now let us return to the wave equations on the metric graph G = (V,E). Note that if the local
vertex conditions (4.1.14) hold, then the whole vertex condition (4.1.19) also is fulfilled. There-
fore, to avoid some technical details, one restricts oneself here to the whole vertex condition.

Let w(x, t) be a function defined on E×R+, wj(s, t) be its normalized realization on ej×R+

and satisfy the wave equations

mj(s)
∂2wj(s, t)

∂t2
=

∂

∂s

(
Tj(s)

∂wj(s, t)
∂s

)
− qj(s)wj(s, t), s ∈ (0, 1),

where mj(s) and Tj(s) are positive continuous functions, qj(s) are nonnegative continuous
functions. Using the vector-valued function W (s, t) = [w1(s, t), w2(s, t), · · · , wn(s, t)] on [0, 1]×
R+, one can rewrite the wave equations as

M(s)
∂2W (s, t)

∂t2
=

∂

∂s

(
T(s)

∂W (s, t)
∂s

)
−Q(s)W (s, t), s ∈ (0, 1), (4.1.20)

Suppose that W (s, t) satisfies the vertex conditions

A[W (1, t),Ws(1, t)]T +B[W (0, t),Ws(0, t)]T = 0 (4.1.21)
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where the real matrices

A =

 A11 A12,

A21 A22

 , B =

 B11 B12

B21 B22

 , A,B ∈M2n×2n

satisfy the condition (4.1.19). Thus one has the following result.

THEOREM 4.1.5 The wave system (4.1.20) with the vertex conditions (4.1.21) is the energy
conservation.

Proof The energy function of the wave system (4.1.20) is defined by

E(t) =
1
2

∫ 1

0

(T(s)Ws(s, t),Ws(s, t))Cn +(M(s)Wt(s, t),Wt(s, t))Cn +(Q(s)W (s, t),W (s, t))Cnds

Let W (s, t) be a real solution of (4.1.20) satisfying (4.1.21). Then one has

dE(t)
dt

=
∫ 1

0

(T(s)Ws(s, t),Wst(s, t))Rnds+
∫ 1

0

(M(s)Wtt(s, t),Wt(s, t))Rnds

+
∫ 1

0

(Q(s)W (s, t),Wt(s, t))Rnds

= (T(1)Ws(1, t),Wt(1, t))Rn − (T(0)Ws(0, t),Wt(0, t))Rn

=

En

 0 T(1)

−T(1) 0

 W (1, t)

Ws(1, t)

 ,
 Wt(1, t)

Wst(1, t)


R2n

−

En

 0 T(0)

−T(0) 0

 W (0, t)

Ws(0, t)

 ,
 Wt(0)

Wst(0, t)


R2n

.

The condition (4.1.21) is equivalent to

A

 W (1, t)

Ws(1, t)

+B

 W (0, t)

Ws(0, t)

 = 0.

Note that the condition (4.1.19) implies that there exists X(t) ∈ R2n such that W (1, t)

Ws(1, t)

 =

 0 T(1)

−T(1) 0

−1

A∗X(t),

 W (0, t)

Ws(0, t)

 = −

 0 T(0)

−T(0) 0

−1

B∗X(t).

Thus

dE(t)
dt

=

EnA
∗X(t),

 0 T(1)

−T(1) 0

−1

A∗X ′(t)


R2n
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−

EnB
∗X(t),

 0 T(0)

−T(0) 0

−1

B∗X ′(t)


R2n

=

X(t), AEn

 0 T(1)

−T(1) 0

−1

A∗X ′(t)−BEn

 0 T(0)

−T(0) 0

−1

B∗X ′(t)


R2n

= 0.

So the energy of the system is conservation. �

REMARK 4.1.4 For the local vertex conditions, by appropriate arrangement, the matrices A
and B will satisfy A ∈ M2n×2n(Ψ+) and B ∈ M2n×2n(Ψ−). The conditions in (4.1.21) still
hold. Therefore, for A,B ∈ M2n×2n satisfying (4.1.19), the condition (4.1.21) is not only a
sufficient but also a necessary for describing the physical models.

In [125], the authors gave a whole vertex condition as follows W (0, t) = CW (1, t)

T(1)Ws(1, t)− CT T(0)Ws(0, t) = 0,

this is a special case of (4.1.21) in which A and B are the block diagonal matrices, and hence
the geometric conditions and dynamic conditions are separated.

We observe that the separability of the geometric conditions and dynamical conditions does
not imply that these conditions have simple form. Even at local vertex condition, it may have
very complicated form. Here we consider a simple star-shaped graph.

EXAMPLE 4.1.2 Let G be a simple graph, whose structure is shown as Fig. 4.1.2

y6 y5
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y2 y3

y7
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Fig. 4.1.2 A star-shape graph

Let y(x, t) be a function defined on graph G and satisfy the wave equation

mj(s)yj,tt(s, t) = (Tj(s)yj,s(s, t))s − qj(s)yj(s, t), s ∈ (0, 1), t > 0

with connective conditions at a

y1(1, t) + y3(1, t) + y7(1, t) = y(a, t), y2(1, t) + y3(1, t) + y7(1, t) = y(a, t),

y5(0, t) + y6(0, t) = y(a, t), y4(0, t) = y(a, t)
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and the boundary conditions

y1(0, t) = y2(0, t) = y3(0, t) = y7(0, t) = 0, y4(1, t) = y5(1, t) = y6(1, t) = 0.

The dynamic condition at a is given by

T3(1)y3,s(1, t) = T7(1)y7,s(1, t) = [T1(1)y1,s(1, t) + T2(1)y2,s(1, t)] = T4(0)y4,s(0, t) + T5(0)y5,s(0, t)

T5(0)y5,s(0, t) = T6(0)y6,s(0, t)

This wave system is the energy conservation

4.1.5 Some classical vertex conditions

In this subsection we give some classical local vertex conditions. Let w(x, t) be a function
defined on G × R+, wj(s, t) be its normalized parameterization realization on ej × R+ and
satisfy the wave equations

mj(s)
∂2wj(s, t)

∂t2
=

∂

∂s

(
Tj(s)

∂wj(s, t)
∂s

)
− qj(s)wj(s, t), j ∈ {1, 2, · · · , n}.

§1. δ-type vertex condition

Let w(x, t) be a function defined on G × R+. At the interior node a ∈ Vint, wj(s, t), j ∈
{1, 2, · · · , n} satisfy the geometric conditions: the nodal continuity conditions

wj(1, t) = wi(0, t) = w(a, t), ∀j ∈ J+(a), i ∈ J−(a)

and the dynamic equilibrium condition (Kirchhoff law)∑
j∈J+(a)

Tj(1)wj,s(1, t)−
∑

i∈J−(a)

Ti(0)wi,s(0, t) = 0

this condition is also said to be the Neumann-Kirchhoff condition.
The geometric continuity conditions together with the Neumann-Kirchhoff condition are

called the δ-type vertex condition at a, i.e., wj(1, t) = wi(0, t) = w(a, t), ∀j ∈ J+(a), i ∈ J−(a)∑
j∈J+(a) Tj(1)wj,s(1, t)−

∑
i∈J−(a) Ti(0)wi,s(0, t) = 0.

(4.1.22)

§2. δ′-type vertex conditions

Let w(x, t) be a function defined on E × R+. At the interior node a ∈ Vint, wj(s, t), j ∈
{1, 2, · · · , n} satisfy the Dynamic conditions: the moment continuity conditions

Tj(1)wj,s(1, t) = Ti(0)wi,s(0, t) = v(a, t), ∀j ∈ J+(a), i ∈ J−(a)

and flow equilibrium condition (Kirchhoff law)∑
j∈J+(a)

wj(1, t)−
∑

i∈J−(a)

wi(0, t) = 0
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i.e.,  Tj(1)wj,s(1, t) = Ti(0)wi,s(0, t) = v(a, t), ∀j ∈ J+(a), i ∈ J−(a)∑
j∈J+(a) wj(1, t)−

∑
i∈J−(a) wi(0, t) = 0.

(4.1.23)

The connective condition (4.1.23) is said to be the δ′-type vertex condition.

4.2 Euler-Bernoulli beam equations on graphs

Let G be a metric graph with vertex set V = {a1, a2, · · · , am} and edge set E = {e1, e2, · · · , en}.
Let u(x, t) be a function defined on G× R+, uj(s, t) be its normalized realization on ej × R+.
If uj(s, t), j ∈ {1, 2, · · · , n} satisfy the partial differential equation

mj(s)
∂2uj(s, t)

∂t2
= − ∂2

∂s2

(
Ej(s)

∂2uj(s, t)
∂s2

)
+

∂

∂s

(
Tj(s)

∂uj(s, t)
∂s

)
− pj(s)uj(s, t), s ∈ (0, 1),

(4.2.1)
where mj(s), Ej(s) and Tj(s) are positive continuous differentiable functions, and pj(s) are
nonnegative continuous functions, then u(x, t) is called satisfying the Euler-Bernoulli beam
equation on G.

The partial differential equations are defined on E, we need some vertex restriction condi-
tions and initial data to determine uniquely a solution.

4.2.1 Nodal condition for self-adjoint operator

We consider the self-adjoint property of the differential operator in L2(G) defined by

Lwj = (Ej(s)wj,ss(s))ss−(Tj(s)wj,s(s))s +pj(s)wj(s), s ∈ (0, 1), j ∈ {1, 2, · · · , n}. (4.2.2)

For each ai ∈ V , we set J+(ai) = {j1, j2, · · · , jp} and J−(ai) = {k1, k2, · · · , kq}. We define
the local matrices at ai by

T+(ai) = diag[Tj1(1), Tj2(1), · · · , Tjp
(1)], T−(ai) = diag[Tk1(0), Tk2(0), · · · , Tkq

(0)], (4.2.3)

E+(ai) = diag[Ej1(1), Ej2(1), · · · , Ejp
(1)], E−(ai) = diag[Ek1(0), Ek2(0), · · · , Ekq

(0)], (4.2.4)

E′+(ai) = diag[E′j1(1), E′j2(1), · · · , E′jp
(1)], E′−(ai) = diag[E′k1

(0), E′k2
(0), · · · , E′kq

(0)] (4.2.5)

and the bond matrices

Q+(ai) =


Op −T+(ai) E′+(ai) E+(ai)

T+(ai) Op −E+(ai) Op

−E′+(ai) E+(ai) Op Op

−E+(ai) Op Op Op


4p×4p

(4.2.6)

Q−(ai) =


Oq −T−(ai) E′−(ai) E−(ai)

T−(ai) Oq −E−(ai) Oq

−E′−(ai) E+(ai) Oq Oq

−E−(ai) Oq Oq Oq


4q×4q

(4.2.7)
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where Op denotes the p× p zero matrix.
For each w ∈ H4(E), we define the column vectors at ai by

Wh
+(ai) = [wh

j1(1), wh
j2(1), · · · , wh

jp
(1)]T , Wh

−(ai) = [wh
k1

(0), wh
k2

(0), · · · , wh
kq

(0)]T

and set

Ŵ+(ai) =


W+(ai)

W ′
+(ai)

W ′′
+(ai)

W ′′′
+ (ai)


1×4p

, Ŵ−(ai) =


W−(ai)

W ′
−(ai)

W ′′
−(ai)

W ′′′
− (ai)


1×4q

.

Then, for any F,W ∈ H4(E), we have

(LW,F )L2 − (W,LF )L2

=
n∑

j=1

∫
ej

(Ej(s)wj,ss(s))ssfj(s)ds−
n∑

k=1

∫
ek

wk(s)(Ek(s)fk,ss)ssds

+
n∑

j=1

∫
ej

(Tj(s)wj,s(s))sfj(s)ds−
n∑

k=1

∫
ek

wk(s)(Tk(s)fk,s)sds

=
n∑

j=1

(Ej(s)wj,ss(s))sfj(s)
∣∣
s=1

−
n∑

j=1

(Ej(s)wj,ss(s))sfj(s)
∣∣
s=0

−
n∑

j=1

(Ej(s)wj,ss(s))fj,s(s)
∣∣
s=1

+
n∑

j=1

(Ej(s)wj,ss(s))fj,s(s)
∣∣
s=0

−
n∑

j=1

Tj(s)wj,s(s)fj(s)
∣∣
s=1

+
n∑

j=1

Tj(s)wj,s(s)fj(s)
∣∣
s=0

−
n∑

j=1

wj(s)(Ej(s)fj,ss)s(s)
∣∣
s=1

+
n∑

k=1

wk(s)(Ek(s)fk,ss)s(s)
∣∣
s=0

+
n∑

j=1

Ej(s)wj,s(s)fj,ss(s)
∣∣
s=1

−
n∑

j=1

Ej(s)wj,s(s)fj,ss(s)
∣∣
s=0

+
n∑

j=1

Tj(s)wj(s)fj,s(s)(s)
∣∣
s=1

−
n∑

k=1

Tk(s)wk(s)fk,s(s)
∣∣
s=0

=
m∑

i=1

∑
j∈J+(ai)

[Ej,s(s)wj,ss(s) + Ej(s)wj,sss(s)− Tj(s)wj,s(s)]fj(s)
∣∣
s=1

+
m∑

i=1

∑
j∈J+(ai)

[−Ej(s)wj,ss(s) + Tj(s)wj(s)]fj,s(s)
∣∣
s=1

+
m∑

i=1

∑
j∈J+(ai)

(−Ej,s(s)wj(s) + Ej(s)wj,s(s)) fj,ss(s)
∣∣
s=1

+
m∑

i=1

∑
j∈J+(ai)

(−Ej(s)wj(s)) fj,sss(s)
∣∣
s=1
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+
m∑

i=1

∑
j∈J−(ai)

[Ej,s(s)wj,ss(s) + Ejwj,sss(s)− Tj(s)wj,s(s)]fj(s)
∣∣
s=0

+
m∑

i=1

∑
j∈J−(ai)

[−Ej(s)wj,ss(s) + Tj(s)wj(s)]fj,s(s)
∣∣
s=0

+
m∑

i=1

∑
j∈J−(ai)

(−Ej,swj(s) + Ej(s)wj,s(s)) fj,ss

∣∣
s=0

+
m∑

i=1

∑
j∈J−(ai)

(−Ej(s)wk(s)) fj,sss(s)
∣∣
s=0

=
m∑

i=1

[−T+(ai)W ′
+(ai) + E′+(ai)W ′′

+(ai) + E+(ai)W ′′′
+ (ai)] · F+(ai)

+
m∑

i=1

[T+(ai)W+(ai)− E+(ai)W ′′
+(ai)] · F ′+(ai)

+
m∑

i=1

[−E′+(ai)W+(ai) + E+(ai)W ′
+(ai)] · F ′′+(ai) +

m∑
i=1

[−E+(ai)W+(ai)] · F ′′′+ (ai)

+
m∑

i=1

[−T−(ai)W ′
−(ai) + E′−(ai)W ′′

−(ai) + E−(ai)W ′′′
− (ai)] · F−(ai)

+
m∑

i=1

[T−(ai)W−(ai)− E−(ai)W ′′
−(ai)] · F ′−(ai)

+
m∑

i=1

[−E′−(ai)W−(ai) + E−(ai)W ′
+(ai)] · F ′′−(ai) +

m∑
i=1

[−E−(ai)W−(ai)] · F ′′′− (ai)

=
m∑

i=1

[(
Q+(ai)Ŵ+(ai), F̂+(ai)

)
C4p

−
(
Q−(ai)Ŵ−(ai), F̂−(ai)

)
C4q

]
Therefore, we have

(LW,F )L2 − (W,LF )L2 =
m∑

i=1

((
Q+(ai)Ŵ+(ai), F̂+(ai)

)
C4p

−
(
Q−(ai)Ŵ−(ai), F̂−(ai)

)
C4q

)
(4.2.8)

THEOREM 4.2.1 Let the formal differential operator L be defined by (4.2.2), and let Q±(a)
be defined by (4.2.6) and (4.2.7), respectively. Then the following statements are true:

1) For each node a ∈ V , there are at most 2(p + q) = 2#J(a) many linearly independent
conditions, they are of the form

AaŴ+(a) +BaŴ−(a) = 0 (4.2.9)

where Aa = A2(p+q)×4p and Ba = B2(p+q)×4q and rank(Aa, Ba) = 2(p+ q);
2) The operator L with nodal conditions (4.2.9) is nodal equilibrium, i.e.,(

Q+(a)Ŵ+(a), F̂+(a)
)

C4p
−
(
Q−(a)Ŵ−(a), F̂−(a)

)
C4q

= 0 (4.2.10)

if and only if Aa and Ba satisfy the condition

AaQ−1
+ (a)A∗a = BaQ−1

− (a)B∗a. (4.2.11)
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If for each a ∈ V the nodal conditions (4.2.11) hold, then L with restriction (4.2.9) is a self-
adjoint operator.

Proof For each a ∈ V , there are (p + q) many edges jointing it. The local vertex condition
can be regard as a star shape graph with fixed boundary conditions. Therefore, (p + q) many
Four-order differential equations, which have already 2(p+ q) many boundary conditions, have
at most 2(p + q) number connection conditions at the common node a. So there are at most
2(p+ q) linearly independent conditions at each a ∈ V .

Suppose that the nodal conditions are given by (4.2.9), then for any X ∈ C2(p+q), it holds
that

(AaŴ+(a), X)C2(p+q) + (BaŴ−(a), X)C2(p+q) = 0. (4.2.12)

If L is the nodal equilibrium, i.e., for any W,F ∈ H4(E) satisfying (4.2.9), it holds that(
Q+(a)Ŵ+(a), F̂+(a)

)
C4p

−
(
Q−(a)Ŵ−(a), F̂−(a)

)
C4q

= 0. (4.2.13)

Comparing (4.2.12) to (4.2.13), we get the relation between F±(a) and X

−Q+(a)F̂+(a) = A∗aX, Q−(a)F̂−(a) = B∗aX

where we have used equalities Q∗±(a) = −Q±(a), and hence

F̂+(a) = −Q−1
+ (a)A∗aX, F̂−(a) = Q−1

− (a)B∗aX.

Thus,

0 = AaF̂+(a) +BaF̂−(a) = −AaQ−1
+ (a)A∗aX +BaQ−1

− (a)B∗aX, ∀X ∈ C2(p+q).

So (4.2.11) holds.
Conversely, suppose that Aa and Ba in (4.2.9) satisfy the condition (4.2.11), W ∈ H4(E) is

a function satisfying the condition (4.2.9). By (4.2.11), there exists someone X ∈ C2(p+q) such
that

Ŵ+(a) = Q−1
+ (a)A∗aX, Ŵ−(a) = −Q−1

− (a)B∗aX.

Thus we have
Q+(a)Ŵ+(a) = A∗X, −Q−(a)F̂−(a) = B∗X.

Let F ∈ H4(E) satisfy the condition AaF̂+(a) +BaF̂−(a) = 0. Then we have(
Q+(a)Ŵ+(a), F̂+(a)

)
C4p

−
(
Q−(a)Ŵ−(a), F̂−(a)

)
C4q

=
(
A∗aX, F̂+(a)

)
C4p

+
(
B∗aX, F̂−(a)

)
C4q

=
(
X,AaF̂+(a)

)
C2(p+q)

+
(
X,BaF̂−(a)

)
C2(p+q)

=
(
X,AaF̂+(a) +BaF̂−(a)

)
C2(p+q)

= 0.

This shows the nodal equilibrium conditions.
When rank(Aa, Ba) = 2(p+ q) and (4.2.11) hold for any a ∈ V , a direct verification shows

that L under restriction (4.2.9) is a self-adjoint operator in L2(G). �
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THEOREM 4.2.2 Let the formal differential operator L be defined as (4.2.2), and let Q±(a)
be defined by (4.2.6) and (4.2.7) respectively. Suppose that for each a ∈ V matrices Aa =
A2(p+q)×4p and Ba = B2(p+q)×4q satisfy the conditions (4.2.11) and rank(Aa, Ba) = 2(p + q).
Define an operator L0 by L0 = L with domain

D(L0) = {W ∈ H4(E)
∣∣ AaŴ+(a) +BaŴ−(a) = 0,∀a ∈ V }. (4.2.14)

Then L0 is a positive operator if and only if Aa and Ba satisfy the condition

AaQ−1
+ (a)Q+,1(a)Q−1

+ (a)A∗a = BaQ−1
− (a)Q−,1(a)Q−1

− (a)B∗a (4.2.15)

where

Q±,1(a) =


O −T±(a) E′±(a) E±(a)

O O −E±(a) O

O O O O

O O O O


Proof For any W ∈ H4(E), we have

(LW,W )L2 =
n∑

j=1

∫
ej

(Ej(s)wj,ss(s))sswj(s)ds−
n∑

j=1

∫
ej

(Tj(s)wj,s(s))swj(s)ds

+
n∑

j=1

∫
ej

pj(s)wj(s)wj(s)ds

=
n∑

j=1

(Ej(s)wj,ss(s))swj(s)
∣∣1
0
−

n∑
j=1

Ej(s)wj,ss(s))wj,s(s)]
∣∣1
0
−

n∑
j=1

Tj(s)wj,s(s)wj(s)
∣∣1
0

+
n∑

j=1

∫
ej

(Ej(s)|wj,ss(s)|2 + Tj(s)|wj,s(s)|2 + pj(s)|wj(s)|2)ds.

Since ∑
j∈J+(ai)

(
(Ej(s)wj,ss(s))swj(s)− Ej(s)wj,ss(s))wj,s(s)− Tj(s)wj,s(s)wj(s)

) ∣∣
s=1

−
∑

k∈J−(ai)

(
(Ek(s)wk,ss(s))swk(s)− Ek(s)wk,ss(s)wk,s(s)− Tk(s)wk,s(s)wk(s)

) ∣∣
s=0

=




O −T+(ai) E′+(ai) E+(ai)

O O −E+(ai) O

O O O O

O O O O




W+(ai)

W ′
+(ai)

W ′′
+(ai)

W ′′′
+ (ai)

 ,

W+(ai)

W ′
+(ai)

W ′′
+(ai)

W ′′′
+ (ai)





−




O −T−(ai) E′−(ai) E−(ai)

O O −E−(ai) O

O O O O

O O O O




W−(ai)

W ′
−(ai)

W ′′
−(ai)

W ′′′
− (ai)

 ,

W−(ai)

W ′
−(ai)

W ′′
−(ai)

W ′′′
− (ai)




=

(
Q+,1(ai)Ŵ+(ai), Ŵ+(ai)

)
−
(
Q−,1(ai)Ŵ−(ai), Ŵ−(ai)

)
,
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we have

(LW,W )L2 =
m∑

i=1

(
Q+,1(ai)Ŵ+(ai), Ŵ+(ai)

)
−
(
Q−,1(ai)Ŵ−(ai), Ŵ−(ai)

)
+

m∑
i=1

∫
ej

(Ej(s)|wj,ss(s)|2 + Tj(s)|wj,s(s)|2 + pj(s)|wj(s)|2)ds.

For any W ∈ D(L0) given, there exists corresponding an X ∈ C2(p+q) such that

Ŵ+(ai) = Q−1
+ (ai)A∗ai

X, Ŵ−(ai) = −Q−1
− (ai)B∗ai

X

and hence(
Q+,1(ai)Ŵ+(ai), Ŵ+(ai)

)
C4p

−
(
Q−,1(ai)Ŵ−(ai), Ŵ−(ai)

)
C4q

=
(
Q+,1(ai)Q−1

+ (ai)A∗ai
X,Q−1

+ (ai)A∗ai
X
)

C4p −
(
Q−,1(ai)Q−1

− (ai)B∗ai
X,Q−1

− (ai)B∗ai
X
)

C4q

=
(
−Aai

Q−1
+ (ai)Q+,1(ai)Q−1

+ (ai)A∗ai
X +Bai

Q−1
− (ai)Q−,1(ai)Q−1

− (ai)B∗ai
X,X

)
C2(p+q)

where we have used equalities Q−1
± (a) = −Q−1

± (a).
we only need to prove that the matrix

AaQ−1
+ (a)Q+,1(a)Q−1

+ (a)A∗a −BaQ−1
− (a)Q−,1(a)Q−1

− (a)B∗a

is Hermitian. In fact, noting that Q±(a) = Q±,1(a)−Q∗±,1(a)), we have(
AaQ−1

+ (a)Q+,1(a)Q−1
+ (a)A∗a −BaQ−1

− (a)Q−,1(a)Q−1
− (a)B∗a

)∗
= Aa(Q−1

+ (a))∗(Q+,1(a))∗(Q−1
+ (a))∗A∗a −Ba(Q−1

− (a))∗(Q−,1(a))∗(Q−1
− (a))∗B∗a

= AaQ−1
+ (a)Q∗+,1(a)Q−1

+ (a)A∗a −BaQ−1
− (a)Q∗−,1(a)Q−1

− (a)B∗a
= AaQ−1

+ (a)[Q+,1(a)−Q+(a)]Q−1
+ (a)A∗a −BaQ−1

− (a)[Q−,1(a)−Q−(a)]Q−1
− (a)B∗a

= AaQ−1
+ (a)Q+,1(a)Q−1

+ (a)A∗a −BaQ−1
− (a)Q−,1(a)Q−1

− (a)B∗a
−[AaQ−1

+ (a)A∗a −BaQ−1
− (a)B∗a]

= AaQ−1
+ (a)Q+,1(a)Q−1

+ (a)A∗a −BaQ−1
− (a)Q−,1(a)Q−1

− (a)B∗a

where we have used equality AaQ−1
+ (a)A∗a = BaQ−1

− (a)B∗a. Therefore, L0 is positive if and only
if

AaQ−1
+ (a)Q+,1(a)Q−1

+ (a)A∗a = BaQ−1
− (a)Q−,1(a)Q−1

− (a)B∗a.

The desired result follows. �

4.2.2 The structural equilibrium condition

In this subsection we discuss the whole structure equilibrium conditions. For each W ∈ L2(E),
we introduce a vector-valued function W (s) = [w1(s), w2(s), · · · , wn(s)]T .

Let L be defined by (4.2.2), we shall rewrite L into the matrix form. Setting

E(s) = diag[E1(s), E2(s), E3(s), · · · , En(s)];

T(s) = diag[T1(s), T2(s), T3(s), · · · , Tn(s)];

P(s) = diag[p1(s), p2(s), p3(s), · · · , pn(s)];
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and denote

L =
d2

ds2

(
E(s)

d2

ds2

)
− d

ds

(
T(s)

d

ds

)
+ P(s)

LW (s) = [Lw1(s),Lw2(s), · · · ,Lwn(s)]T .

For any W,F ∈ L2(E), W (s) = [w1(s), w2(s), · · · , wn(s)]T and F (s) = [f1(s), f2(s), · · · , fn(s)]T ,
we have

(W,F )L2 =
∫

G

W (x)F (x)dx =
n∑

j=1

∫ 1

0

wj(s)fj(s)ds =
∫ 1

0

(W (s), F (s))Cnds.

For any W,F ∈ H4(E),

(LW,F )L2 − (W,LF )L2

=
∫ 1

0

(LW (s), F (s))Cnds−
∫ 1

0

(W (s),LF (s))Cnds

= ((E(x)W ′′(s))′, F (s))Cn

∣∣1
0
− (E(x)W ′′(s), F ′(s))Cn

∣∣1
0
− (T(s)W ′(s), F (s))Cn

∣∣1
0

−(W (s), (E(s)F ′′(s))′)Cn

∣∣1
0

+ (W ′(s),E(s)F ′′(s))Cn

∣∣1
0

+ (W (s),T(s)F ′(s))Cn

∣∣1
0

= (−T(s)W ′(s) + E′(s)W ′′(s) + E(s)W ′′′(s), F (s))Cn

∣∣1
0

+(T(s)W (s)− E(s)W ′′(s), F ′(s))Cn

∣∣1
0

(−E′(s)W (s) + E(x)W ′(s), F ′′(s)))Cn

∣∣1
0
− (E(s)W (xs), F ′′′(s))Cn

∣∣1
0

=




On −T(s) E′(s) E(s)

T(s) On −E(s) On

−E′(s) E(s) On On

−E(s) On On On




W (s)

W ′(s)

W ′′(s)

W ′′′(s)

 ,


F (s)

F ′(s)

F ′′(s)

F ′′′(s)




C4n

∣∣∣1
0

=
(
Q(1)Ŵ (1), F̂ (1)

)
C4n

−
(
Q(0)Ŵ (0), F̂ (0)

)
C4n

where

Q(s) =


On −T(s) E′(s) E(s)

T(s) On −E(s) On

−E′(s) E(s) On On

−E(s) On On On

 , Ŵ (s) =


W (s)

W ′(s)

W ′′(s)

W ′′′(s)

 . (4.2.16)

THEOREM 4.2.3 Let G be a metric graph, and L be defined by (4.2.2). Suppose that the
connective conditions at all vertices are given by

AŴ (1) +BŴ (0) = 0, A,B ∈ M4n×4n, rank(A,B) = 4n. (4.2.17)

Then L is structural self-adjoint if only if A and B satisfy the condition

AQ−1(1)A∗ = BQ−1(0)B∗. (4.2.18)
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Proof Let W ∈ H4(E) satisfy the connective conditions

AŴ (1) +BŴ (0) = 0, A,B ∈ M4n×4n

where A and B satisfy the condition (4.2.18). Then there exists an X ∈ C4n such that

Ŵ (1) = Q−1(1)A∗X, Ŵ (0) = −Q−1(1)B∗X,

and hence for any F ∈ H4(E),

(LW,F )L2 − (W,LF )L2 =
(
Q(1)Ŵ (1), F̂ (1)

)
C4n

−
(
Q(0)Ŵ (0), F̂ (0)

)
C4n

=
(
X,AF̂ (1) +BF̂ (0)

)
C4n

.

Therefore, L is structural self-adjoint if and only if AF̂ (1) +BF̂ (0) = 0.
Conversely, if L is structure self adjoint, i.e.,

(LW,F )L2 − (W,LF )L2 = 0, ∀W,F ∈ D(L) = {W ∈ H4(E)
∣∣ AŴ (1) +BŴ (0) = 0}.

Then (LW,F )L2 = (W,LF )L2 implies(
Q(1)Ŵ (1), F̂ (1)

)
C4n

−
(
Q(0)Ŵ (0), F̂ (0)

)
C4n

= 0

and the connection conditions lead to

(AŴ (1) +BŴ (0), X)C4n = (Ŵ (1), A∗X)C4n + (Ŵ (0), B∗X)C4n = 0,∀X ∈ C4n

Comparing both equalities above we get that

Q∗(1)F̂ (1) = A∗X, Q∗(0)F̂ (0) = −B∗X.

Note that Q∗(1) = −Q(1) and Q∗(0) = −Q(0). Thus

AF̂ (1) +BF̂ (0) = −AQ−1(1)A∗X +BQ−1(0)B∗X = 0, ∀X ∈ C4n

The desired result (4.2.18) follows from above equality. �

THEOREM 4.2.4 Let the formal differential operator L be defined as before, and let the
connective condition be given by (4.2.17). Then L is a structural positive operator if only if A
and B satisfy the condition

AQ−1(1)Q1(1)Q−1(1)A∗ = BQ−1(0)Q1(0)Q−1(0)B∗ (4.2.19)

where

Q1(s) =


On −T(s) E′(s) E(s)

On On −E(s) On

On On On On

On On On On


4n×4n

.
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Proof Firstly we prove that (4.2.19) implies (4.2.18), i.e., AQ−1(1)A∗ = BQ−1(0)B∗. Suppose
that A and B satisfy (4.2.19). Taking adjoint operation for (4.2.19) leads to

AQ−1(1)Q∗1(1)Q−1(1)A∗ = BQ−1(0)Q∗1(0)Q−1(0)B∗

where we have used (Q−1(s))∗ = −Q−1(s). By the definition of Q1(s), we have Q1(s)−Q∗1(s) =
Q(s). Hence

AQ−1(1)A∗ −BQ−1(0)B∗

= AQ−1(1)[Q1(1)−Q∗1(1)]Q−1(1)A∗ −BQ−1(0)[Q1(0)−Q∗1(0)]Q−1(0)B∗

= AQ−1(1)Q1(1)Q−1(1)A∗ −BQ−1(0)Q1(0)Q−1(0)B∗

−AQ−1(1)Q∗1(1)Q−1(1)A∗ +BQ−1(0)Q1(0)Q−1(0)B∗ = 0.

Next, for any W ∈ H4(E), we have

(LW,W )L2 −
∫ 1

0

[(E(s)W ′′(s),W ′′(s))Cn + (T(s)W ′(s),W ′(s))Cn + (P(s)W (s),W (s))Cn ]ds

= ((E′(1)W ′′(1) + E(1)W ′′′(1),W (1))Cn − (E′(0)W ′′(0) + E(0)W ′′′(0),W (0))Cn

−((E(1)W ′′(1),W ′(1))Cn + (E(0)W ′′(0),W ′(0))Cn

−((T (1)W ′(1),W (1))Cn + (T (0)W ′(0),W (0))Cn

=
(
Q1(1)Ŵ (1), Ŵ (1)

)
C4n

−
(
Q1(0)Ŵ (0), Ŵ (0)

)
C4n

.

Therefore, L is structural positive if and only if(
Q1(1)Ŵ (1), Ŵ (1)

)
C4n

−
(
Q1(0)Ŵ (0), Ŵ (0)

)
C4n

= 0. (4.2.20)

When (4.2.20) holds, we have

(LW,W )L2 =
∫ 1

0

[(E(s)W ′′(s),W ′′(s))Cn + (T(s)W ′(s),W ′(s))Cn + (P(s)W (s),W (s))Cn ]ds

Finally, we prove that L is structural positive if and only if the condition(4.2.19) holds. Let
L be the structural positive operator, and let A and B satisfy the condition (4.2.18). Then for
any X ∈ C4n, taking W ∈ H4(E) satisfying Ŵ (1) = Q−1(1)A∗X and Ŵ (0) = −Q−1(0)B∗X,
we have AŴ (1) +BŴ (0) = 0. Thus we have

0 =
(
Q1(1)Ŵ (1), Ŵ (1)

)
C4n

−
(
Q1(0)Ŵ (0), Ŵ (0)

)
C4n

=
(
Q1(1)Q−1(1)A∗X,Q−1(1)A∗X

)
C4n −

(
Q1(0)Q−1(0)B∗X,Q−1(0)B∗X

)
C4n

= −
(
AQ−1(1)Q1(1)Q−1(1)A∗X −BQ−1(0)Q1(0)Q−1(0)B∗X,X

)
C4n .

Using the Hermitian property of the matrixAQ−1(1)Q1(1)Q−1(1)A∗−BQ−1(0)Q1(0)Q−1(0)B∗,
we get

AQ−1(1)Q1(1)Q−1(1)A∗ = BQ−1(0)Q1(0)Q−1(0)B∗.

Conversely, we suppose that A and B satisfy the condition (4.2.19), which implies (4.2.18),
and the connection condition is given by (4.2.17). For any W ∈ H4(E) satisfying AW (1) +
BW (0) = 0, according to Theorem 4.2.3, there exists an X ∈ C4n such that

Ŵ (1) = Q−1(1)A∗X, Ŵ (0) = −Q−1(0)B∗X.
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Hence we have(
Q1(1)Ŵ (1), Ŵ (1)

)
C4n

−
(
Q1(0)Ŵ (0), Ŵ (0)

)
C4n

=
(
Q1(1)Q−1(1)A∗X,Q−1(1))A∗X

)
C4n −

(
Q1(0)Q−1(0)B∗X,Q−1(0)B∗X

)
C4n

=
(
(−AQ−1(1)Q1(1)Q−1(1)A∗ +BQ−1(0)Q1(0)Q−1(0)B∗)X,X

)
C4n = 0

Therefore, L is structure positive. �

REMARK 4.2.1 In the case of structure equilibrium, the connection conditions are not obvi-
ously dependent upon the structure of the graph.

4.2.3 Some classical vertex conditions

In this subsection we discuss some classical local vertex conditions. Here we shall employ the
notions of mechanics for a beam: w(x) denotes the displacement of beam depart from the
equilibrium state; wx(x) denotes the rotation angle of beam; E(x)wxx(x) denotes the bending
moment and (E(x)wxx)x denotes the shearing force.

Let G = (V,E) be a metric graph and W ∈ H4(E). At an interior vertex a ∈ V , we have
equality (

Q+,1(a)Ŵ+(a), Ŵ+(a)
)
−
(
Q−,1(a)Ŵ−(a), Ŵ−(a)

)
=

∑
j∈J+(a)

(
(Ej(s)wj,ss(s))swj(s)− Ej(s)wj,ss(s))wj,s(s)− Tj(s)wj,s(s)wj(s)

) ∣∣
s=1

−
∑

k∈J−(a)

(
(Ek(s)wk,ss(s))swk(s)− Ek(s)wk,ss(s)wk,s(s)− Tk(s)wk,s(s)wk(s)

) ∣∣
s=0

=
∑

j∈J+(a)

((Ej(s)wj,ss(s))s − Tj(s)wj,s(s))wj(s)
∣∣
s=1

−
∑

k∈J−(a)

((Ek(s)wk,ss(s))s − Tk(s)wk,s(s))wk(s)
∣∣
s=0

−
∑

j∈J+(a)

[Ej(s)wj,ss(s))wj,s(s)]
∣∣
s=1

+
∑

k∈J−(a)

[Ek(s)wk,ss(s)wk,s(s)]
∣∣
s=0

.

§1. δ-type vertex conditions

At each vertex a ∈ V , we impose the geometry and the moment continuity conditions: the
displacements of all edges jointed are continuous, and the bending moments also are continuous.
Using (4.2.11), we deduce the local vertex conditions at a ∈ V :

wj(1) = wk(0) = w(a),∀k ∈ J−(a), j ∈ J+(a)

Ej(1)wj,ss(1) = Ek(0)wk,ss(0) = U(a),∀k ∈ J−(a), j ∈ J+(a)∑
j∈J+(a)

wj,s(1)−
∑

k∈J−(a)

wk,s(0) = 0∑
j∈J+(a)

[(Ej(s)wj,ss(s))s(s)− Tj(s)wj,s(s)]s=1

−
∑

k∈J−(a)

(Ek(s)wk,ss(s))s(s)− Tk(s)wk,s(s)]s=0 = 0.

(4.2.21)
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The third condition is a geometrical condition and the last is the dynamic equilibrium condition.

§2. δ-type vertex conditions

At each a ∈ V we impose the geometric constraints: the displacement of all edges jointed are
continuous, and the rotation angles of the structure are continuous. Then the local vertex
conditions are given by

wj(1) = wk(0) = W (a),∀k ∈ J−(a), j ∈ J+(a)

wj,s(1) = wk,s(0) = U(a),∀k ∈ J−(a), j ∈ J+(a)∑
j∈J+(a)

Ej(s)wj,ss(1)−
∑

k∈J−(a)

Ek(0)wk,ss(0) = 0∑
j∈J+(a)

[(Ej(s)wj,ss(s))s(s)− Tj(s)wj,s(s)]s=1

−
∑

k∈J−(a)

(Ek(s)wk,ss(s))s(s)− Tk(s)wk,s(s)]s=0 = 0.

(4.2.22)

§3. δ’-type vertex conditions

At each a ∈ V we assume that the dynamic continuity conditions: the bending moments and
the shearing forces of the structure are continuous. Then the local vertex conditions are given
by 

(Ej(s)wj,ss(s))s(1)− Tj(1)wj,s(1) = −(Ek(s)wk,ss(s))s(0) + Tk(0)wj,s(0) = F (a),

∀k ∈ J−(a), j ∈ J+(a)

Ej(1)wj,ss(1) = Ek(0)wk,ss(0) = U(a),∀k ∈ J−(a), j ∈ J+(a)∑
j∈J+(a)

wj(1) +
∑

k∈J−(a)

wk(0) = 0∑
j∈J+(a)

wj,s(1)−
∑

k∈J−(a)

wk,s(0) = 0.

(4.2.23)

4.2.4 Euler-Bernoulli beam equation on graphs

Here we consider the Euler-Bernoulli beam equation on a metric graph G. Let u(x, t) be a
function defined on G × R+, uj(s, t) be its normalized realization on ej × R+. Suppose that
uj(s, t), j ∈ {1, 2, · · · , n} satisfy the partial differential equation

mj(s)
∂2uj(s, t)

∂t2
= − ∂2

∂s2

(
Ej(s)

∂2uj(s, t)
∂s2

)
+

∂

∂s

(
Tj(s)

∂uj(s, t)
∂s

)
− pj(s)uj(s, t), s ∈ (0, 1),

(4.2.24)
where mj(s), Ej(s) and Tj(s) are positive continuous function, and pj(s) are nonnegative
continuous functions.

We define a diagonal matrix

M(s) = diag[m1(s),m2(s), · · · ,mn(s)]
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then the equations (4.2.24) are equivalent to the vector-valued differential equations

M(s)
∂2W (s, t)

∂t2
= −LW (s, t), s ∈ (0, 1) (4.2.25)

where

LW (s, t) =
∂2

∂s2

(
E(s)

∂2W (s, t)
∂s2

)
− ∂

∂s

(
T(s)

∂W (s, t)
∂s

)
+ P(s)W (s, t).

Let Q(x) be defined by (4.2.16) and A,B ∈ M4n×4n satisfy the conditions rank(A,B) = 4n
and (4.2.19), i.e.,

AQ−1(1)Q1(1)Q−1(1)A∗ = BQ−1(0)Q1(0)Q−1(0)B∗.

Then the differential operator L with domain

D(L) = {W ∈ H4(E)
∣∣ A[W (1),W ′(1),W ′′(1),W ′′′(1)]T +B[W (0),W ′(0),W ′′(0),W ′′′(0)]T = 0}

is a positive operator in L2(E) according to Theorem 4.2.4.

THEOREM 4.2.5 Let G be a metric graph. Let W (s, t) be a solution to (4.2.25) satisfying
conditions

AŴ (1, t) +BŴ (0, t) = 0, Ŵ (s, t) = [W (s, t),Ws(s, t),Wss(s, t),Wsss(s, t)]T (4.2.26)

The energy function of system (4.2.25) is defined as

E(t) =
1
2

∫ 1

0

[(E(s)Wss(s, t),Wss(s, t))Rn + (T(s)Ws(s, t),Ws(s, t))Rn ]ds

+
1
2

∫ 1

0

[(P(s)W (s, t),W (s, t))Rn + (M(s)Wt(s, t),Wt(s, t))Rn ]dx. (4.2.27)

Then the energy of the system is conservation.

Proof Let the energy function is defined by (4.2.27). Then we have

dE(t)
dt

=
∫ 1

0

[(E(s)Wss(x, t),Wsst(x, t))Rn + (T(s)Ws(s, t),Wst(s, t))Rn ]ds

+
∫ 1

0

[(P(s)W (s, t),Wt(s, t))Rn + (M(s)Wtt(s, t),Wt(s, t))Rn ]ds

=
∫ 1

0

[(E(s)Wss(s, t),Wsst(s, t))Rn + (T(s)Ws(s, t),Wst(s, t))Rn ]ds

−
∫ 1

0

[((E(s)Wss(s, t))xx − (T(s)Ws(s, t))x,Wt(s, t))Rnds

= −[((E(s)Wss(s, t))s − T(s)Ws(s, t),Wt(s, t))Rn

∣∣s=1

s=0

+(E(s)Wss(s, t),Wst(s, t))Rn

∣∣s=1

s=0

= [−T(s)Ws(s, t) + E′(s)Wss(x, t) + E(s)Wsss(s, t),Wt(s, t))Rn

∣∣s=1

s=0

+(E(s)Wss(s, t),Wst(s, t))Rn

∣∣s=1

s=0

= (Q1(1)Ŵ (1, t), Ŵt(1, t))R4n − (Q1(0)Ŵ (0, t), Ŵt(0, t))R4n .
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Using condition (4.2.19), there exist X(t) ∈ C4n such that

Ŵ (1, t) = Q−1(1)A∗X(t), Ŵ (0, t) = −Q−1(0)B∗X(t),

and hence

dE(t)
dt

= (Q1(1)Ŵ (1, t), Ŵt(1, t))R4n − (Q1(0)Ŵ (0, t), Ŵt(0, t))R4n

= (Q1(1)Q−1(1)A∗X(t),Q−1(1)A∗X ′(t))R4n−(Q1(0)Q−1(0)B∗X(t),Q−1(0)B∗X ′(t))R4n

= −((AQ−1(1)Q1(1)Q−1(1)A∗ −BQ−1(0)Q1(0)Q−1(0)B∗)X(t), X ′(t))R4n = 0.

Therefore, the system (4.2.25) is the energy conservation. �

4.3 Timoshenko beam equations on graphs

Let G be a metric graph with the vertex set V = {a1, a2, · · · , am} and the edge set E =
{e1, e2, · · · , en}. Let w(x, t) and ϕ(x, t) be functions defined on G × R+, wj(s, t) and ϕj(s, t)
be their normalized realization on ej ×R+, respectively. If the pair (wj(s, t), ϕj(s, t) satisfy the
partial differential equations ρj(s)

∂2wj(s,t)
∂t2 = ∂

∂s

(
Kj(s)

∂wj(s,t)
∂s − ϕj(s, t)

)
,

Iρj
(s)∂2ϕj(s,t)

∂t2 = ∂
∂s

(
Ej(s)

∂ϕj(x,t)
∂x

)
+
(
Kj(s)

∂wj(s,t)
∂s − ϕj(s, t)

)
,

s ∈ (0, 1), (4.3.1)

where ρj(s),Iρj
(s), Ej(s) and Kj(s) are positive continuous differentiable function, then the

pair (w(x, t), ϕ(x, t)) is called satisfying the Timoshenko beam equation on G.
The partial differential equations are defined on E, we need some connective and boundary

conditions and the initial data to determine uniquely a pair functions.

4.3.1 Nodal condition for self-adjoint operator

We consider the self-adjoint property of the differential operator in L2(G) × L2(G), which is
defined on each edge ej by

L

 wj

ϕj

 =

 (Kj(s)(wj,s(s)− ϕj(s)))s

(Ej(s)ϕj,s(s))s +Kj(s)(wj,s(s)− ϕj(s))

 , s ∈ (0, 1), j = 1, 2, · · · , n.

(4.3.2)
For any F = [f, g] ∈ H2(E)×H2(E), W = [w,ϕ] ∈ H2(E)×H2(E),

(LW,F )L2 − (W,LF )L2

=
n∑

j=1

∫
ej

(Kj(s)(wj,s(s)− ϕj(s))sfj(s)ds+
n∑

j=1

∫
ej

(Ej(s)(ϕj,s(s))sgj(s)ds

+
n∑

j=1

∫
ej

(Kj(s)(wj,s(s)− ϕj(s))gj(s)ds−
n∑

j=1

∫
ej

wj(s)(Kj(s)(fj,s(s)− gj(s))sds
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−
n∑

j=1

∫
ej

ϕj(s)(Ej(s)(gj,s(s))sds−
n∑

j=1

∫
ej

ϕj(s)Kj(s)(fj,s(s)− gj(s))ds

=
n∑

j=1

Kj(s)(wj,s(s)− ϕj(s))fj(s)
∣∣1
0

+
n∑

j=1

Ej(s)ϕj,s(s)gj(s)
∣∣1
0

−
n∑

j=1

wj(s)(Kj(s)(fj,s(s)− gj(s)))
∣∣1
0
−

n∑
j=1

ϕj(s)(Ej(s)(gj,s(s))
∣∣1
0

Set J+(ai) = {j1, j2, · · · , jp}, J−(ai) = {k1, k2, · · · , kq}. We define the local matrices at ai by

K+(ai) = diag(Kj1(1),Kj2(1), · · · ,Kjp(1)),

K−(ai) = diag(Kk1(0),Kk2(0), · · · ,Kkq
(0)),

E+(ai) = diag(Ej1(1), Ej2(1), · · · , Ejp
(1)),

E−(ai) = diag(Ek1(0), Ek2(0), · · · , Ekq (0))

(4.3.3)

and the bond matrices

Q+(ai) =


Op −K+(ai) K+(ai) Op

K+(ai) Op Op E+(ai)

−K+(ai) Op Op Op

Op −E+(ai) Op Op


4p×4p

(4.3.4)

Q−(ai) =


Oq −K−(ai) K−(ai) Oq

K−(ai) Oq Oq E−(ai)

−K−(ai) Oq Oq Oq

Oq −E−(ai) Oq Oq


4q×4q

. (4.3.5)

For W = [w,ϕ] ∈ H1(E)×H1(E), set local column vectors

W+(ai) = [wj1(1), wj2(1), · · · , wjp(1)]T , W−(ai) = [wk1(0), wk2(0), · · · , wkq (0)]T ,

and

Φ+(ai) = [ϕj1(1), ϕj2(1), · · · , ϕjp
(1)]T , Φ−(ai) = [ϕk1(0), ϕk2(0), · · · , ϕkq

(0)]T .

For W = [w,ϕ], F = [f, g] ∈ H2(E)×H2(E), we define vectors

Ŵ±(ai) =


W±(ai)

Φ±(ai)

W ′
±(ai)

Φ′±(ai)

 , F̂±(ai) =


F±(ai)

G±(ai)

F ′±(ai)

G′±(ai)

 .
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Then we have∑
j∈J+(ai)

(
Kj(s)(wj,s(s)− ϕj(s))fj(s) + Ej(s)ϕj,s(s)gj(s)

)
s=1

−
∑

j∈J+(ai)

(
Kj(s)wj(s)(fj,s(s)− gj(s)) + Ej(s)ϕj(s)gj,s(s)

)
s=1

−
∑

k∈J−(ai)

(
Kj(s)(wj,s(s)− ϕj(s))fj(s) + Ej(s)ϕj,s(s)gj(s)

)
s=0

+
∑

j∈J−(ai)

(
Kj(s)wj(s)(fj,s(s)− gj(s)) + Ej(s)ϕj(s)gj,s(s)

)
s=0

=
∑

j∈J+(ai)

(
Kj(s)(wj,s(s)− ϕj(s))fj(s) + [Kj(s)wj(s) + Ej(s)ϕj,s(s)]gj(s)

)
s=1

−
∑

j∈J+(ai)

(
Kj(s)wj(s)fj,s(s) + Ej(s)ϕj(s)gj,s(s)

)
s=1

−
∑

k∈J−(ai)

(
Kj(s)(wj,s(s)− ϕj(s))fj(s) + [Kj(s)wj(s) + Ej(s)ϕj,s(s)]gj(s)

)
s=0

+
∑

j∈J−(ai)

(
Kj(s)wj(s)fj,s(s) + Ej(s)ϕj(s)gj,s(s)

)
s=0

=




Op −K+(ai) K+(ai) Op

K+(ai) Op Op E+(ai)

−K+(ai) Op Op Op

Op −E+(a) Op Op




W+(ai)

Φ+(ai)

W ′
+(ai)

Φ′+(ai)

 ,

F+(ai)

G+(ai)

F ′+(ai)

G′+(ai)




C4p

−




Oq −K−(ai) K−(ai) Oq

K−(ai) Oq Oq E−(ai)

−K−(ai) Oq Oq Oq

Oq −E−(ai) Oq Oq




W−(ai)

Φ−(ai)

W ′
−(ai)

Φ′−(ai)

 ,

F−(ai)

G−(ai)

F ′−(ai)

G′−(ai)




C4q

=
(
Q+(ai)Ŵ+(ai), F̂+(ai)

)
C4p

−
(
Q−(ai)Ŵ−(ai), F̂−(ai)

)
C4q

.

Therefore, we have

(LW,F )L2 − (W,LF )L2 =
m∑

i=1

(
Q+(ai)Ŵ+(ai), F̂+(ai)

)
−
(
Q−(ai)Ŵ−(ai), F̂−(ai)

)
(4.3.6)

THEOREM 4.3.1 Let L be defined as (4.3.2), and let Q±(a) be defined by (4.3.4) and (4.3.5)
for each a ∈ V , respectively. Then the following statements are true

1) At node a ∈ V , there are 2(p+ q) = 2#J(a) many linearly independent conditions, which
have the form

AaŴ+(a) +BaŴ−(a) = 0, rank(Aa, Ba) = 2#J(a) (4.3.7)

where Aa = A2(p+q)×4p and Ba = B2(p+q)×4q;
2) L with nodal conditions (4.3.7) is nodal equilibrium at a, i.e.,(

Q+(a)Ŵ+(a), F̂+(a)
)

C4p
−
(
Q−(a)Ŵ−(a), F̂−(a)

)
C4q

= 0 (4.3.8)
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if and only if Aa and Ba satisfy the condition

AaQ−1
+ (a)A∗a = BaQ−1

− (a)B∗a. (4.3.9)

In this case, L with nodal conditions (4.3.7) for all a ∈ V is a self-adjoint operator.

Proof Since there are 2(p+q) many second-order differential equations in small neighborhood
of vertex a, they have at most 2(p+ q) number the connection conditions at a when we regard
the network as a star shape graph in this neighborhood. So there are 2(p + q) many linearly
independent conditions at a.

Suppose that the nodal conditions are given by (4.3.7). Then for any X ∈ C2(p+q), we have

(AaŴ+(a), X)C2(p+q) + (BaŴ−(a), X)C2(p+q) = 0 (4.3.10)

If L is nodal equilibrium at a ∈ V , i.e., for any W,F ∈ H2(E) × H2(E) satisfying (4.3.7), it
holds that (

Q+(a)Ŵ+(a), F̂+(a)
)

C4p
−
(
Q−(a)Ŵ−(a), F̂−(a)

)
C4q

= 0, (4.3.11)

comparing (4.3.10) to (4.3.11) we can get equalities

−Q+(a)F̂+(a) = A∗aX, Q−(a)F̂−(a) = B∗aX

where we have used the equality Q∗±(a) = −Q±(a), that leads to

F̂+(a) = −Q−1
+ (a)A∗aX, F̂−(a) = Q−1

− (a)B∗aX.

Thus,

0 = AaF̂+(a) +BaF̂−(a) = −AaQ−1
+ (a)A∗aX +BaQ−1

− (a)B∗aX, ∀X ∈ C2(p+q).

So (4.3.9) holds.
Conversely, suppose that Aa and Ba in (4.3.7) satisfy the condition (4.3.9), W ∈ H2(E)×

H2(E) is a functions satisfying the condition (4.3.7). By assumption (4.3.9), there exists an
X ∈ C2(p+q) such that

Ŵ+(a) = Q−1
+ (a)A∗aX, Ŵ−(a) = −Q−1

− (a)B∗aX.

Thus we have
Q+(a)Ŵ+(a) = A∗aX, −Q−(a)F̂−(a) = B∗aX.

For any F ∈ H2(E)×H2(E) satisfying AaF̂+(a) +BaF̂−(a) = 0, we have(
Q+(a)Ŵ+(a), F̂+(a)

)
C4p

−
(
Q−(a)Ŵ−(a), F̂−(a)

)
C4q

=
(
X,AaF̂+(a)

)
C2(p+q)

+
(
X,BaF̂−(a)

)
C2(p+q)

=
(
X,AaF̂+(a) +BaF̂−(a)

)
C2(p+q)

= 0,

this means the nodal equilibrium at a.
If for all a ∈ V , the conditions (4.3.9) hold, a straightforward check shows that L under

restriction (4.3.7) is a self-adjoint operator in L2(G). �
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THEOREM 4.3.2 Let L be defined as (4.3.2) and Q±(a) be defined by (4.3.4) and (4.3.5) re-
spectively. Suppose that Aa = A2(p+q)×4p and Ba = B2(p+q)×4q satisfy the conditions rank(Aa, Ba) =
2(p+ q) and (4.3.9). Define operator L0 by L0 = −L with domain

D(L0) = {W ∈ H2(E)×H2(E)
∣∣ AaŴ+(a) +BaŴ−(a) = 0,∀a ∈ V } (4.3.12)

where Ŵ+(a) and Ŵ−(a) for each W = [w,ϕ] ∈ H2(E) ×H2(E) are defined as before. Then
L0 is a nonnegative operator if and only if Aa and Ba satisfy the condition

AaQ−1
+ (a)Q+,1(a)Q−1

+ (a)A∗a = BaQ−1
− (a)Q−,1(a)Q−1

− (a)B∗a (4.3.13)

where

Q±,1(a) =


O −K±(a) K±(a) O

O O O E±(a)

O O O O

O O O O

 (4.3.14)

Proof Firstly we observe that the condition (4.3.13) implies (4.3.9). In fact, from (4.3.13) we
can get

Aa(Q−1
+ (a))∗Q∗+,1(a)(Q−1

+ (a))∗A∗a = Ba(Q−1
− (a))∗Q∗−,1(a)(Q−1

− (a))∗B∗a

The relation (Q−1
± (a))∗ = −Q−1

± (a) leads to

AaQ−1
+ (a)Q∗+,1(a)Q−1

+ (a)A∗a = BaQ−1
− (a)Q∗−,1(a)Q−1

− (a)B∗a.

According definition of Q±,1 in (4.3.14), we have Q±(a) = Q±,1 − Q∗±,1. This together with
above and (4.3.13) yield

AaQ−1
+ (a)A∗a = BaQ−1

− (a)B∗a.

Next, for any w,ϕ ∈ H2(E), we have

(L(w,ϕ), (w,ϕ))L2 =
n∑

j=1

∫ 1

0

[((Kj(s)(wj,s(s)− ϕj(s))s)wj(s)ds

+
n∑

j=1

∫ 1

0

((Ej(s)ϕj,s(s))s +Kj(s)(wj,s(s)− ϕj(s)))ϕj(s)]ds

=
m∑

k=1

∑
j∈J+(ak)

Kj(s)(wj,s(s)− ϕj(s))wj(s) + Ej(s)ϕj,s(s)ϕj(s)
∣∣
s=1

−
m∑

k=1

∑
j∈J−(ak)

Kj(s)(wj,s(s)− ϕj(s))wj(s) + Ej(s)ϕj,s(s)ϕj(s)
∣∣
s=0

−
n∑

j=1

∫ 1

0

[Kj(s)|(wj,s(s)− ϕj(s)|2 + Ej(s)|ϕj,s(s)|2]ds.

Note that ∑
j∈J+(ak)

Kj(s)(wj,s(s)− ϕj(s))wj(s) + Ej(s)ϕj,s(s)ϕj(s)
∣∣
s=1
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=




Op −K+(ak) K+(ak) Op

Op Op Op E+(ak)

Op Op Op Op

Op Op Op Op




W+(ai)

Φ+(ai)

W ′
+(ak)

Φ′+(ak)

 ,

W+(ak)

Φ+(ak)

W ′
+(ak)

Φ′+(ak)




4p×4p

∑
j∈J−(ak)

Kj(s)(wj,s(s)− ϕj(s))wj(s) + Ej(s)ϕj,s(s)ϕj(s)
∣∣
s=0

=




Oq −K−(ak) K−(ak) Oq

Oq Oq Oq E−(ak)

Oq Oq Oq Oq

Oq Oq Oq Oq




W−(ai)

Φ−(ai)

W ′
−(ak)

Φ′−(ak)

 ,

W−(ak)

Φ−(ak)

W ′
−(ak)

Φ′−(ak)




4q×4q

Then we have

(L(w,ϕ), (w,ϕ))L2 =
m∑

k=1

(Q+,1(ak)Ŵ+(ak), Ŵ+(ak))C4p − (Q−,1(ak)Ŵ−(ak), Ŵ−(ak))C4q

−
n∑

j=1

∫ 1

0

[Kj(s)|(wj,s(s)− ϕj(s)|2 + Ej(s)|ϕj,s(s)|2]ds.

Therefore, L0 is nonnegative if and only if for each a ∈ V ,

(Q+,1(a)Ŵ+(a), Ŵ+(a))C4p − (Q−,1(a)Ŵ−(a), Ŵ−(a))C4q = 0.

If L0 is nonnegative self-adjoint under the nodal equilibrium conditions (4.3.9), then for any
X ∈ C2(p+q), there exist W = [w,ϕ] satisfy (4.3.7), i.e.,

AaŴ+(a) +BaŴ−(a) = 0,

such that
Ŵ+(a) = Q−1

+ (a)A∗aX, Ŵ−(a) = −Q−1
− (a)B∗aX

and hence

0 =
(
Q+,1(a)Ŵ+(a), Ŵ+(a)

)
C4p

−
(
Q−,1(a)Ŵ−(a), Ŵ−(a)

)
C4q

=
(
Q+,1(a)Q−1

+ (a)A∗aX,Q−1
+ (a)A∗aX

)
C4p −

(
Q−,1(a)Q−1

− (a)B∗aX,Q−1
− (a)B∗aX

)
C4q

=
(
X,Aa(Q−1

+ (a))∗Q∗+,1(a)Q−1
+ (a)A∗aX

)
C2(p+q)−

(
X,Ba(Q−1

− (a))∗Q∗−,1(a)Q−1
− (a)B∗aX

)
C2(p+q) .

From above we can get

Aa(Q−1
+ (a))∗Q∗+,1(a)Q−1

+ (a)A∗a = Ba(Q−1
− (a))∗Q∗−,1(a)Q−1

− (a)B∗a,

which is equivalent to

Aa(Q−1
+ (a)Q+,1(a)Q−1

+ (a)A∗a = Ba(Q−1
− (a)Q−,1(a)Q−1

− (a)B∗a.
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The formula (4.3.13) follows.
Conversely, if Aa and Ba satisfy the conditions (4.3.13), as shown in the first step, we have

AaQ−1
+ (a))Q∗+,1(a)Q−1

+ (a)A∗a = BaQ−1
− (a))Q∗−,1(a)Q−1

− (a)B∗a

and
AaQ−1

+ (a)A∗a = BaQ−1
− (a)B∗a.

For W = [w,ϕ] ∈ H2(E) × H2(E) satisfy AaŴ+(a) + BaŴ−(a) = 0, there exists an
X ∈ C2(p+q) such that

Ŵ+(a) = Q−1
+ (a))A∗aX, Ŵ−(a) = Q−1

− (a))B∗aX.

Thus, (
Q+,1(a)Ŵ+(a), Ŵ+(a)

)
C4p

−
(
Q−,1(a)Ŵ−(a), Ŵ−(a)

)
C4q

=
(
Q+,1(a)Q−1

+ (a)A∗aX,Q−1
+ (a)A∗aX

)
C4p

−
(
Q−,1(a)Q−1

− (a))B∗aX,Q−1
− (a))B∗aX

)
C4q

=
(
X,Aa(Q−1

+ (a))∗Q∗+,1(a)Q−1
+ (a))A∗aX

)
C2(p+q)

−
(
X,Ba(Q−1

− (a))∗Q∗−,1(a)Q−1
− (a))B∗aX

)
C2(p+q) = 0.

Therefore, L0 is a nonnegative operator. �

4.3.2 The structural equilibrium condition

In this subsection we discuss the structure equilibrium condition. Let G be the graph with edge
set E = {ej}. For each W = (w,ϕ) ∈ L2(E)× L2(E), we always coincide with a vector-valued
function (W (s),Φ(s))

W (s) = [w1(s), w2(s), · · · , wn(s)]T ,Φ(s) = [ϕ1(s), ϕ2(s), · · · , ϕn(s)]T .

In this way, the inner product in L2(G)× L2(G) becomes

((W,Φ), (F,G))L2 =
∫ 1

0

(W (s), F (s))Cnds+
∫ 1

0

(Φ(s), G(s))Cnds.

Let L be defined by (4.3.2). Setting

K(s) = diag[K1(s),K2(s), · · · ,Kn(s)]

and
E(s) = diag[E1(s), E2(s), · · · , En(s)],

we rewrite L into the matrix form

L

 W (s)

Φ(s)

 =

 (K(s)(W ′(s)− Φ(s)))′

(E(s)Φ′(s))′ + K(s)(W ′(s)− Φ(s))

 , s ∈ (0, 1).
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Thus we have

(L(W,Φ), (F,G))L2 − ((W,Φ),L(F,G))L2

= (K(s)(W ′(s)− Φ(s)), F )Cn

∣∣1
0

+ (E(s)Φ′(s), G(s))Cn

∣∣1
0

−(W (s),K(s)(F ′(s)−G(s)))Cn

∣∣1
0
− (Φ(s),E(s)G′(s))Cn

∣∣1
0

=




0 −K(s) K(s) On

K(s) On On E(s)

−K(s) On On On

On −E(s) On On




W (s)

Φ(s)

W ′(s)

Φ′(s)

 ,


F (s)

G(s)

F ′(s)

G′(s)




C4n

∣∣∣1
0

=
(
Q(1)Ŵ (1), F̂ (1)

)
C4n

−
(
Q(0)Ŵ (0), F̂ (0)

)
C4n

where

Q(s) =


0 −K(s) K(s) On

K(s) On On E(s)

−K(s) On On On

On −E(s) On On

 , Ŵ (s) =


W (s)

Φ(s)

W ′(s)

Φ′(s)

 (4.3.15)

Now let the connection condition of L defined on graph G be given by

AŴ (1) +BŴ (0) = 0, A,B ∈ M4n×4n, rank(A,B) = 4n (4.3.16)

where Ŵ (s) is defined as (4.3.15).

THEOREM 4.3.3 Let the formal differential operator L on L2(E) × L2(E) be defined as
(4.3.2). Let A and B be elements in M4n×4n. Then L with the connective condition (4.3.16)
is structural self-adjoint if only if A and B satisfy the condition

AQ−1(1)A∗ = BQ−1(0)B∗. (4.3.17)

Proof It is clear that L is self adjoint if and only if (W,Φ) and (F,G) satisfy (4.3.16) such
that (

Q(1)Ŵ (1), F̂ (1)
)

C4n
−
(
Q(0)Ŵ (0), F̂ (0)

)
C4n

= 0

where
Ŵ (s) = [W (s),Φ(s),W ′(s),Φ′(s)]T , F̂ (s) = [F (s), G(s), F ′(s), G′(s)]T .

Since (W,Φ), (F,G) satisfy (4.3.16), i.e.,

AŴ (1) +BŴ (0) = 0, AF̂ (1) +BF̂ (0) = 0,

for any X ∈ C4n, we have

(Ŵ (1), A∗X)C4n + (Ŵ (0), B∗X)C4n = 0.

Comparing above equality with(
Q(1)Ŵ (1), F̂ (1)

)
C4n

−
(
Q(0)Ŵ (0), F̂ (0)

)
C4n

= 0
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we get
Q∗(1)F̂ (1) = A∗X, Q∗(0)F̂ (0) = −B∗X.

Note that Q∗(s) = −Q(s) and Q−1(s) exist, and hence

F̂ (1) = −Q−1(1)A∗X, F̂ (0) = Q−1(0)B∗X.

Thus we have

0 = AF̂ (1) +BF̂ (0) = −AQ−1(1)A∗X +BQ−1(0)B∗X, ∀X ∈ C4n

Therefore, AQ−1(1)A∗X = BQ−1(0)B∗.
Conversely, if A and B satisfy condition (4.3.17), then for any W and F satisfy

Ŵ (1) = Q−1(1)A∗X, Ŵ (0) = −Q−1(0)B∗X,

and
F̂ (1) = Q−1(1)A∗Y, F̂ (0) = −Q−1(0)B∗Y.

we have AŴ (1) +BŴ (0) = 0 and AF̂ (1) +BF̂ (0) = 0, and(
Q(1)Ŵ (1), F̂ (1)

)
C4n

−
(
Q(0)Ŵ (0), F̂ (0)

)
C4n

=
(
A∗X,Q−1(1)A∗Y

)
C4n −

(
B∗X,Q−1(0)B∗Y

)
C4n

=
(
X, (AQ−1(1)A∗ −BQ−1(0)B∗)Y

)
C4n = 0.

The desired result follows. �

THEOREM 4.3.4 Let L on L2(G)×L2(G) be defined as (4.3.2). Let A and B be the elements
in M4n×4n. Then −L with connection condition (4.3.16) is a structural positive operator if only
if A and B satisfy the condition

AQ−1(1)Q1(1)Q−1(1)A∗ = BQ−1(0)Q1(0)Q−1(0)B∗ (4.3.18)

where

Q1(s) =


On −K(s) K(s) On

On On On E(s)

On On On On

On On On On

 (4.3.19)

Proof For any W,Φ ∈ H2(E), we have

(L(W,Φ), (W,Φ))L2 =
n∑

j=1

∫ 1

0

[((Kj(s)(wj,s(s)− ϕj(s))s)wj(s)ds

+
n∑

j=1

∫ 1

0

((Ej(s)ϕj,s(s))s +Kj(s)(wj,s(s)− ϕj(s)))ϕj(s)]ds

=
n∑

j=1

Kj(s)(wj,s(s)− ϕj(s))wj(s)
∣∣1
0

+ Ej(s)ϕj,s(s)ϕj(s)
∣∣1
0

−
n∑

j=1

∫ 1

0

[Kj(s)|(wj,s(s)− ϕj(s)|2 + Ej(s)|ϕj,s(s)|2]ds.
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Note that
n∑

j=1

Kj(s)(wj,s(s)− ϕj(s))wj(s) + Ej(s)ϕj,s(s)ϕj(s)

=




On −K(s) K(s) On

On On On E(s)

On On On On

On On On On




W (s)

Φ(s)

W ′(s)

Φ′(s)

 ,

W (s)

Φ(s)

W ′(s)

Φ′(s)




4n×4n

Then we have

(L(W,Φ), (W,Φ))L2 = (Q1(1)Ŵ (1), Ŵ (1))Cn − (Q1(0)Ŵ (0), Ŵ (0))C4n

−
n∑

j=1

∫ 1

0

[Kj(s)|(wj,s(s)− ϕj(s)|2 + Ej(s)|ϕj,s(s)|2]ds.

Obviously, −L is structure positive if and only if

(Q1(1)Ŵ (1), Ŵ (1))Cn − (Q1(0)Ŵ (0), Ŵ (0))C4n = 0.

If −L is structure positive, then it is self adjoint and hence

Ŵ (1) = Q−1(1)A∗X, Ŵ (0) = −Q−1(0)B∗X, X ∈ C4n.

Thus we get

0 = (Q1(1)Ŵ (1), Ŵ (1))Cn − (Q1(0)Ŵ (0), Ŵ (0))C4n

= (Q1(1)Q−1(1)A∗X,Q−1(1)A∗X)Cn − (Q1(0)Q−1(0)B∗X,Q−1(0)B∗X)C4n

= −(AQ−1(1)Q1(1)Q−1(1)A∗X −BQ−1(0)Q1(0)Q−1(0)B∗X,X)C4n , ∀X

where we have used the equality (Q−1(s))∗ = −Q−1(s). Using relations AQ−1(1))A∗ =
BQ−1(0)B∗ and Q(s) = Q1(s)−Q∗1(s), we can prove that

AQ−1(1)Q1(1)Q−1(1)A∗ −BQ−1(0)Q1(0)Q−1(0)B∗

is a Hermitian matrix. Therefore, we have

AQ−1(1)Q1(1)Q−1(1)A∗ = BQ−1(0)Q1(0)Q−1(0)B∗.

The formula (4.3.18) is proven.
Conversely, we assume that A and B satisfy (4.3.18). Since the equality (4.3.18) implies

AQ−1(1)Q∗1(1)Q−1(1)A∗ = BQ−1(0)Q∗1(0)Q−1(0)B∗

Since Q(s) = Q1(s) − Q∗1(s), so we have AQ−1(1)A∗ = BQ−1(0)B∗. Therefore, under the
condition (4.3.18), −L is a self adjoint operator. Then for any W,Φ ∈ H2(E) satisfy

AŴ (1) +BŴ (0) = 0,
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there exists an X ∈ C4n such that

Ŵ (1) = Q−1(1)A∗X, Ŵ (0) = −Q−1(0)B∗X,

and hence

(Q1(1)Ŵ (1), Ŵ (1))Cn − (Q1(0)Ŵ (0), Ŵ (0))C4n

= (Q1(1)Q−1(1)A∗X,Q−1(1)A∗X)Cn − (Q1(0)Q−1(0)B∗X,Q−1(0)B∗X)C4n

= (X,AQ−1(1)Q∗1(1)Q−1(1)A∗X)Cn − (X,BQ−1(0)Q∗1(0)Q−1(0)B∗X)C4n = 0.

So −L is a structure positive operator. �

In what follows, we shall calculate the condition (4.3.18). Firstly we calculate

Q−1(s)Q1(s)Q−1(s)

= Q−1(s)


On −K(s) K(s) On

On On On E(s)

On On On On

On On On On




On On −K−1(s) On

On On On −E−1(s)

K−1(s) On On −E−1(s)

On E−1(s) E−1(s) On



=


On On −K−1(s) On

On On On −E−1(s)

K−1(s) On On −E−1(s)

On E−1(s) E−1(s) On




In On On On

On In In On

On On On On

On On On On



=


On On On On

On On On On

K−1(s) On On On

On E−1(s) E−1(s) On


Denote by

Q†(s) =


On On On On

On On On On

K−1(s) On On On

On E−1(s) E−1(s) On


Then we have

Q−1(s) = Q†(s)−Q∗†(s)

Therefore we have the following result.

COROLLARY 4.3.1 Let L on L2(E)×L2(E) be defined as (4.3.2). Let A and B be the ele-
ments in M4n×4n. Then −L with connection condition (4.3.16) is a structural positive operator
if only if A and B satisfy the condition

AQ†(1)A∗ = BQ†(0)B∗ (4.3.20)
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4.3.3 Timoshenko beam equations on metric graphs

Now let us return to Timoshenko beam equation on metric graph G. Let w(x, t) and ϕ(x, t) be
functions defined on G × R+, wj(s, t) and ϕj(s, t) be their normalized realization on ej × R+.
Suppose that the pair (wj(s, t), ϕj(s, t)) satisfy the partial differential equations ρj(s)

∂2wj(s,t)
∂t2 = ∂

∂s

(
Kj(s)

∂wj(s,t)
∂s − ϕj(s, t)

)
,

Iρj
(s)∂2ϕj(s,t)

∂t2 = ∂
∂s

(
Ej(s)

∂ϕj(x,t)
∂x

)
+
(
Kj(s)

∂wj(s,t)
∂s − ϕj(s, t)

)
,

s ∈ (0, 1),

where ρj(s),Iρj
(s), Ej(s) and Kj(s) are positive continuous functions.

For the sake of simplicity, we introduce vector-valued function. Define matrices

Mρ(s) = diag[ρ1(s), ρ2(s), · · · , ρn(s)]

and
Iρ(s) = diag[Iρ1(s), Iρ2(s), · · · , Iρn

(s)]

Then the vector form of Timoshenko beam is Mρ(s)
∂2W (s,t)

∂t2 = ∂
∂s

(
K(s)∂W (s,t)

∂s − Φ(s, t)
)
,

Iρ(s)
∂2Φ(s,t)

∂t2 = ∂
∂s

(
E(s)∂Φ(x,t)

∂x

)
+
(
K(s)∂W (s,t)

∂s − Φ(s, t)
)
,

s ∈ (0, 1), (4.3.21)

The energy function of (4.3.21) is defined by

E(t) =
1
2

∫ 1

0

(K(s)(Ws(s, t)− Φ(s, t)), (Ws(s, t)− Φ(s, t)))Rn + (Mρ(s)Wt(s, t),Wt(s, t))Rnds

+
1
2

∫ 1

0

(E(s)Φs(s, t),Φs(s, t))Rn + (Iρ(s)Φt(s, t),Φt(s, t))Rnds. (4.3.22)

THEOREM 4.3.5 Let partial differential equations on L2(E)×L2(E) be defined as (4.3.21).
Let A and B be the elements in M4n×4n satisfy the condition (4.3.20). Then (4.3.21) with the
connective condition

A[W (1, t),Φ(1, t),Ws(1, t),Φs(1, t)]T +B[W (0, t),Φ(0, t),Ws(0, t),Φs(0, t)]T = 0

is well-posed and energy conservation under appropriate initial data.

The proof is a straightforward verification, the detail is omitted.

4.3.4 Some classical vertex conditions

In this subsection we give some classical local vertex conditions. Let w(x, t) and ϕ(x, t) be
functions defined on G × R+, wj(s, t) and ϕj(s, t) be their normalized realization on ej × R+.
Suppose that the pair (wj(s, t), ϕj(s, t) satisfy the differential equations ρj(s)

∂2wj(s,t)
∂t2 = ∂

∂s

(
Kj(s)

∂wj(s,t)
∂s − ϕj(s, t)

)
,

Iρj
(s)∂2ϕj(s,t)

∂t2 = ∂
∂s

(
Ej(s)

∂ϕj(x,t)
∂x

)
+
(
Kj(s)

∂wj(s,t)
∂s − ϕj(s, t)

)
,

s ∈ (0, 1),

where ρj(s),Iρj
(s), Ej(s) and Kj(s) are positive continuous functions.
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§1. δ-type vertex conditions

At vertex a ∈ V we have the geometric constraints: the displacements and rotation angle of all
jointing edges are continuous. Then the local vertex conditions at a ∈ V are given by

wj(1) = wk(0) = w(a),∀k ∈ J−(a), j ∈ J+(a)

ϕj(1) = ϕk(0) = ϕ(a),∀k ∈ J−(a), j ∈ J+(a)∑
j∈J+(a)

Kj(wj,s(1)− ϕj(1))−
∑

k∈J−(a)

Kk(wk,s(0)− ϕk(0)) = 0∑
j∈J+(a)

Ej(1)ϕj,s(1)−
∑

k∈J−(a)

Ek(0)ϕk,s(0) = 0.

(4.3.23)

The last two conditions are the dynamic equilibrium conditions.

§2. δ’-type vertex conditions

At node a ∈ V we assume that forces and moments of the structure are continuous. Then the
local vertex conditions at a are given by

Kj(1)(wj,s(1)− ϕj(1)) = Kk(0)(wk,s(0)− ϕk(0)) = F (a),

∀k ∈ J−(a), j ∈ J+(a)

Ej(1)ϕj,s(1) = Ek(0)ϕj,s(0) = M(a),∀k ∈ J−(a), j ∈ J+(a)∑
j∈J+(a)

wj(1)−
∑

k∈J−(a)

wk(0) = 0∑
j∈J+(a)

ϕj(1)−
∑

k∈J−(a)

ϕj(0) = 0.

(4.3.24)

§3. δ-type elastic support vertex conditions

At node a ∈ V we impose the geometric constraints: the displacements and ration angles of all
jointing edges are continuous, and there is an elastic support at a with hooke’s constants T (a)
and M(a). Then the local vertex conditions at a are given by

wj(1) = wk(0) = w(a),∀k ∈ J−(a), j ∈ J+(a)

ϕj(1) = ϕk(0) = ϕ(a),∀k ∈ J−(a), j ∈ J+(a)∑
j∈J+(a)

Kj(1)(wj,s(1)− ϕj(1))−
∑

k∈J−(a)

Kk(0)(wk,s(0)− ϕk(0))− T (a)w(a) = 0,∑
j∈J+(a)

Ej(1)ϕj,s(1)−
∑

k∈J−(a)

Ek(0)ϕk,s(0)−M(a)ϕ(a) = 0.

(4.3.25)



Chapter 5

Networks of Strings and Design

of Controllers

5.1 Networks of strings with elastic supports

Let G = (V,E) be a metric graph without isolated vertex, u(x, t) be a function defined on G.
Suppose that u(x, t) satisfies the wave equation on each ej ∈ E, i.e.,

mj(s)uj,tt(s, t) = (Tj(s)uj,s(s, t))s − qj(s)uj(s), s ∈ (0, 1) (5.1.1)

where Tj(s), mj(s) are positive continuous functions and qj(s) are nonnegative functions (or
called potentials).

Assume that the structure is continuous at each vertex and there is an elastic support at
each vertex a ∈ V . The energy function of the system is defined as

E(t) =
1
2

n∑
j=1

∫
ej

[Tj(s)|uj,s(s, t)|2 + qj(s)|uj(s, t)|2]ds

+
1
2

n∑
j=1

∫
ej

mj(s)|ut(s, t)|2ds+
1
2

m∑
i=1

k(ai)|u(ai, t)|2,

then we have

dE(t)
dt

=
n∑

j=1

∫
ej

Tj(s)uj,s(s, t)uj,st(s, t)ds+ qj(s)uj(s, t)uj,t(s, t)ds

+
n∑

j=1

∫
ej

mj(s)uj,tt(s, t)uj,t(s, t)ds+
m∑

i=1

k(ai)u(ai, t)ut(ai, t)

=
n∑

j=1

Tj(s)uj,s(s, t)uj,t(s, t)
∣∣1
0

+
m∑

i=1

k(ai)u(ai, t)ut(ai, t)

111
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=
m∑

i=1

 ∑
j∈J+(ai)

Tj(1)uj,s(1, t)uj,t(1, t)−
∑

k∈J−(ai)

Tk(0)uk,s(0, t)uk,t(0, t)


+

m∑
i=1

k(ai)u(ai, t)ut(ai, t).

Using the continuity conditions at the vertices

u(ai, t) = uk(0, t) = uj(1, t), ∀k ∈ J−(ai), j ∈ J+(ai), ai ∈ Vint

and

u(ai, t) = uk(0, t), ∀k ∈ J−(ai), ai ∈ ∂G; u(ai, t) = uj(1, t), j ∈ J+(ai), ai ∈ ∂G

we get that

dE(t)
dt

=
m∑

i=1

 ∑
j∈J+(ai)

Tj(1)uj,s(1, t)uj,t(1, t)−
∑

k∈J−(ai)

Tk(0)uk,s(0, t)uk,t(0, t)


+

m∑
i=1

k(ai)u(ai, t)ut(ai, t)

=
m∑

i=1

 ∑
j∈J+(ai)

Tj(1)uj,s(1, t)−
∑

k∈J−(ai)

Tk(0)uk,s(0, t) + k(ai)u(ai, t)

ut(ai, t)

Therefore, we derive the dynamic conditions of the elastic system at all vertices from the
geometric conditions:

1) Continuity conditions

u(aj , t) = uk(0, t) = ui(1, t), ∀k ∈ J−(aj), i ∈ J+(aj), (5.1.2)

2) Dynamical conditions∑
j∈J+(a)

Tj(1)uj,s(1, t)−
∑

k∈J−(a)

Tk(0)uk,s(0, t) + k(a)u(a, t) = f(a, t), a ∈ V (5.1.3)

where f(a, t) is an exterior force acting on a. Such a network is said to be a continuous network.
If all k(a) = 0,∀a ∈ V , then there is no elastic support on the network.

5.1.1 Vectorization form of networks of strings

Let G be a directed graph without isolated vertex. Let function u(x, t) defined on G be nor-
malized and satisfy the wave equation on E.

Let
U(s, t) = (u1(s, t), u2(s, t), · · · , un(s, t)), s ∈ (0, 1)

U(v, t) = (u(a1, t), u(a2, t), · · · , u(am, t)),
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and define matrices 

T(s) = diag(T1(s), T2(s), · · · , Tn(s)),

M(s) = diag(m1(s),m2(s), · · · ,mn(s)),

Q(s) = diag(q1(s), q2(x), · · · , qn(s)),

K(v) = diag(k(a1), k(a2), · · · , k(am))

(5.1.4)

Then the differential equations (5.1.1) on E can be rewritten into

M(s)Utt(s, t) = (T(s)Us(s, t))s −Q(s)U(s, t), s ∈ (0, 1)

and the connective and boundary conditions (5.1.2) are rewritten as

∃U(v, t) ∈ Cm, s.t.
U(1, t) = (Φ+)TU(v, t),

U(0, t) = (Φ−)TU(v, t).
(5.1.5)

The vector form of the dynamic condition (5.1.3) is

Φ+T(1)Us(1, t)− Φ−T(0)Us(0, t)) + K(v)U(v, t) = F (v, t) ∈ Cm. (5.1.6)

Thus the network of strings can be rewritten into

M(s)Utt(s, t) = (T(s)Us(s, t))s −Q(s)U(s, t), s ∈ (0, 1)

∃U(v, t) ∈ Cm, s.t.U(1, t) = (Φ+)TU(v, t),

U(0, t) = (Φ−)TU(v, t);

Φ+T(1)Us(1, t)− Φ−T(0)Us(0, t) + K(v)U(v, t) = F (v, t) ∈ Cm,

U(s, 0) = U0(s), Ut(s, 0) = U1(s).

(5.1.7)

where U0(s) and U1(s) are the appropriate initial data.

5.1.2 Design of observers and feedback controllers

Since the energy function of the system (5.1.7) is given by

E(t) =
1
2

∫ 1

0

[(T(s)Us(s, t), Us(s, t))Cn + (Q(s)U(s, t), U(s, t))Cn ]ds

+
1
2

∫ 1

0

(M(s)Ut(s, t), Ut(s, t))Cnds+
1
2
(K(v)U(v, t), U(v, t))Cm

and

dE(t)
dt

=
∫ 1

0

(T(s)Us(x, t), Ust(x, t))Cnds+
∫ 1

0

(Q(s)U(s, t), Ut(s, t))Cnds

+
∫ 1

0

(M(s)Utt(s, t), Ut(s, t))Cnds+ (K(v)U(v, t), Ut(v, t))Cm

= (T(1)Us(1, t), Us(1, t))Cn − (T(0)Us(0, t), Ut(0, t))Cn + (K(v)U(v, t), Ut(v, t))Cm .
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Using the continuity condition,Ut(0, t) = (Φ−)TUt(v, t), Ut(1, t) = (Φ+)TUt(v, t), we get

dE(t)
dt

= (T(1)Us(1, t), Ut(1, t))Cn − (T(0)Us(0, t), Ut(0, t))Cn + (K(v)U(v, t), Ut(v, t))Cm

= (Φ+T(1)Us(1, t)− Φ−T(0)Us(0, t) + K(v)U(v, t), Ut(v, t))Cm

= (F (v, t), Ut(v, t))Cm

where F (v, t) is control input. Thus we have

E(t) = E(0) +
∫ t

0

(F (v, t), Ut(v, t))Cmdt.

By the duality principle of the system, we choose the observation (dual to its controllers) of
the system

Y (t) = SUt(v, t) ∈ Cm

where S is a vertex selection matrix of observation, which is a 0-1 diagonal matrix. Take the
feedback control law as

F (v, t) = −ΓY (t) = −ΓSUt(v, t) ∈ Cm

where Γ is a positive gain matrix from Cm to Cm. Thus the closed loop system is

M(s)Utt(s, t) = (T(s)Us(s, t))s −Q(s)U(s, t), s ∈ (0, 1)

∃U(v, t) ∈ V, s.t.U(1, t) = (Φ+)TU(v, t),

U(0, t) = (Φ−)TU(v, t),

Φ+T(1)Ux(1, t)− Φ−T(0)Ux(0, t) + K(v)U(v, t) = −ΓSUt(v, t) ∈ Cm

U(s, 0) = U0(s), Ut(s, 0) = U1(s), s ∈ (0, 1).

(5.1.8)

Note that the vertex selection matrix of observation S is always a diagonal matrix, whose
diagonal entries are 0 or 1. Usually the feedback gain matrix Γ is also a diagonal matrix.
Therefore ΓS denotes the design of feedback controllers. With these feedback controllers, the
energy of the closed loop system satisfies equality

E(t) +
∫ t

0

(ΓSUt(v, t), Ut(v, t))Cmdt = E(0).

Obviously, E(t) ≤ E(0). This means that the energy of the closed loop system is dissipative.

EXAMPLE 5.1.1 We consider a continuous network of strings with nodal supports, whose
structure is shown as Fig.5.1.1.

The directed edges are defined by

e1 = (a1, a5) e2 = (a2, a6) e3 = (a3, a7) e4 = (a10, a4)

e5 = (a5, a6) e6 = (a6, a8) e7 = (a5, a7) e8 = (a7, a8)

e9 = (a8, a9) e10 = (a9, a10) e11 = (a8, a10)

The boundary ∂G = {a1, a2, a3, a4}.
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Fig. 5.1.1. A continuous network of strings with circuits

Assume that the parameter increasing coincides with the direction of G. Let yj(s, t) be the
displacement of the string on ej and satisfy equation

mj(s)yj,tt(s, t) = (Tj(s)yj,s(s, t))s − qj(s)yj(s, t), s ∈ (0, 1)

The boundaries and all interior nodes have the velocity feedback controllers with gain αj =
α(aj) ≥ 0, j ∈ {1, 2, · · · , 10}.

The motion of the closed loop system is governed by the partial differential equations

mj(s)yj,tt(s, t) = (Tj(s)yj,s(s, t))s − qi(s)yj(s, t), s ∈ (0, 1), j = 1, 2, · · · , 11

−T1(0)y1,s(0, t) + k(a1)y(a1, t) = −α1yt(a1, t), y1(0, t) = y(a1, t);

−T2(0)y2,s(0, t) + k(a2)y(a2, t) = −α2yt(a2, t), y2(0, t) = y(a2, t)

−T3(0)y3,s(0, t) + k(a3)y(a3, t) = −α3yt(a3, t), y3(0, t) = y(a3, t)

T4(1)y4,s(1, t) + k(a4)y(a4, t) = −α4yt(a4, t), y4(1, t) = y(a4, t)

y1(1, t) = y5(0, t) = y7(0, t) = y(a5, t),

T1(1)y1,s(1, t)− T5(0)y5,s(0, t)− T7(0)y7,s(0, t) + k(a5)y(a5, t) = −α5yt(a5, t),

y2(1, t) = y5(1, t) = y6(0, t) = y(a6, t),

T2(1)y2,s(1, t) + T5(1)y5,s(1, t)− T6(0)y6,s(0, t) + k(a6)y(a6, t) = −α6yt(a6, t),

y3(1, t) = y7(1, t) = y8(0, t) = y(a7, t),

T3(1)y1,s(1, t) + T7(1)y7,s(1, t)− T8(0)y8,s(0, t) + k(a7)y(a7, t) = −α7yt(a7, t),

y6(1, t) = y8(1, t) = y9(0, t) = y11(0, t) = y(a8, t),

T6(1)y6,s(1, t) + T8(1)y8,s(1, t)− T9(0)y9,s(0, t)− T11(0)y11,s(0, t) + k(a8)y(a8, t) = −α8yt(a8, t),

y9(1, t) = y10(0, t) = y(a9, t),

T9(1)y9,1(1, t)− T10(0)y10,s(0, t) + k(a9)y(a− 9, t) = −α9yt(a9, t),

y10(1, t) = y11(1, t) = y4(0, t) = y(a10, t),

T10(1)y10,s(1, t) + T11(1)y11,s(1, t)− T4(0)y4,x(0, t) + k(a10)y(a10, t) = −α10yt(a10, t)
(5.1.9)
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with appropriate initial data.
The incidence matrix Φ is given by

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11

−1

0

0

0

1

0

0

0

0

0

0

−1

0

0

0

1

0

0

0

0

0

0

−1

0

0

0

1

0

0

0

0

0

0

1

0

0

0

0

0

−1

0

0

0

0

−1

1

0

0

0

0

0

0

0

0

0

−1

0

1

0

0

0

0

0

0

−1

0

1

0

0

0

0

0

0

0

0

0

−1

1

0

0

0

0

0

0

0

0

0

−1

1

0

0

0

0

0

0

0

0

0

−1

1

0

0

0

0

0

0

0

−1

0

1


The vertices-valued space is C10. The product of selection matrix of vertex observation and the
feedback gain matrix is given by

ΓS = diag(α1, α2, · · · , α10), αj ≥ 0.

and the elastic constant matrix is

K(v) = diag(k(a1), k(a− 2), ·, k(a10)).

The state vector is
Y (x, t) = (y1(x, t), y2(x, t), · · · , y11(x, t))

and the coefficients matrices

T(s) = diag(T1(s), T2(s), · · · , T11(s)),

M(s) = diag(m1(s),m2(s), · · · ,m11(s))

and
Q(s) = diag(q1(s), q2(s), · · · , q11(s)).

Thus we can rewrite (5.1.9) into a vector-valued differential equations in Cn

M(s)Ytt(s, t) = (T(s)Ys(s, t))s −Q(s)Y (s, t), x ∈ (0, 1)

∃Y (v, t) ∈ C10, s.t. Y (1, t) = (Φ+)TY (v, t),

Y (0, t) = (Φ−)TY (v, t),

Φ+T(1)Ys(1, t)− Φ−T(0)Ys(0, t) + K(v)Y (v, t) = −ΓSYt(v, t) ∈ C10

Y (s, 0) = Y0(s), Yt(s, 0) = Y1(s)

(5.1.10)

where Y0(s) and Y1(s) are appropriate initial data. �
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In the previous example, we have

Φ+T(1)Ys(1, t) =



0

0

0

T4(1)y4,s(1, t)

T1(1)y1,s(1, t)

T2(1)y2,s(1, t) + T5(1)y5,s(1, t)

T3(1)y3,s(1, t) + T7(1)y7,s(1, t)

T6(1)y6,s(1, t) + T8(1)y8,s(1, t)

T9(1)y9,s(1, t)

T10(1)y10,s(1, t) + T11(1)y11,s(1, t)



Φ−T(0)Ys(0, t) =



T1(0)y1,s(0, t)

T2(0)y2,s(0, t)

T3(0)y3,s(0, t)

0

T5(0)y5,s(0, t) + T7(0)y7,s(0, t)

T6(0)y6,s(0, t)

T8(0)y8,s(0, t)

T9(0)y9,s(0, t) + T11(0)y11,s(0, t)

T10y10,s(0, t)

T4y4,s(0, t)


Obviously,

Φ+T(0)Ys(1, t)− Φ−T(0)Ys(0, t)

=



−T1(0)y1,s(0, t)

−T2(0)y2,s(0, t)

−T3(0)y3,s(0, t)

T4(1)y4,s(1, t)

T1(1)y1,s(1, t)− T5(0)y5,s(0, t)− T7(0)y7,s(0, t)

T2(1)y2,s(1, t) + T5(1)y5,s(1, t)− T6(0)y6,s(0, t)

T3(1)y3,s(1, t) + T7(1)y7,s(1, t)− T8(0)y8,s(0, t)

T6(1)y6,s(1, t) + T8(1)y8,s(1, t)− T9(0)y9,s(0, t)− T11(0)y11,s(0, t)

T9(1)y9,x(1, t)− T10(0)y10,x(0, t)

T10(1)y10,x(1, t) + T11(1)y11,x(1, t)− T4(0)y4,x(0, t)


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is an element in C10. This shows that the number of the dynamic conditions is not larger than
the number of vertices provided that the network is continuous.

EXAMPLE 5.1.2 Let G be a directed graph without boundary, whose structure is shown in
Fig. 5.1.2. We consider a continuous network of strings defined on the graph G with elastic
supports at all nodes.

Q
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Q
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�
�
��
a5
•������:

a2
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�
�

��3

a3
•

e1 e2

e3

e4

e6
e5

Fig. 5.1.2 A continuous network without boundary

The displacement of string on ej is yj(x, t), the direction of parameter x coincides with that
of the edges, and satisfies

mjyj,tt(x, t) = Tjyj,xx(x, t), x ∈ (0, 1)

The connective conditions are

y(a1, t) = y1(0, t) = y4(1, t) = y5(0, t) y(a3, t) = y3(0, t) = y2(1, t)

y(a2, t) = y2(0, t) = y1(1, t) = y6(1, t) y(a4, t) = y4(0, t) = y3(1, t)

y(a5, t) = y5(1, t) = y6(0, t)

Take Γ = diag(α(a1), α(a2), · · ·α(a5)) and K(v) = diag(k(a1), k(a2), · · · k(a5)). The dynamic
conditions are

T4y4,x(1, t)− T1y1,x(0, t)− T5y5,x(0, t) + k(a1)y(a1, t) = −α(a1)yt(a1, t)

T5y5,x(1, t)− T6y6,x(0, t) + k(a5)y(a5, t) = −α(a5)yt(a5, t)

T1y1,x(1, t) + T6y6,x(1, t)− T2y2,x(0, t) + k(a2)y(a2, t) = −α(a2)yt(a2, t)

T2y2,x(1, t)− T3y3,x(0, t) + k(a3)y(a3, t) = −α(a3)yt(a3, t)

T3y3,x(1, t)− T4y4,x(0, t) + k(a4)y(a4, t) = −α(a4)yt(a4, t)

The continuity connection conditions can be written into

y1(0, t)

y2(0, t)

y3(0, t)

y4(0, t)

y5(0, t)

y6(0, t)


=



1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1





y(a1, t)

y(a2, t)

y(a3, t)

y(a4, t)

y(a5, t)


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y1(1, t)

y2(1, t)

y3(1, t)

y4(1, t)

y5(1, t)

y6(1, t)


=



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

1 0 0 0 0

0 0 0 0 1

0 1 0 0 0





y(a1, t)

y(a2, t)

y(a3, t)

y(a4, t)

y(a5, t)


The dynamic conditions are rewritten into

Φ+TYx(1, t) =



0 0 0 1 0 0

1 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0





T1 0 0 0 0 0

0 T2 0 0 0 0

0 0 T3 0 0 0

0 0 0 T4 0 0

0 0 0 0 T5 0

0 0 0 0 0 T6





y1,x(1, t)

y2,x(1, t)

y3,x(1, t)

y4,x(1, t)

y5,x(1, t)

y6,x(1, t)



=



T4y4,x(1, t)

T1y1,x(1, t) + T6y6,x(1, t)

T2y2,x(1, t)

T3y3,x(1, t)

T5y5,x(1, t)



Φ−TYx(0, t) =



1 0 0 0 1 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1





T1 0 0 0 0 0

0 T2 0 0 0 0

0 0 T3 0 0 0

0 0 0 T4 0 0

0 0 0 0 T5

0 0 0 0 0 T6





y1,x(0, t)

y2,x(0, t)

y3,x(0, t)

y4,x(0, t)

y5,x(0, t)

y6,x(0, t)



=



T1y1,x(0, t) + T5y5,x(0, t)

T2y2,x(0, t)

T3y3,x(0, t)

T4y4,x(0, t)

T6y6,x(0, t)


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The controllers and elastic supports are

ΓSYt(v, t) =



α(a1) 0 0 0 0

0 α(a2) 0 0 0

0 0 α(a3) 0 0

0 0 0 α(a4) 0

0 0 0 0 α(a5)





yt(a1, t)

yt(a2, t)

yt(a3, t)

yt(a4, t)

yt(a5, t)



K(v)Y (v, t) =



k(a1) 0 0 0 0

0 k(a2) 0 0 0

0 0 k(a3) 0 0

0 0 0 k(a4) 0

0 0 0 0 k(a5)





y(a1, t)

y(a2, t)

y(a3, t)

y(a4, t)

y(a5, t)


.

5.2 Boundary and internal controllers

Here we distinguish the boundary controllers and interior controllers. Let the selection matrix
of vertex observation S be a 0-1 diagonal matrix of the form

S = diag(s(a1), s(a2), · · · , s(am)).

If s(aj) = 0,∀αj ∈ ∂G and s(a) = 1,∀a ∈ Vint, then S is said to be the interior observation
and ΓS to be interior controllers; if s(a) = 0,∀a ∈ Vint, then S is said to be the boundary
observation and ΓS is called the boundary controllers.

Define the interior subspace and the boundary subspace respectively by

V1 = {(x1, x2, · · · , xm)
∣∣ xj = 0, aj ∈ ∂G}, V2 = {(x1, x2, · · · , xm)

∣∣ xj = 0, aj ∈ Vint}

Obviously, V1 ⊕ V2 = Cm. Define a projection matrix P from Cm to V1.
When the system has boundary controllers, we have

M(s)Utt(s, t) = (T(s)Us(s, t))s −Q(s)U(s, t), s ∈ (0, 1)

∃U(v, t) ∈ V, s.t.U(1, t) = (Φ+)TU(v, t),

U(0, t) = (Φ−)TU(v, t)

PΦ+T(1)Us(1, t)− PΦ−T(0)Us(0, t) + PK(v)U(v, t) = 0 ∈ V1

(I − P)Φ+T(1)Us(1, t)− (I − P)Φ−T(0)Us(0, t) + (I − P)K(v)U(v, t) = −(I − P)ΓSUt(v, t)

U(s, 0) = U0(s), Ut(s, 0) = U1(s).
(5.2.1)
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If the system has only internal controllers, then we have

M(s)Utt(s, t) = (T(s)Us(s, t))s −Q(s)U(s, t), s ∈ (0, 1)

∃U(v, t) ∈ V, s.t.U(1, t) = (Φ+)TU(v, t),

U(0, t) = (Φ−)TU(v, t)

PΦ+T(1)Us(1, t)− PΦ−T(0)Us(0, t) + PK(v)U(v, t) = −PΓSUt(v, t) ∈ V1

(I − P)Φ+T(1)Us(1, t)− (I − P)Φ−T (0)Us(0, t) + (I − P)K(v)U(v, t) = 0

U(s, 0) = U0(s), Ut(s, 0) = U1(s).

(5.2.2)

EXAMPLE 5.2.1 Let G be a directed graph whose structure is shown as Fig. 5.2.1. We set
up the boundary controllers at a5, a6, a7 and a8, without interior controller.
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Fig. 5.2.1. Boundary controllers at a5, a6, a7 and a8, without interior controller.

In this example, the vertex selection matrix S and space V1 are respectively

S = diag(0, 0, 0, 0, 1, 1, 1, 1), V1 = {(x1, x2, x3, x4, 0, 0, 0, 0)
∣∣ xj ∈ R}.

EXAMPLE 5.2.2 Let G be a planar directed graph whose structure is shown as Fig. 5.2.2.
We impose the interior controllers, without boundary controller.
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Fig. 5.2.2. All are internal controllers without boundary controller

In this example, the vertex selection matrix S and space V1 are respectively

S = diag(1, 1, 1, 1, 1, 0), V1 = {(x1, x2, x3, x4, x5, 0)
∣∣ xj ∈ R}.

5.2.1 Mixed boundary conditions if ∂G 6= ∅
Let ∂G 6= ∅ and K(v) = 0. Let u(x, t) defined on G satisfy the wave equation on E. Assume
that u(x, t) ∈ C(G). If there is at least one a ∈ ∂G, u(a, t) = 0, which is called the Dirichlet
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boundary; and there is at least one a ∈ ∂G such that it is of Neumann boundary. Then the
network is said to be with mixed boundary.

Define a subspace V by

V = {(w(a1), w(a2), · · · , w(am)
∣∣ w(a) = 0, a ∈ ∂GD} ⊂ Cm

where ∂GD denotes the Dirichlet boundary. Let P be the orthogonal projection from Cm to V.
We design the feedback controllers for the networks with mixed boundary.

Take the feedback control law as

F (v, t) = −ΓSUt(v, t) ∈ V

where ΓS is a nonnegative matrix. Thus the closed loop system is

M(s)Utt(s, t) = (T(s)Us(s, t))s −Q(s)U(s, t), s ∈ (0, 1)

∃U(v, t) ∈ V, s.t.U(1, t) = (Φ+)TU(v, t),

U(0, t) = (Φ−)TU(v, t),

PΦ+T (1)Us(1, t)− PΦ−T (0)Us(0, t) = −ΓSUt(v, t) ∈ V

U(s, 0) = U0(s), Ut(s, 0) = U1(s).

(5.2.3)

Here we again distinguish the boundary controllers and interior controllers.

EXAMPLE 5.2.3 Let G be a planar directed graph, and the structure be shown in Fig. 5.2.3.
In this example we impose the interior controllers without boundary controller.
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Fig. 5.2.3. Mixed boundary conditions: a5 is a Dirichlet boundary,
a6 and a7 are Neumann boundary, others are interior controllers

5.3 Discontinuous networks of strings

5.3.1 Semi-continuous networks

Let G be a planar metric graph. We parameterize the graph satisfying condition that for
each a ∈ Vint, there are at least one incoming edge and one outgoing edge. That is, J(a) =
J+(a) ∪ J−(a) satisfy the condition that #J+(a) ≥ 1 and #J−(a) ≥ 1.

Assume that an elastic structure coincides with the graph when it is in equilibrium position.
The elastic structure undergoes the small vibration in a plane, whose motion on each edge ej
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is governed by the partial differential equation

mj(s)wj,tt(s, t) = (Tj(s)wj,s(s, t))s − qj(s)wj(s, t), s ∈ (0, 1) (5.3.1)

We impose the network with the following the geometric and dynamic conditions:
1) if a ∈ ∂G such that J(a) = J+(a), we have

lim
s→1

wj(s, t) = wj(1, t) = w(a, t), j ∈ J+(a), (5.3.2)

and the dynamic boundary conditions

Tj(1)wj,s(1, t) = −α(a)wt(a, t), j ∈ J+(a). (5.3.3)

2) if a ∈ ∂G with J(a) = J−(a), then

lim
s→0

wj(s, t) = wj(0, t) = w(a, t) = 0, j ∈ J−(a) (5.3.4)

which means that the components of the elastic structure are clamped at every a ∈ ∂GD.
At the interior node a ∈ Vint

lim
s→1

wj(s, t) = wj(1, t), j ∈ J+(a), lim
s→0

wj(s, t) = wj(0, t), j ∈ J−(a)

satisfy the connective conditions:
If #J+(a) > 1, one imposes the continuity condition of the moment in the incoming di-

rection. Accordingly, in the incoming direction of at this vertex, there exists a single-valued
moment such that

Tr(1)wr,s(1, t) = Tj(1)wj,s(1, t), ∀j, r ∈ J+(a). (5.3.5)

Corresponding geometric condition is∑
i∈J+(a)

wi(1, t) = w(a, t); (5.3.6)

For J−(a), we impose the rigid connection condition in the outgoing direction, which transfers
the force. Then the geometric conditions are

w(a, t) = wj(0, t), ∀j ∈ J−(a) (5.3.7)

and the dynamic condition is

Tr(1)wr,s(1, t)−
∑

j∈J−(a)

Tj(0)wj,s(0, t) = −α(a)wt(a, t) (5.3.8)

where r ∈ J+(a).
If #J+(a) = 1, r ∈ J+(a), then the above condition becomes the rigid connection. Hence

we have the geometric conditions

w(a, t) = wj(0, t) = wr(1, t), ∀j ∈ J−(a) (5.3.9)

and the corresponding dynamic conditions (including damping) become

Tr(1)wr,s(1, t)−
∑

j∈J−(a)

Tj(0)wj,s(0, t) = −α(a)wt(a, t). (5.3.10)
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Here α(a), a ∈ V are the positive feedback gain constants. Thus the complete description of
the network is given by

mj(s)wj,tt(s, t) = (Tj(s)wj,s(s, t))s − qj(s)wj(s, t), s ∈ (0, 1), j = 1, 2 · · · , n

wj(0, t) = 0, a ∈ ∂GD, j ∈ J(a) = J−(a)∑
j∈J+(a) wj(1, t) = w(a, t) = wi(0, t), i ∈ J−(a), a ∈ Vint

Tr(1)wr,s(1, t)−
∑

j∈J−(a) Tj(0)wj,s(0, t) = −α(a)wt(a, t), r ∈ J+(a),

Tj(1)wj,s(1, t) = −α(a)wt(a, t), a ∈ ∂G, J(a) = J+(a).

(5.3.11)

Set W (x, t) = (w1(s, t), w2(s, t), · · · , wn(s, t))T and

M(s) = diag(m1(s),m2(s), · · · ,mn(s)), T(s) = diag(T1(s), T2(s), · · · , Tn(s))

W (v, t) = (w(a1, t), w(a2, t), · · · , w(am, t))T

V = {(w(a1), w(a2), · · · , w(am))
∣∣ w(aj) = 0, aj ∈ ∂GD}.

Let U be the isomorphism from V to Cq, where q = m−#∂GD = dim V.
The conditions (5.3.2) and (5.3.6) say that the network is of incoming flow continuity, i.e.,

W (v, t) = (Φ+)W (1, t).

The conditions (5.3.4) and (5.3.7) indicate that the network is of outgoing continuity, i.e.,

W (0, t) = (Φ−)TW (v, t).

Since the incoming is flow continuous, the outgoing is continuous in usual, so the network is
said to be semi-continuous. In the case of semi-continuity, we have

W (0, t) = (Φ−)T (Φ+)W (1, t).

Thus the conditions (5.3.3) and (5.3.8) can be rewritten into

P(Φ+)T T(1)Ws(1, t)− P(Φ−)T T(0)Ws(0, t) = −ΓSWt(v, t) ∈ V

where P : Cm → V. Therefore, we have

M(s)Wtt(s, t) = (T(s)Ws(s, t))s −Q(s)W (s, t), s ∈ (0, 1)

W (0, t) = CW (1, t),

P(Φ+)T T(1)Ws(1, t)− P(Φ−)T T(0)Ws(0, t) = −ΓSWt(v, t) ∈ V

W (s, 0) = W0(s), Wt(s, 0) = W1(s)

(5.3.12)

where C = (Φ−)T (Φ+), W0(s) and W1(s) are the initial state of the system.
The system (5.3.12) comes from design of feedback controllers for the semi-continuous net-

work. The energy function of the network is defined by

E(t) =
1
2

n∑
j=1

∫ 1

0

(Tj(s)|wj,s(s, t)|2 +mj(s)|wj,t(s, t)|2 + qj(s)|wj(s, t)|2)ds.
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Thus

dE(t)
dt

=
n∑

j=1

∫ 1

0

(Tj(s)wj,s(s, t)wj,st(s, t) +mj(s)wj,t(s, t)wj,tt(s, t)) + qj(s)wj(s, t)wj,t(s, t))ds

=
n∑

j=1

[Tj(1)wj,s(1, t)wj,t(1, t)−
n∑

j=1

Tj(0)wj,s(0, t)wj,t(0, t)

=
m∑

k=1

 ∑
j∈J+(ak)

Tj(1)wj(1, t)wj,t(1, t)−
∑

j∈J−(ak)

Tj(0)wj,s(0, t)wj,t(0, t)


=

m∑
k=1

Tk(1)wk,s(1, t)
∑

j∈J+(ak)

wj,t(1, t)− wt(ak, t)
∑

j∈J−(ak)

Tj(0)wj,s(0, t)


=

m∑
k=1

wt(ak, t)

Tk(1)wk,s(1, t)−
∑

j∈J−(ak)

Tj(0)wj,s(0, t)


=

m∑
k=1

wt(ak, t)f(ak, t).

The feedback control law is

f(ak, t) = −α(ak)wt(ak, t), k = 1, 2, · · · ,m.

where α(ak) ≥ 0. Hence we get the dynamic conditions

Tk(1)wk,s(1, t)−
∑

j∈J−(ak)

Tj(0)wj,s(0, t) = −α(ak)w(ak, t).

Thus we have
dE(t)
dt

= −
m∑

k=1

α(ak)|wt(ak, t)|2.

In the design of controllers, we can take different form. Since w(a, t) = wi(0, t) =
∑

j∈J+(a)

wj(1, t),

we have

dE(t)
dt

=
m∑

k=1

 ∑
j∈J+(ak)

Tj(1)wj,s(1, t)wj,t(1, t)−
∑

j∈J−(ak)

Tj(0)wj,s(0, t)wj,t(0, t)


=

m∑
k=1

 ∑
j∈J+(ak)

Tj(1)wj,s(1, t)wj,t(1, t)−
∑

j∈J+(a)

wj,t(1, t)
∑

i∈J−(ak)

Ti(0)wi,s(0, t)


=

m∑
k=1

∑
j∈J+(a)

wj,t(1, t)

Tj(1)wj,s(1, t)−
∑

i∈J−(ak)

Ti(0)wi,s(0, t)

 .
If all wj,t(1, t) are observable (measurable), we takeTjwj,s(1, t)−

∑
i∈J−(ak)

Tiwi,s(0, t)

 = −αjwj,t(1, t),
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this leads to
dE(t)
dt

= −
m∑

k=1

∑
j∈J+(a)

αj |wj,t(1, t)|2.

In this case, the corresponding closed loop system is

M(s)Wtt(s, t) = (T(s)Ws(s, t))s −Q(s)W (s, t), s ∈ (0, 1)

W (0, t) = CW (1, t),

T(1)Ws(1, t)−CT T(0)Ws(0, t) = −ΓSWt(1, t)

W (s, 0) = W0(s),Wt(s, 0) = W1(s).

The difference of both is that the above is the endpoints measurement of each string, while
(5.3.12) is the node measurement.

EXAMPLE 5.3.1 In this example we consider a discontinuous network of strings with multi-
ple circuits. Let G be a planar graph, whose structure is shown as Fig.5.3.1. The directed edges
are defined by

γ1 = (a1, a5) γ2 = (a2, a6) γ3 = (a3, a7) γ4 = (a10, a4)

γ5 = (a5, a6) γ6 = (a6, a8) γ7 = (a5, a7) γ8 = (a7, a8)

γ9 = (a8, a9) γ10 = (a9, a10) γ11 = (a8, a10)

And let y(x, t) be a function defined on G and satisfy the wave equation on each edge γj:

mjyj,tt(x, t) = Tjyj,xx(x, t)

Moreover, we assume that y(x, t) satisfies the semi-continuous condition at all interior nodes.
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Fig. 5.3.1. A discontinuous network of strings with circuits
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According to (5.3.11), the motion of the network is governed by partial differential equations

mjyj,tt(x, t) = Tjyj,xx(x, t), x ∈ (0, 1),

y1(0, t) = y2(0, t) = y3(0, t) = 0; y4(0, t) = y10(1, t) + y11(1, t);

y5(0, t) = y7(0, t) = y1(1, t); y6(0, t) = y2(1, t) + y5(1, t);

y8(0, t) = y7(1, t) + y3(1, t); y9(0, t) = y6(1, t) + y8(1, t);

y10(0, t) = y9(1, t); y11(0, t) = y6(1, t) + y8(1, t);

T1y1,x(1, t)−T5y5,x(0, t)−T7y7,x(0, t) =−α(α5)yt(a5, t),

T2y2,x(1, t) + T5y5,x(1, t)− T6y6,x(0, t) = −α(a6)yt(a6, t),

T3y3,x(1, t) + T7y7,x(1, t)− T8y8,x(0, t) = −α(a7)yt(a7, t),

T4y4,x(1, t) = −α(a4)yt(a4, t),

T6y6,x(1, t) + T8y8,x(1, t)−T9y9,x(0, t)−T11y11,x(0, t) = −α(a8)yt(a8, t),

T9y9,x(1, t)− T10y10,x(0, t) = −α(a9)yt(a9, t),

T10y10,x(1, t) + T11y11,x(1, t)− T4y4,x(0, t) = −α(a10)yt(a10, t),

yk(x, 0) = yk,0(x), yk(x, 0) = yk,1(x), k = 1, 2, · · · , 11.

(5.3.13)

The connection matrix C = (Φ−)T (Φ+) is given by

C =



0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0 0 0



.

Note that the connective matrix gives the relation of the network, from which we can reconstruct
partly the graph.
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The relation between vertices and edges for the forces are given by

(Φ+)T T(1)Yx(1, t) =



0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 1 0 1 0 0 0





T1(1)y1,x(1, t)

T2(1)y2,x(1, t)

T3(1)y3,x(1, t)

T4(1)y4,x(1, t)

T5(1)y5,x(1, t)

T6(1)y6,x(1, t)

T7(1)y7,x(1, t)

T8(1)y8,x(1, t)

T9(1)y9,x(1, t)

T10(1)y10,x(1, t)

T11(1)y11,x(1, t)



.

(Φ−)T T(0)Yx(0, t) =



1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 0 1 0 0





T1(0)y1,x(0, t)

T2(0)y2,x(0, t)

T3(0)y3,x(0, t)

T4(0)y4,x(0, t)

T5(0)y5,x(0, t)

T6(0)y6,x(0, t)

T7(0)y7,x(0, t)

T8(0)y8,x(0, t)

T9(0)y9,x(0, t)

T10(0)y10,x(0, t)

T11(0)y11,x(0, t)



.

Thus, the forces at all vertices are

(Φ+)T T(1)Yx(1, t)− (Φ−)T T(0)Yx(0, t)
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=



−T1(0)y1,x(0, t)

−T2(0)y2,x(0, t)

−T3(0)y3,x(0, t)

T4(1)y4,x(1, t)

T1(1)y1,x(1, t)− T5(0)y5,x(0, t)− T7(0)y7,x(0, t)

T2(1)y2,x(1, t) + T5(1)y5,x(1, t)− T6(0)y6,x(0, t)

T3(1)y3,x(1, t) + T7(1)y7,x(0, t)− T8(0)y8,x(0, t)

T6(1)y6,x(1) + T8(1)y8,x(1, t)− T9(0)y9,x(0, t)− T11(1)y11,x(0, t)

T9(1)y9,x(1, t)− T10(0)y10,x(0, t)

T10(1)y10,x(1, t) + T11(1)y11,x(1, t)− T4(0)y4,x(0, t)



.

At all the controlled vertices, the dynamic conditions are

P(Φ+)T T(1)Yx(1, t)− P(Φ−)T T(0)Yx(0, t)

=



0

0

0

T4(1)y4,x(1, t)

T1(1)y1,x(1, t)− T5(0)y5,x(0, t)− T7(0)y7,x(0, t)

T2(1)y2,x(1, t) + T5(1)y5,x(1, t)− T6(0)y6,x(0, t)

T3(1)y3,x(1, t) + T7(1)y7,x(0, t)− T8(0)y8,x(0, t)

T6(1)y6,x(1) + T8(1)y8,x(1, t)− T9(0)y9,x(0, t)− T11(1)y11,x(0, t)

T9(1)y9,x(1, t)− T10(0)y10,x(0, t)

T10(1)y10,x(1, t) + T11(1)y11,x(1, t)− T4(0)y4,x(0, t)



= −



0

0

0

α(a4)yt(a4, t)

α(a5)yt(a5, t)

α(a6)yt(a6, t)

α(a7)yt(a7, t)

α(a8)yt(a8, t)

α(a9)yt(a9, t)

α(a10)yt(a10, t)



= −ΓSYt(v, t) ∈ V.

The projection in the control space is
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UP (Φ+)T T(1)Yx(1, t)− UP (Φ−)T T(0)Yx(0, t)

=



T4(1)y4,x(1, t)

T1(1)y1,x(1, t)− T5(0)y5,x(0, t)− T7(0)y7,x(0, t)

T2(1)y2,x(1, t) + T5(1)y5,x(1, t)− T6(0)y6,x(0, t)

T3(1)y3,x(1, t) + T7(0)y7,x(0, t)− T8(0)y8,x(0, t)

T6(1)y6,x(1) + T8(1)y8,x(1, t)− T9(0)y9,x(0, t)− T11(1)y11,x(0, t)

T9(1)y9,x(1, t)− T10(0)y10,x(0, t)

T10(1)y10,x(1, t) + T11(1)y11,x(1, t)− T4(0)y4,x(0, t)



= −



α(a4)yt(a4, t)

α(a5)yt(a5, t)

α(a6)yt(a6, t)

α(a7)yt(a7, t)

α(a8)yt(a8, t)

α(a9)yt(a9, t)

α(a10)wt(a10, t)


= −UΓSYt(v, t) ∈ Cq.

Similarly we calculate T(1)Yx(1, t)−CT T(0)Yx(0, t)

T(1)Yx(1, t)−CT T(0)Yx(0, t)

=



T1(1)y1,x(1, t)

T2(1)y2,x(1, t)

T3(1)y3,x(1, t)

T4(1)y4,x(1, t)

T5(1)y5,x(1, t)

T6(1)y6,x(1, t)

T7(1)y7,x(1, t)

T8(1)y8,x(1, t)

T9(1)y9,x(1, t)

T10(1)y10,x(1, t)

T11(1)y11,x(1, t)



−



T5(0)y5,x(0, t) + T7(0)y7,x(0, t)

T6(0)y6,x(0, t)

T8(0)y8,x(0, t)

0

T6(0)y6,x(0, t)

T9(0)y9,x(0, t) + T11(0)y11,x(0, t)

T8(0)y8,x(0, t)

T9(0)y9,x(0, t) + T11(0)y11,x(0, t)

T10(0)y10,x(0, t)

T4(0)y4,x(0, t)

T4(0)y4,x(0, t)


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=



T1(1)y1,x(1, t)− T5(0)y5,x(0, t)− T7(0)y7,x(0, t)

T2(1)y2,x(1, t)− T6(0)y6,x(0, t)

T3(1)y3,x(1, t)− T8(0)y8,x(0, t)

T4(1)y4,x(1, t)

T5(1)y5,x(1, t)− T6(0)y6,x(0, t)

T6(1)y6,x(1, t)− T9(0)y9,x(0, t)− T11(0)y11,x(0, t)

T7(1)y7,x(1, t)− T8(0)y8,x(0, t)

T8(1)y8,x(1, t)− T9(0)y9,x(0, t)− T11(0)y11,x(0, t)

T9(1)y9,x(1, t)− T10(0)y10,x(0, t)

T10(1)y10,x(1, t)− T4(0)y4,x(0, t)

T11(1)y11,x(1, t)− T4(0)y4,x(0, t)



.

EXAMPLE 5.3.2 In this example we consider a semi-continuous network of strings with
multiple circuits. Let G be a planar directed graph, whose structure be shown in Fig.5.3.2.
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��3
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y1 y2

y3

y4

y6
y5

Fig. 5.3.2. A complex network of strings without boundary

Let yj(x, t) be the displacement of the strings network on the edge γj. They satisfy the wave
equations

mjyj,tt(x, t) = Tjyj,xx(x, t), x ∈ (0, 1), j = 1, 2, 3, 4.

Suppose that the displacements of the network of strings satisfy the Kirchhoff law at the nodes
a2 and continuity conditions at the other nodes. The connective conditions of displacement
yj(x, t) at the nodes are given by

y1(0, t) = y4(1, t) y2(0, t) = y1(1, t) + y6(1, t)

y3(0, t) = y2(1, t) y4(0, t) = y3(1, t)

y5(0, t) = y4(1, t) y6(0, t) = y5(1, t)
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Assume that all yj,t(1, t) are measurable. The dynamic conditions are

T1y1,x(1, t)− T2y2,x(0, t) = −α1y1,t(1, t),

T2y2,x(1, t)− T3y3,x(0, t) = −α2y2,t(1, t),

T3y3,x(1, t)− T4y4,x(0, t) = −α3y3,t(1, t),

T4y4,x(1, t)− T1y1,x(0, t)− T5y5,x(0, t) = −α4y4,t(1, t),

T5y5,x(1, t)− T6y6,x(0, t) = −α5y5,t(1, t),

T6y6,x(1, t)− T2y2,x(0, t) = −α6y6,t(1, t).

Setting Y (x, t) = [y1(x, t), y2(x, t), · · · , y6(x, t)]τ ,

M = diag(m1,m2, · · · ,m6), T = diag(T1, T2, · · · , T6),

ΓS = diag(α1, α2, · · · , α6)

and

C =



0 0 0 1 0 0

1 0 0 0 0 1

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0


.

Thus we have 
MYtt(x, t) = TYxx(x, t), x ∈ (0, 1)

Y (0, t) = CY (1, t)

TYx(1, t)− CT TYx(0, t) = −ΓSYt(1, t).

5.3.2 Discontinuous networks

In previous subsection, we discuss the semi-continuous networks of strings, in which the matrix
C = (Φ−)T Φ+ gives the connective condition between edge and edge in the network. In this
subsection we assume that the relation of edges C is given. However, for given C, the structural
of the graph may be very complicated, that may include the loop and parallel edges. Whatever,
our discussion is based on the connection matrix.

Let Y (x, t) be a vector-valued function defined on the interval (0, 1) and satisfy the wave
equation

M(x)Ytt(x, t) = (T(x)Yx(x, t))x −Q(x)Y (x, t), x ∈ (0, 1).

Assume that the connective condition is given by

Y (0, 1) = CY (1, t), det(I − C) 6= 0.

Here we seek for the dynamic condition for this system.
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The energy function of the network is defined by

E(t) =
1
2

∫ 1

0

(T(x)Yx(x, t), Yx(x, t))Cn + (M(x)Yt(x, t), Yt(x, t))Cn + (Q(x)Y (x, t), Y (x, t))Cndx.

Thus

dE(t)
dt

=
∫ 1

0

(T(x)Yxt(x, t), Yx(x, t))Cn + (M(x)Ytt(x, t), Yt(x, t))Cn + (Q(x)Y (x, t), Yt(x, t))Cndx

= (T(1)Yx(1, t), Yt(1, t))cn − (T(0)Yx(0, t), Yt(0, t))Cn

= (T(1)Yx(1, t), Yt(1, t))Cn − (T(0)Yx(0, t), CYt(1, t))Cn

= (T(1)Yx(1, t)− CT T(0)Yx(0, t), Yt(1, t))Cn

Let Γ be a non-negative matrix. We take control law as

T(1)Yx(1, t)− CT T(0)Yx(0, t) = F (t) = −ΓSYt(1, t).

Then the closed loop system is

M(x)Ytt(x, t) = (T(x)Yx(x, t))x −Q(x)Y (x, t), x ∈ (0, 1)

Y (0, t) = CY (1, t),

T(1)Yx(1, t)− CT T(0)Yx(0, t) = −ΓSYt(1, t)

Y (x, 0) = Y0(x), Yt(x, 0) = Y1(x)

(5.3.14)

where det(I − C) 6= 0.

EXAMPLE 5.3.3 Let G be a planar directed graph, and the structure be shown as Fig.5.3.3.
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Fig. 5.3.3. A discontinuous network without boundary

Let yj(x, t) be the displacement of the strings network on the edge γj. They satisfy the wave
equations

mjyj,tt(x, t) = Tjyj,xx(x, t), x ∈ (0, 1), j = 1, 2, 3, 4.

Suppose that the displacements of the network of strings are continuous at the nodes a2, a3

and a4, but at a1 there is a jump at rate β, β 6= 1. The connective conditions of displacement
yj(x, t) at the nodes are given by

y1(0, t) = βy4(1, t) y2(0, t) = y1(1, t)

y3(0, t) = y2(1, t) y4(0, t) = y3(1, t)
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The dynamic conditions are

T1y1,x(1, t)− T2y2,x(0, t) = −α1y1,t(1, t)

T2y2,x(1, t)− T3y3,x(0, t) = −α2y2,t(1, t)

T3y3,x(1, t)− T4y4,x(0, t) = −α3y3,t(1, t)

T4y4,x(1, t)− βT1y1,x(0, t) = −α4y4,t(1, t).

Setting Y (x, t) = [y1(x, t), y2(x, t), y3(x, t), y4(x, t)]T ,

M = diag(m1,m2,m3,m4), T = diag(T1, T2, T3, T4),

Γ = diag(α1, α2, α3, α4)

and

C =


0 0 0 β

1 0 0 0

0 1 0 0

0 0 1 0

 .
Thus we have 

MYtt(x, t) = TYxx(x, t), x ∈ (0, 1)

Y (0, t) = CY (1, t)

TYx(1, t)− CT TYx(0, t) = −ΓYt(1, t).

EXAMPLE 5.3.4 Let G be a planar directed graph with the parallel edges, whose structure is
shown as Fig.5.3.4.

'

&

$

%
a1 a4

a3a2

y1y2
y4 y5

y6

y3

Fig. 5.3.4. A discontinuous network with parallel edges

Let yj(x, t) be the displacement of the strings network on the edge γj. They satisfy the wave
equations

mjyj,tt(x, t) = Tjyj,xx(x, t), x ∈ (0, 1), j = 1, 2, 3, 4.

Suppose that the displacements of the network of strings satisfy the Kirchhoff law at nodes a1

a2 and a4. y1 and y2, y4 and y5 are the parallel edges. The connective conditions of displacement
yj(x, t) at the nodes are given by

y1(0, t) = βy6(1, t) y2(0, t) = (1− β)y6(1, t)

y3(0, t) = y2(1, t) + y1(1, t) y4(0, t) = α1y3(1, t)

y5(0, t) = α2y3(1, t) y6(0, t) = y4(1, t) + y5(1, t)
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where α1 + α2 6= 1.

Obviously, the system have not a constant solution. One define the energy function

E(t) =
1
2

6∑
j=1

∫ 1

0

[Tjy
2
j.x(x, t) +mjy

2
j,t(x, t)]dx

Using the energy function, we have

dE(t)
dt

=
6∑

j=1

[Tjyj,x(1, t)yj,t(1, t)− Tjyj,x(0, t)yj,t(0, t)]

= [T6y6,x(1, t)y6,t(1, t)− T1y1,x(0, t)y1,t(0, t)− T2y2,x(0, t)y2,t(0, t)]

+[T1y1,x(1, t)y1,t(1, t) + T2y2,x(1, t)y2,t(1, t)− T3y3,x(0, t)y3,t(0, t)]

+[T3y3,x(1, t)y3,t(1, t)− T4y4,x(0, t)y4,t(0, t)− T5y5,x(0, t)y5,t(0, t)]

+[T4y4,x(1, t)y4,t(1, t) + T5y5,x(1, t)y5,t(1, t)− T6y6,x(0, t)y6,t(0, t)]

= [T6y6,x(1, t)− βT1y1,x(0, t)− (1− β)T2y2,x(0, t)]y6,t(1, t)

+[T1y1,x(1, t)− T3y3,x(0, t)]y1,t(1, t) + [T2y2,x(1, t)− T3y3,x(0, t)]y2,t(1, t)

+[T3y3,x(1, t)− αT4y4,x(0, t)− (1− α)T5y5,x(0, t)]y3,t(1, t)

+[T4y4,x(1, t)− T6y6,x(0, t)]y4,t(1, t) + [T5y5,x(1, t)− T6y6,x(0, t)]y5,t(1, t)

Assume that all yj,t(1, t) are measurable, then the dynamic conditions are

T6y6,x(1, t)− βT1y1,x(0, t)− (1− β)T2y2,x(0, t) = −γ6y6,t(1, t)

T1y1,x(1, t)− T3y3,x(0, t)] = γ1y1,t(1, t)

T2y2,x(1, t)− T3y3,x(0, t) = −γ2y2,t(1, t)

T3y3,x(1, t)− α1T4y4,x(0, t)− α2T5y5,x(0, t) = −γ3y3,t(1, t)

T4y4,x(1, t)− T6y6,x(0, t) = −α4y4,t(1, t)

T5y5,x(1, t)− T6y6,x(0, t) = −α5y5,t(1, t).

Setting Y (x, t) = [y1(x, t), y2(x, t), y3(x, t), y4(x, t), y5(x, t), y6(x, t)]T ,

M = diag(m1,m2,m3,m4,m5,m6), T = diag(T1, T2, T3, T4, T5, T6),

Γ = diag(γ1, γ2, γ3, γ4, γ5, γ6)

and

C =



0 0 0 0 0 β

0 0 0 0 0 (1− β)

1 1 0 0 0 0

0 0 α1 0 0 0

0 0 α2 0 0 0

0 0 0 1 1 0


.
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Thus we have 
MYtt(x, t) = TYxx(x, t), x ∈ (0, 1)

Y (0, t) = CY (1, t)

TYx(1, t)− CT TYx(0, t) = −ΓSYt(1, t).

5.3.3 Twist curve

The discontinuous model given in (5.3.14) has more extensive applications. In this subsection,
we discuss a mathematical problem. Assume that there exist four curves twisting at one common
node, each curve at time t satisfies the wave equation

mjwj,tt(x, t) = Tjwj,xx(x, t), x ∈ (0, 1).

Herein we give an example for this type curves.

EXAMPLE 5.3.5 Let G be a planar directed graph with parallel edges, whose structure is
shown as Fig.5.3.5.

&%
'$
&%
'$&%
'$

&%
'$y1

y2

y3

y4

Fig. 5.3.5. A twisting curve

Suppose that the network of strings satisfy the following connective conditions:

y1(0, t) = y3(1, t) + y4(1, t) y2(0, t) = y1(1, t) + y4(1, t)

y3(0, t) = y1(1, t) + y2(1, t) y4(0, t) = y2(1, t) + y3(1, t).

The connective matrix is given by

C =


0 0 1 1

1 0 0 1

1 1 0 0

0 1 1 0

 .

which satisfies det(I − C) 6= 0. The motion of twisting curves system with nodal damping is
governed by the partial equations

MYtt(x, t) = TYxx(x, t), x ∈ (0, 1)

Y (0, t) = CY (1, t), t > 0,

TYx(1, t)− CT TYx(0, t) = −ΓYt(1, t),

Y (x, 0) = Y0(x), Yt(x, 0) = Y1(x), x ∈ (0, 1).

(5.3.15)
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5.4 Nodal dynamic

In this section one will discuss the nodal dynamics. One only considers the interior node
a ∈ Vint. Here one assumes that for each a ∈ Vint, there is at least one incoming edge and
one outgoing edge. For each j ∈ J+(a), one regards the value wj(1, t) as the input of the node
system, and for i ∈ J−(a), wi(0, t) as output of the node system.

w(a, t) denotes the behavior of the node system, the output of the system is defined as

wi(0, t) = ωi(a)f(w(a, t))

where f is the output function, which is possible linear function. The nodal dynamic is described
as

dw(a, t)
dt

= − 1
R(a)

w(a, t) +
∑

j∈J+(a)

βj(a)wj(1, t)−
∑

i∈J−(a)

γi(a)wi(0, t) + z(a, t) (5.4.1)

where βj(a) denotes the input rate and γi(a) denotes the output feedback gain constants, z(a, t)
denotes the potential.



Chapter 6

Abstract Second Order

Hyperbolic Systems

In this chapter we study an abstract second order hyperbolic system valued in Cn with appro-
priate boundary conditions. We prove that the system is well-posed and associates with a C0

semigroup in a Hilbert state space. Further we show under certain conditions that the spectra
of the system operator are located in the vertical strip, and there is a sequence of the eigen-
vectors and generalized eigenvectors that forms a Riesz basis with parenthesis for the Hilbert
state space, and hence the system satisfies the spectrum determined growth assumption.

6.1 Introduction

Many mechanical systems, such as cable, spacecraft with flexible attachments or robots with
flexible links, contain certain parts whose dynamic behavior can be rigorous described by partial
differential equations

M
∂2Y (x, t)
∂t2

= T
∂2Y (x, t)
∂x2

+ P
∂Y (x, t)
∂x

+ QY (x, t) x ∈ (0, 1), t > 0, (6.1.1)

with appropriate boundary conditions, where Y (x, t) is a function valued in Cn, M,T,P and Q
are n× n matrices, M and T are positive definite matrices.

For such systems, we study not only their dynamic behavior but also control problem in
actual problems. So many scientists have made effort in this aspect and have designed a lot
of passive and active controllers to achieve control aim. In recent years, boundary control of
the system governed by partial differential equations have become an important research area.
For many concrete systems, a lot of boundary feedback controllers are used to stabilize the
system, for example, [69], [16], [71], [22], [111] for one-dimensional wave system, [5][6] [34]
and the references therein for string network, [61], [81], [110], [113] for Timoshenko system,
[93] and [94] for one dimensional selling porous solid system. However, stability analysis of

138
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corresponding closed loop system is a difficult work. It becomes much more difficult when one
uses the spectral analysis method, this is because one asserts stability of system from its spectral
distribution only when the system satisfies the spectrum determined growth assumption, which
means that decay rate of the system is determined via spectrum of the system operator. For
a distributed parameter system, to prove that the system satisfies the spectrum determined
growth assumption itself is a tough problem. Note that if the system is a Riesz one, that is,
the multiplicities of eigenvalues are uniformly bounded, and there is a sequence of eigenvectors
and generalized eigenvectors that forms a Riesz basis for Hilbert state space, then the spectrum
determined growth assumption holds. So verification of Riesz basis property in many literatures
becomes an important component, (see, [22], [110], [113]). Recent, we find a method to verify
the Riesz basis property (see, [117],[119]). In the present chapter we shall use this method to
discuss Riesz basis property of the system (6.1.1) attached appropriate boundary conditions.
More precisely saying, we shall study the following system valued in Cn

MYtt(x, t) = TYxx(x, t), x ∈ (0, 1), t > 0,

Y (0, t) = CY (1, t), t > 0,

TYx(1, t)− CT TYx(0, t) = −ΓYt(1, t), t > 0,

Y (x, 0) = Y0(x), Yt(x, 0) = Y1(x), x ∈ (0, 1).

(6.1.2)

where M and T are positive definite n× n matrices, Γ is a nonnegative matrix, and C is a real
n × n matrix satisfying det(I − C) 6= 0, and CT denotes the transpose of matrix C. We shall
prove that the system is well-posed, under certain conditions, the eigenvectors and generalized
eigenvectors of the system generate a Riesz basis for the Hilbert state space.

It is worth mentioned that system (6.1.2) is different from those systems in literature men-
tioned above; it has coupled equations and non-separable boundary conditions. Those proper-
ties cause some difficulty in mathematical treat. However, such a system has many important
applications.

6.2 Well-posed-ness of abstract differential equations

In this section we shall formulate system (6.1.2) into a Hilbert space, and then discuss the
well-posed-ness of the system.

Let abstract hyperbolic system valued in Cn be given by

MYtt(x, t) = TYxx(x, t), x ∈ (0, 1), t > 0,

Y (0, t) = CY (1, t), t > 0,

TYx(1, t)− CT TYx(0, t) = −ΓYt(1, t), t > 0,

Y (x, 0) = Y0(x), Yt(x, 0) = Y1(x), x ∈ (0, 1)

(6.2.1)

where M and T are positive definite matrices, Γ is a nonnegative matrix, and C is a real matrix
satisfying det(I − C) 6= 0.

Set
V k

E (0, 1) =
{
f ∈ Hk ([0, 1],Cn)

∣∣ f(0) = Cf(1)
}
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where Hk((0, 1),Cn) is the Sobolev space of order k.
Let

H = V 1
E(0, 1)× L2([0, 1],Cn)

equipped inner product

〈(f1, f2), (g1, g2)〉H =
∫ 1

0

(Tf ′1(x), g′1(x))dx+
∫ 1

0

(Mf2(x), g2(x))dx,

here and hereafter we always denote by (·, ·) the inner product in Cn and by 〈·, ·〉H the inner
product in H.

It is easy to see that

‖(f1, f2)‖H =
(∫ 1

0

(Tf ′1(x), f ′1(x))dx+
∫ 1

0

(Mf2(x), f2(x))dx
)1/2

is a norm on H, and H is a Hilbert space.
Define the operator A in H by

D(A) =
{
(f, g) ∈ V 2

E(0, 1)× V 1
E(0, 1)

∣∣ Tf ′(1)− CT Tf ′(0) = −Γg(1)
}

(6.2.2)

A(f, g) = (g(x),M−1Tf ′′(x)), ∀(f, g) ∈ D(A). (6.2.3)

With help of above notation we can rewrite (6.2.1) into an evolutionary equation in H
d
dtZ(t) = AZ(t), t > 0,

Z(t) = (Y (x, t), Yt(x, t)),

Z(0) = (Y0(x), Y1(x)).

(6.2.4)

THEOREM 6.2.1 Let H and A be defined as before, then A is a dissipative operator, A−1

exists and is compact on H, and hence A generates a C0 semigroup of contraction on H.

Proof Let H and A be defined as before. For any (f, g) ∈ D(A), we have

〈A(f, g), (f, g)〉H =
∫ 1

0

(Tg′(x), f ′(x))dx+
∫ 1

0

(M(M−1T)f ′′(x), g(x))dx

= (Tg(x), f ′(x))
∣∣∣1
0
−
∫ 1

0

(Tg(x), f ′′(x))dx+
∫ 1

0

(Tf ′′(x), g(x))dx,

〈(f, g),A(f, g)〉H =
∫ 1

0

(Tf ′(x), g′(x))dx+
∫ 1

0

(Mg(x), (M−1Tf ′′(x))dx

= (Tf ′(x), g(x))
∣∣∣1
0
−
∫ 1

0

(Tf ′′(x), g(x))dx+
∫ 1

0

(Tg(x), f ′′(x))dx,

and hence

<〈A(f, g), (f, g)〉H = <(Tg(x), f ′(x))
∣∣∣1
0

= <(Tf ′(1), g(1))−<(Tf ′(0), g(0))
= <(Tf ′(1), g(1))−<(Tf ′(0), Cg(1))
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= <(Tf ′(1)− CT Tf ′(0), g(1))
= −(Γg(1), g(1)) ≤ 0 (6.2.5)

where we have used the conditions that g(0) = Cg(1), Tf ′(1)−CT Tf ′(0) = −Γg(1) and Γ is a
nonnegative matrix. So A is a dissipative operator.

Now we show that 0 ∈ ρ(A). For any given (u, v) ∈ H, we consider solvability of equation

A(f, g) = (u, v), (f, g) ∈ D(A),

i.e.,  g(x) = u(x), x ∈ [0, 1],

M−1Tf ′′(x) = v(x), x ∈ (0, 1).
(6.2.6)

For the second equation in (6.2.6), integrating from x to 1 leads to

Tf ′(1)− Tf ′(x) =
∫ 1

x

Mv(s)ds x ∈ (0, 1), (6.2.7)

and

(1− x)Tf ′(1)− Tf(1) + Tf(x) =
∫ 1

x

dr

∫ 1

r

Mv(s)ds, x ∈ (0, 1). (6.2.8)

From (6.2.7) and (6.2.8) we get

Tf ′(1)− Tf ′(0) =
∫ 1

0

Mv(s)ds, (6.2.9)

Tf ′(1)− Tf(1) + Tf(0) =
∫ 1

0

dr

∫ 1

r

Mv(s)ds. (6.2.10)

Acting CT on both sides of (6.2.9), combining condition Tf ′(1)−CT Tf ′(0) = −Γg(1) = −Γu(1),
yields

(I − CT )Tf ′(1) = −Γu(1)−
∫ 1

0

CT Mv(s)ds. (6.2.11)

Since det(I − CT ) 6= 0, we have

Tf ′(1) = −[I − CT ]−1

[
Γu(1) +

∫ 1

0

CT Mv(s)ds
]
. (6.2.12)

Substituting f(0) = Cf(1) into (6.2.10) yields

Tf ′(1)− Tf(1) + TCf(1) =
∫ 1

0

dr

∫ 1

r

Mv(s)ds. (6.2.13)

Thus we get from (6.2.12) and (6.2.13) that

f(1) = −[I − C]−1T−1[I − CT ]−1
[
Γu(1) +

∫ 1

0
CT Mv(s)ds

]
−[I − C]−1T−1

∫ 1

0
dr
∫ 1

r
Mv(s)ds.

(6.2.14)

Therefore,

f(x) = f(1)− (1− x)f ′(1) + T−1

∫ 1

x

dr

∫ 1

r

Mv(s)ds
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= −
[
xI + (I − C)−1C

]
T−1(I − CT )−1

[
Γu(1) +

∫ 1

0

CT Mv(s)ds
]

−(I − C)−1CT−1

∫ 1

0

dr

∫ 1

r

Mv(s)ds− T−1

∫ x

0

dr

∫ 1

r

Mv(s)ds. (6.2.15)

Let f be given by (6.2.15) and g(x) = u(x), then (f, g) ∈ D(A), and A(f, g) = (u, v).
So the inverse operator theorem reads that 0 ∈ ρ(A). Note that u ∈ V 1

E(0, 1) and f has an
integral representation. The Sobolev’s Embedding Theorem asserts that A−1 is compact on
H. Therefore, the Lumer-Philips theorem (cf. [92]) reads that A generates a C0 semigroup of
contraction on H. �

COROLLARY 6.2.1 Let A be defined by (6.2.2) and (6.2.3) and S(t) be the semigroup gen-
erated by A. Then the following statements are true.

1) σ(A) consists of all isolated eigenvalues of finite multiplicity;
2)If Γ > 0 and −1 6∈ σ(C), then σ(A) ⊂ {λ ∈ C

∣∣ <λ < 0} , and hence S(t) is asymptotically
stable.

Proof The first assertion follows from A−1 being a compact operator on H. Here we mainly
prove the second assertion.

Since we have assumed that det(I − C) 6= 0, which implies that 1 6∈ σ(C), we prove that,
when −1 6∈ σ(C), it holds that <λ < 0 for any λ ∈ σ(A).

By the contradictory method, if it is not true then there is at least one λ ∈ σ(A) with
<λ = 0. Clearly, λ 6= 0. Let (f, g) ∈ D(A) be corresponding an eigenvector. Then we have
g(x) = λf(x) and

0 = <λ||(f, g)||2H = <λ〈(f, g), (f, g)〉H = <〈A(f, g), (f, g)〉H = −(Γg(1), g(1)) ≤ 0.

Since Γ is a positive definite matrix, it must be g(1) = 0, and hence f(1) = 0. So the vector-
valued function f(x) satisfies the following differential equation λ2Mf(x) = Tf ′′(x), x ∈ (0, 1)

f(0) = 0 = f(1), Tf ′(1)− CT Tf ′(0) = 0.
(6.2.16)

Since M and T are positive definite matrices, so is matrix T−1/2MT−1/2. SetB2 = T−1/2MT−1/2,
where B also is a positive definite matrix. Then the general solution of (6.2.16) has the form

f(x) = T−1/2 sinh(xλB)v, v ∈ Cn.

Substituting above into the boundary conditions in (6.2.16) lead to T1/2 sinh(λB)v = 0,

λ
(
T1/2B cosh(λB)− CT T1/2B

)
v = 0

From (sinhλB)v = 0 we get that sinhλBBv = 0 or equivalently eλBBv = e−λBBv, this leads
to

[eλB − I][eλB + I]Bv = 0.

So Bv ∈ N (eλB + I) ∪N (eλB − I).
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On the other hands, since λ 6= 0, multiply matrix T− 1
2 both sides of the second equation

and adding the both equations yield

[eλB − T−1/2CT T1/2]Bv = 0.

We rewrite above into the following forms

[eλB − I]Bv = [T−1/2CT T1/2 − I]Bv

and
[eλB + I]Bv = [T−1/2CT T1/2 + I]Bv.

Notice that det(T−1/2CT T1/2−I) = det(CT−I) 6= 0. If−1 6∈ σ(C), then det(T−1/2CT T1/2+
I) = det(CT + I) 6= 0. If Bv ∈ N (eλB − I), then the first equality leads to Bv = 0; if
Bv ∈ N (eλB + I), then the second equation leads to Bv = 0. So v = 0, i.e., f(x) = 0, and
hence (f, g) = (0, 0). This contradicts that (f, g) is an eigenvector of A. Therefore, it holds
that <λ < 0 for any λ ∈ σ(A). The second assertion is proved. The asymptotical stability of
S(t) follows from Lyubich and Phóng’s theorem [70]. �

REMARK 6.2.1 In Corollary 6.2.1, Γ > 0 is merely a sufficient condition for asymptotic
stability. If for Γ ≥ 0 one can deduce f(1) = 0 from Γf(1) = 0, then the result is still
true. However, −1 6∈ σ(C) is a necessary condition for stability of the system. The condition
det(I − C) 6= 0 does not ensure that there is no eigenvalue on the imaginary axis. Here we
correct an error in [125].

EXAMPLE 6.2.1 In this example, we show that det(I−C) 6= 0 is insufficient for there being
no eigenvalue on the imaginary axis. Let us consider a network of strings.

y1(x, t)
q
a1

y2(x, t)

T
T

T
T

T

q a2

y3(x, t)

�
�
�
�
�
qa3

Fig 6.2.1. A triangle circuit network

The string equations are

yj,tt(x, t) = yj,xx(x, t), x ∈ (0, 1), j = 1, 2, 3

and the connective conditions

y1(0, t) = −y3(1, t), y2(0, t) = y1(1, t), y3(0, t) = y2(1, t)

y1,x(1, t)− y2,x(0, t) = −α1y1,t(1, t)

y2,x(1, t)− y3,x(0, t) = −α2y2,t(1, t)

y3,x(1, t) + y1,x(0, t) = −α3y3,t(1, t).
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Here

C =


0 0 −1

1 0 0

0 1 0


satisfies det(I −C) 6= 0. Direct calculation shows that λ = i(2k+ 1)π, k ∈ N are eigenvalues of
the system.

6.3 Spectral analysis of A
In order to study property of the semigroup S(t) generated by A, we need to learn some spectral
properties of A. In this section, we shall study distribution of σ(A), the completeness and Riesz
basis property of the eigenvector and generalized eigenvector of A.

We begin with the eigenvalue problem. Let λ ∈ C be an eigenvalue of A and (f, g) be
corresponding an eigenvector. Then we have

g(x) = λf(x), x ∈ [0, 1],

λ2Mf(x) = Tf ′′(x), x ∈ (0, 1),

f(0) = Cf(1),

Tf ′(1)− CT Tf ′(0) = −λΓf(1).

(6.3.1)

Set
f̂(x) = T1/2f(x), ĝ(x) = T1/2g(x), B2 = T−1/2MT−1/2,

where B is a positive definite matrix. Then Eqs.(6.3.1) is equivalent to the following equation

ĝ(x) = λf̂(x), x ∈ [0, 1],

λ2B2f̂(x) = f̂ ′′(x), x ∈ (0, 1),

f̂(0) = T1/2CT−1/2f̂(1),

f̂ ′(1)− T−1/2CT T1/2f̂ ′(0) = −λT−1/2ΓT−1/2f̂(1).

(6.3.2)

Clearly, the general solution of the differential equation in (6.3.2) is of the form

f̂(x) = exλBu+ e−xλBv, u, v ∈ Cn. (6.3.3)

Substituting this into the boundary conditions in (6.3.2) leads to
(B + T−1/2ΓT−1/2)eλBu+ (T−1/2ΓT−1/2 −B)e−λBv

= T−1/2CT T1/2B(u− v),

(u+ v) = T1/2CT−1/2(eλBu+ e−λBv).

(6.3.4)

Above algebraic equations has a pair (u, v) of nonzero solution, this implies that the determinant
of the coefficient matrix vanishes, i.e.,

D(λ) = det

 I − ĈeλB I − Ĉe−λB

(B + Γ̂)eλB − ĈTB (Γ̂−B)e−λB + ĈTB

 = 0, (6.3.5)
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where Ĉ = T1/2CT−1/2, Γ̂ = T−1/2ΓT−1/2.
Conversely, if λ ∈ C such that D(λ) = 0, then (6.3.4) has a non-zero solution (u, v). We

can define function f̂ as same as (6.3.3). Obviously, f̂ satisfies equation

f̂ ′′(x) = λ2B2f̂(x),

Eqs.(6.3.4) implies that f̂ satisfies the boundary conditions in (6.3.2). Consequently, functions

f(x) = T−1/2f̂(x), g(x) = λT−1/2f̂(x)

satisfy the equation (6.3.1). Therefore, λ is an eigenvalue of A.
Since

D(λ) = det

 I − ĈeλB I − Ĉe−λB

(B + Γ̂)eλB − ĈTB (Γ̂−B)e−λB + ĈTB


= det

 e−λB − Ĉ I − Ĉe−λB

(B + Γ̂)− ĈTBe−λB (Γ̂−B)e−λB + ĈTB

det

 eλB 0

0 I


= det

 I − ĈeλB eλB − Ĉ

(B + Γ̂)eλB − ĈTB (Γ̂−B) + ĈTBeλB

det

 I 0

0 e−λB

 ,
when <λ→ ±∞, we have

lim
<λ→+∞

D(λ)
det(eλB)

= det

 −Ĉ I

(B + Γ̂) ĈTB

 = (−1)n det[Γ̂ +B + ĈTBĈ], (6.3.6)

and

lim
<λ→−∞

D(λ)
det(e−λB)

= det

 I −Ĉ

−ĈTB (Γ̂−B)

 = det[Γ̂−B − ĈTBĈ]. (6.3.7)

Therefore, we have the following result.

THEOREM 6.3.1 Let A be defined as (6.2.2) and (6.2.3) and let

B2 = T−1/2MT−1/2, Ĉ = T1/2CT−1/2, Γ̂ = T−1/2ΓT−1/2 (6.3.8)

and D(λ) be defined by (6.3.5). Then

σ(A) = {λ ∈ C
∣∣ D(λ) = 0}. (6.3.9)

When det[Γ̂−B − ĈTBĈ] 6= 0, there is a positive constant h > 0 such that

σ(A) ⊂ {λ ∈ C
∣∣ −h ≤ <λ < 0}, (6.3.10)

in this case, σ(A) is a union of finite many separable sets.
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Proof Let λ ∈ C with λ 6= 0. For any given (u, v) ∈ H, we consider the resolvent equation
(λI −A)(f, g) = (u, v), i.e., 

λf − g = u,

λg −M−1Tf ′′ = v.

f(0) = Cf(1),

Tf ′(1)− CT Tf ′(0) = −Γg(1).

(6.3.11)

So, g = λf − u and f satisfies the following differential equation
λ2f(x)−M−1Tf ′′(x) = λu(x) + v(x), x ∈ (0, 1),

f(0) = Cf(1),

Tf ′(1)− CT Tf ′(0) + λΓf(1) = Γu(1).

(6.3.12)

Set
f̂(x) = T1/2f(x), ĝ(x) = T1/2g(x), û(x) = T1/2u(x), v̂(x) = T1/2v(x).

Then Eqs.(6.3.12) is changed into
λ2B2f̂(x)− f̂ ′′(x) = λB2û(x) +B2v̂(x), x ∈ (0, 1),

f̂(0) = Ĉf̂(1),

f̂ ′(1)− ĈT f̂ ′(0) + λΓ̂f̂(1) = Γ̂û(1),

(6.3.13)

where B, Ĉ and Γ̂ are defined as (6.3.8).
Clearly, the differential equation in (6.3.13) has the general solution

f̂(x) = exλBy + e−xλBz −
∫ x

0

sinh(λ(x− s)B)[Bû(s) + λ−1Bv̂(s)]ds (6.3.14)

where y, z ∈ Cn. Substituting (6.3.14) into the boundary conditions in (6.3.13) yields

(I − ĈeλB)y + (I − Ĉe−λB)z

= −Ĉ
∫ 1

0

sinh(λ(1− s)B)[Bû(s) + λ−1Bv̂(s)]ds,[
(Γ̂ +B)eλB − ĈTB

]
y +

[
(Γ̂−B)e−λB + ĈTB

]
z

=
∫ 1

0

[
B cosh(λ(1− s)B) + Γ̂ sinh(λ(1− s)B)

]
[Bû(s) + λ−1Bv̂(s)]ds

+λ−1Γu(1).

(6.3.15)

Since the coefficient matrix of above algebraic equations is

G̃(λ) =

 I − ĈeλB I − Ĉe−λB

(Γ̂ +B)eλB − ĈTB (Γ̂−B)e−λB + ĈTB

 , (6.3.16)

when D(λ) = det G̃(λ) 6= 0, we have

G̃−1(λ) =
adjG̃(λ)
D(λ)

=
1

D(λ)

 Ĝ11(λ) Ĝ12(λ)

Ĝ21(λ) Ĝ22(λ)

 (6.3.17)
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where adj(S) denotes the adjoint matric of S. We define functionals on H by

F1(u, v, λ) = −Ĝ11(λ)Ĉ
∫ 1

0
sinh(1− s)[Bû(s) + λ−1Bv̂(s)]ds

+Ĝ12(λ)
∫ 1

0

[
Γ̂ sinh(λ(1− s)B) +B cosh(λ(1− s)B)

]
[Bû(s) + λ−1Bv̂(s)]ds

+Ĝ12(λ)λ−1Γ̃û(1),

(6.3.18)

F2(u, v, λ) = −Ĝ21(λ)Ĉ
∫ 1

0
sinh(λ((1− s)B)[Bû(s) + λ−1Bv̂(s)]ds

+Ĝ22(λ)
∫ 1

0

[
B cosh(λ(1− s)B + Γ̂ sinh(λ(1− s)B)

]
[Bû(s) + λ−1Bv̂(s)]ds

+G22(λ)λ−1Γ̂û(1).

(6.3.19)

Obviously, F1 and F2 defined by (6.3.18) and (6.3.19) respectively are bounded linear functionals
on H, and the solution to (6.3.15) is given by

(y, z) = D−1(λ)(F1(u, v, λ), F2(u, v, λ)).

Therefore, when λ ∈ C with D(λ) 6= 0, we have

f̂(x) = D−1(λ)
[
exλBF1(u, v, λ) + e−xλBF2(u, v, λ)

]
−
∫ x

0

sinh((x− s)λB)[Bû(s) + λ−1Bv̂(s)]ds.
(6.3.20)

Set
f(x) = T−1/2f̂(x), g(x) = λT−1/2f̂(x)− u(x). (6.3.21)

A straightforward calculation shows (f, g) ∈ D(A) and

(λI −A)(f, g) = (u, v).

So we have λ ∈ ρ(A). The first assertion follows.
Now let D(λ) be defined by (6.3.5), then D(λ) is an entire function of finite exponential type

on complex plane C. From (6.3.6) and (6.3.7) we can see that, when det[Γ̂−B − ĈTBĈ] 6= 0,
there are positive constants c1, c2 and h such that, as |<λ| ≥ h,

c1 det(e|λ|B) ≤ |D(λ)| ≤ c2 det(e|λ|B). (6.3.22)

This means that D(λ) is a sine type function on C (see, [9, Definition II,1.27, pp-61]). The
Levin’s theorem (see, [9, Propostion II.1.28]) asserts that set of zeros of D(λ) is a union of finite
separable sets. So is σ(A). The proof is then complete. �

In what follows we shall discuss the completeness of eigenvectors and generalized eigenvectors
of A. For this purpose, we begin with the following proposition.

PROPOSITION 6.3.1 Let H be defined as before. Define an operator A0 in H by

D(A0) =
{
(f, g) ∈ V 2

E(0, 1)× V 1
E(0, 1)

∣∣ Tf ′(1)− CT Tf ′(0) = 0
}
,

A0 (f, g)) =
(
g(x),M−1Tf ′′(x)

)
.
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Then A0 is a skew-adjoint operator in H, and for any (u, v) ∈ H, λ ∈ R, the solution (fλ, gλ)
of the resolvent equation

λ(f, g)−A0(f, g) = (u, v)

satisfies
||gλ(1)|| ≤M‖(u, v)‖H,

where M > 0 is a constant.

Proof For any (fi, gi) ∈ D(A0), i = 1, 2, it holds that

〈A0(f1, g1), (f2, g2)〉H =
∫ 1

0

(Tg′1(x), f ′2(x))dx+
∫ 1

0

(MM−1Tf ′′1 (x), g2(x))dx

= (Tg1(x), f ′2(x))
∣∣∣1
0
−
∫ 1

0

(Tg1(x), f ′′2 (x))dx

+(Tf ′1(x), g2(x))
∣∣∣1
0
−
∫ 1

0

((Tf ′1(x), g′2(x))dx

= (Tg1(x), f ′2(x))
∣∣∣1
0

+ (Tf ′1(x), g2(x))
∣∣∣1
0
− 〈(f1, g1),A0(f2, g2)〉H

= (g1(1),Tf ′2(1))− (g1(0),Tf ′2(0)) + (Tf ′1(1), g2(1))− (Tf ′1(0), g2(0))

−〈(f1, g1),A0(f2, g2)〉H
= (g1(1),Tf ′2(1)− CT Tf ′(0)) + (Tf ′1(1)− CT Tf ′1(0), g2(1))− 〈(f1, g1),A0(f2, g2)〉H
= −〈(f1, g1),A0(f2, g2)〉H.

So, A∗0 = −A0.
Now let (u, v) ∈ H be given and λ ∈ R. Let (fλ, gλ) satisfy the resolvent equation

(λI −A0)(f, g) = (u, v), (f, g) ∈ D(A0),

i.e.,
λfλ(x)− gλ(x) = u(x), λgλ(x)−M−1Tf ′′λ (x) = v(x),

and
fλ(0) = Cfλ(1), Tf ′λ(1)− CT Tf ′λ(0) = 0.

Since

fλ(1) =
∫ 1

0

f ′λ(x)dx+ fλ(0) =
∫ 1

0

f ′λ(x)dx+ Cfλ(1),

so we have

fλ(1) = (I − C)−1

∫ 1

0

f ′λ(x)dx.

Similarly, we have

u(1) = (I − C)−1

∫ 1

0

u′(x)dx.

So,

gλ(1) = λfλ(1)− u(1) = (I − C)−1T−1/2

[
λ

∫ 1

0

T1/2f ′(x)dx−
∫ 1

0

T1/2u′(x)dx
]
.
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Consequently,

‖gλ(1)‖ ≤
∥∥∥(I − C)−1T−1/2

∥∥∥ [|λ|∫ 1

0

(Tf ′(x), f ′(x))dx+
∫ 1

0

(Tu′(x), u′(x))dx
]

≤
∥∥∥(I − C)−1T−1/2

∥∥∥ [|λ|‖R(λ,A0)(u, v)‖H + ‖(u, v)‖H] .

Since A0 is a skew adjoint operator, ||λR(λ,A0)|| ≤ 1, λ ∈ R, we have

‖gλ(1)‖ ≤ 2‖(I − C)−1T−1/2‖‖(u, v)‖H, ∀λ ∈ R.

The desired result follows. �

THEOREM 6.3.2 Let H and A be defined as before. If det(Γ̂ − B − ĈTBĈ) 6= 0, then the
system of eigenvectors and generalized eigenvectors of A is complete in H.

Proof Let H and A be defined as before, and A0 be defined as in proposition 6.3.1. Denote
by

Sp(A) = span
{∑

yk, yk ∈ E(λk,A)H,∀λk ∈ σ(A)
}
,

where E(λk,A) is the Riesz projector corresponding to λk. We shall prove Sp(A) = H.
Let (u0, v0) ∈ H and (u0, v0)⊥Sp(A). Then R∗(λ,A)(u0, v0) is an entire function on C

valued in H. For any (u, v) ∈ H, we define a function on complex plane C by

F (λ) = 〈(u, v), R∗(λ,A)(u0, v0)〉H .

Clearly, F (λ) is an entire function of finite exponential type, and

|F (λ)| ≤ (<λ)−1‖(u, v)||H||(u0, v0)‖H, <λ > 0,

and hence lim
<λ→+∞

|F (λ)| = 0.

Now we consider the solution of equations

(λI −A)(f1λ, g1λ) = (u, v), (λI −A0)(f2λ, g2λ) = (u, v), λ ∈ ρ(A) ∩ ρ(A0) ∩ R−.

Set
ϕ(x) = f1λ(x)− f2λ(x), ψ(x) = g1λ(x)− g2λ(x).

Then we have

R(λ,A)(u, v) = (f1λ, g1λ) = (f2λ, g2λ) + (ϕ,ψ) = R(λ,A0)(u, v) + (ϕ,ψ),

ψ(x) = λϕ(x), and ϕ satisfies differential equation
λ2Mϕ(x) = Tϕ′′(x), x ∈ (0, 1),

ϕ(0) = Cϕ(1),

Tϕ′(1)− CT Tϕ′(0) + λΓϕ(1) = Γg2λ(1).

Setting ϕ̂(x) = T1/2ϕ(x), using previous notation, we have

ϕ̂(x) = exλBy + e−xλBz, y, z ∈ Cn,
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where y and z solve algebraic equations (I − ĈeλB)y + (I − Ĉe−λB)z = 0,[
(Γ̂ +B)eλB − ĈTB

]
y +

[
(Γ̂−B)e−λB + ĈTB

]
z = λ−1T1/2Γg2λ(1).

Thus  y = (I − ĈeλB)−1(Ĉ − eλB)e−λBz = (Ĉ −O1(λ))e−λBz,[
Γ̂−B − ĈTBĈ −O2(λ)

]
e−λBz = λ−1T1/2Γg2λ(1),

where ‖Oj(λ)‖ = o(λ−1), j = 1, 2, as λ→ −∞. This means that

e−λBz = λ−1(Γ̂−B − ĈTBĈ +O2(λ))−1T1/2Γg2λ(1).

Therefore, when |λ| is sufficiently large, we have

ϕ̂(1) = eλBy + e−λBz = eλB(Ĉ −O1(λ))e−λBz + e−λBz

= (I +O3(λ))e−λBz

= λ−1(I +O3(λ))(Γ̂−B − ĈTBĈ +O2(λ))−1T1/2Γg2λ(1).

So there is a constant M1 > 0 such that

‖ϕ̂(1)‖ ≤M1|λ−1|‖g2λ(1)‖.

Thus,

‖(ϕ,ψ)‖2H =
∫ 1

0

(Tϕ′(x), ϕ′(x))dx+
∫ 1

0

(Mψ(x), ψ(x))dx

= (Tϕ′(1), ϕ(1))− (Tϕ′(0), ϕ(0))
= −λ(Γϕ(1), ϕ(1)) + (Γg2λ, ϕ(1))
= −λ(Γ̂ϕ̃(1), ϕ̃(1)) + (T−1/2Γg2λ(1), ϕ̃(1))
≤ −λ‖Γ̂‖‖ϕ̃(1)‖2 + ‖T−1/2Γ‖‖g2λ‖‖ϕ̃(1)‖
≤ |λ−1|‖Γ‖M2

1 ‖g2λ(1)‖2 + ‖T−1/2Γ‖‖g2λ(1)‖M1|λ−1|‖g2λ‖
≤ M2|λ−1|‖g2λ(1)‖2

whereM2 is a positive constant. According to proposition 6.3.1, we have ‖g2λ(1)‖ ≤M‖(u, v)‖H,
and hence there is a positive constant M3 such that

‖(ϕ,ψ)‖H ≤M3

√
|λ−1|‖(u, v)‖H.

Therefore, we get that, for λ ∈ ρ(A) ∩ R− with |λ| large enough,

|F (λ)| = |〈R(λ,A)(u, v), (u0, v0)〉H| = |〈R(λ,A0)(u, v), (u0, v0)〉H + 〈ϕ,ψ), (u0, v0)〉H|
≤ |λ−1|‖(u, v)‖H‖u0, v0)‖H + ‖(ϕ,ψ)‖H‖(u0, v0)‖H
≤ |λ−1|‖(u, v)‖H‖u0, v0)‖H +M3

√
|λ−1|‖(u, v)‖H‖(u0, v0)‖H.

Note that F (λ) is an entire function of finite exponential type, the above inequality together
with Phragmén-Lindelöf theorem (cf. [127]) implies F (λ) ≡ 0. So R∗(λ,A)(u0, v0) ≡ 0, which
implies (u0, v0) = 0. So Sp(A) = H. The proof is then complete. �

In order to obtain the Riesz basis property of eigenvectors and generalized eigenvectors of
A, we need the following theorem, which comes from [119] and is an extension of the result in
[117].
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THEOREM 6.3.3 Let A be the generator of a C0 semigroup T (t) on a separable Hilbert space
H. Suppose that the following conditions are satisfied:

1). The spectrum of A has a decomposition

σ(A) = σ1(A) ∪ σ2(A) (6.3.23)

where σ2(A) consists of the isolated eigenvalues of A of finite multiplicity (repeated many times
according to its algebraic multiplicity).

2). There exists a real number α ∈ R such that

sup{<λ, λ ∈ σ1(A)} ≤ α ≤ inf{<λ, λ ∈ σ2(A)} (6.3.24)

3). The set σ2(A) is a union of finite many separable sets.
Then the following statements are true:
i). There exist two T (t)-invariant closed subspaces H1 and H2 with property that σ(A

∣∣
H1

) =
σ1(A), σ(A

∣∣
H2

) = σ2(A), and there exists a finite combination, E(Ωk,A), of some {E(λk,A)}∞k=1

:
E(Ωk,A) =

∑
λ∈Ωk∩σ2(A)

E(λ,A) (6.3.25)

such that {E(Ωk,A)H2}k∈N forms a Riesz basis of subspaces for H2( the definition see [48,
pp,332]). Furthermore,

H = H1 ⊕H2.

ii). If sup
k≥1

||E(λk,A)|| <∞, then

D(A) ⊂ H1 ⊕H2 ⊂ H. (6.3.26)

iii). H has a decomposition of the topological direct sum, H = H1 ⊕H2, if and only if

sup
n≥1

∥∥∥∥∥
n∑

k=1

E(Ωk,A)

∥∥∥∥∥ <∞. (6.3.27)

Combining Theorems 6.3.1, 6.3.2 and 6.3.3, we can get the following result.

THEOREM 6.3.4 Let A be defined by (6.2.2) and (6.2.3) and S(t) be the C0 semigroup
associated with A, and let B, Γ̂ and Ĉ be defined as in Theorem 6.3.1. If det(Γ̂−B−ĈTBĈ) 6= 0,
then there is a sequence of eigenvectors and generalized eigenvectors of A that forms a Riesz basis
with parentheses for H. Therefore, S(t) satisfies the spectrum determined growth assumption.
In addition, S(t) is in fact a C0 group on H.

Proof Let A be defined by (6.2.2) and (6.2.3) and S(t) be the C0 semigroup associated
with A. Set σ1(A) = {−∞}, σ2(A) = σ(A). Theorem 6.3.1 shows that all conditions in
Theorem 6.3.3 are fulfilled, so the results of Theorem 6.3.3 are true. Thus there is a sequence
of eigenvectors and generalized eigenvector of A that forms a Riesz basis with parentheses for
H2. Theorem 6.3.2 says that the eigenvectors and generalized eigenvectors sequence is complete
in H, that is H2 = H. Therefore the sequence is also a Riesz basis with parentheses for H.
The basis property together with the uniform boundedness of the multiplicities of eigenvalues
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of A implies that S(t) satisfies the spectrum determined growth assumption. Also, the basis
property of eigenvectors and generalized eigenvectors together with distribution of spectrum of
A asserts that A generates a C0 group on H. The proof is then complete. �

As a consequence of Riesz basis property, we have the following stability result of the system.

THEOREM 6.3.5 Let H and A be defined as before, and B, Γ̂ and Ĉ be defined as in Theorem
6.3.1. Let det(Γ̂ − B − ĈTBĈ) 6= 0 and D(λ) be defined as (6.3.5). Suppose that Γ > 0 and
−1 6∈ σ(C). Then the following statements are true:

1). If inf
λ∈iR

|D(λ)| 6= 0, then the system (6.2.4) is exponentially stable;

2). If inf
λ∈iR

|D(λ)| = 0, then the system (6.2.4) is asymptotically stable but not exponentially

stable;

Proof Under above assumptions, Theorem 6.3.4 shows that the system (6.2.4) is a Riesz
system and satisfies the spectrum determined growth condition. Note that

σ(A) = {λ ∈ C
∣∣ D(λ) = 0}.

If inf
λ∈iR

|D(λ)| 6= 0, then the imaginary axis is not an asymptote of σ(A), which implies the system

is exponentially stable. Since ±1 6∈ σ(C), Corollary 6.2.1 shows that there is no eigenvalue of
A on the imaginary axis. If inf

λ∈iR
|D(λ)| = 0, then the imaginary axis is an asymptote of σ(A),

and hence the system is asymptotically stable but not exponential stable. The proof is then
complete. �

REMARK 6.3.1 In Theorem 6.3.5, The condition that Γ > 0 and ±1 6∈ σ(C) is used to
ensure that there is no eigenvalue on imaginary axis. The restriction can be relaxed, indeed, if
Γ ≥ 0 such that there is no eigenvalue on the imaginary axis, then the results in Theorem 6.3.5
is still right.

6.4 Applications

In this section we shall give two examples in actual problem. One is the tree-shaped network
of strings, another is n connected strings. We shall prove that these systems are exponentially
stable.

6.4.1 Tree-shaped network of 7-strings

In this subsection we discuss the tree-shaped network of strings whose configuration is a simple
and connected graph without circuit.

In past decade, the controllability and observability as well as stabilization of networks of
strings have been a hot topic, many authors have made effort and obtained some nice results,
for example, the authors of [33] [74][31] and [32] discussed the problems of observability and
controllability of tree-shaped network of strings, authors of [5] and [6] discussed the stabilization
problem of star-shaped and generic trees of strings. More general discussion for networks of
strings and a list of entire literatures in this aspect we refer to a book [34] recent published.
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Here, as an example, we give the Riesz basis property and exponential stability of this system
for n = 7 with shaped as below figure.
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PPPPPP
root

Q
Q

Q
QQ������
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u1

u2

u3

u4

u5

u6

u7

Fig 6.4.1

Firstly, we formulate the model into a normal form. We denote the strings by uj , j =
1, 2, · · · , 7. For these strings, we normalize the length into the unit, then the strings satisfy the
equation

mjuj,tt(x, t) = Tjuj,xx(x, t), x ∈ (0, 1), j = 1, 2, · · · , 7, (6.4.1)

the root and the geometric connected condition are given by

u1(0, t) = 0, u1(1, t) = u2(0, t) = u3(0, t)

u2(1, t) = u4(0, t) = u5(0, t), u3(1, t) = u6(0, t) = u7(0, t),
(6.4.2)

and the dynamic conditions at the nodes are

T1u1,x(1, t)− [T2u2,x(0, t) + T3u3,x(0, t)] = −α1u1,t(1, t)

T2u2,x(1, t)− [T4u4,x(0, t) + T5u5,x(0, t)] = −α2u2,t(1, t),

T3u3,x(1, t)− [T6u6,x(0, t) + T7u7,x(0, t)] = −α3u3,t(1, t),

T4u4,x(1, t) = −α4u4,t(1, t), T5u5,x(1, t) = −α5u5,t(1, t),

T6u6,x(1, t) = −α6u6,t(1, t), T7u7,x(1, t) = −α7u7,t(1, t).

(6.4.3)

Set
Y (x, t) = [u1(x, t), u2(x, t), u3(x, t), u4(x, t), u5(x, t), u6(x, t), u7(x, t)]T ,

M = diag[m1,m2, · · · ,m7], T = diag[T1, T2, · · · , T7], Γ = diag[α1, α2, · · · , α7] (6.4.4)

and

C =



0 0 0 0 0 0 0

1 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 1 0 0 0 0


. (6.4.5)
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Then Eqs.(6.4.1)–(6.4.3) can be rewritten into

MYtt(x, t) = TYxx(x, t), x ∈ (0, 1), t > 0,

Y (0, t) = CY (1, t), t > 0,

TYx(1, t)− CT TYx(0, t) = −ΓYt(1, t), t > 0,

Y (x, 0) = Y0(x), Yt(x, 0) = Y1(x)

(6.4.6)

where Y0(x) and Y1(x) are given suitable initial value condition.

REMARK 6.4.1 The incidence matrix of graph G as shown Fig. 6.4.1 is given by

Φ =



−1 0 0 0 0 0 0

1 −1 −1 0 0 0 0

0 1 0 −1 −1 0 0

0 0 1 0 0 −1 −1

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1



.

The continuity condition can write as

Y (0, t) = (Φ−)T d, d = (d(root), d(a1), d(a2), · · · , d(a7)) ∈ C8.

The incidence matrix implies d = Φ+Y (1, t). Thus the matrix C just is C = (Φ−)T Φ+

Clearly, ±1 6∈ σ(C). According to Corollary 6.2.1, we have the following result.

THEOREM 6.4.1 The system (6.4.6) is well posed and asymptotically stable.

To obtain exponential stability, we discuss the eigenvalue problem of the system.
Let λ ∈ C, Y (x, t) = eλtY (x), then we have

λ2MY (x) = TYxx(x), x ∈ (0, 1),

Y (0) = CY (1),

TYx(1)− CT TYx(0) = −λΓY (1).

(6.4.7)

Let B2 = diag[ρ2
1, ρ

2
2, · · · , ρ2

7] where ρ2
j = mj

Tj
, then we have

λ2B2Y (x) = Yxx(x), x ∈ (0, 1),

Y (0) = CY (1),

TYx(1)− CT TYx(0) = −λΓY (1).

(6.4.8)

Thus Y (x) has the following form

Y (x) = sinh(xλB)u+ cosh(xλB)v, u, v ∈ C7.
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Substituting it into the boundary conditions leads to

v = C[sinhλBu+ coshλBv],

TB[coshλBu+ sinhλBv]− CT TBu = −Γ[sinhλBu+ coshλBv].

So λ is an eigenvalue if and only if

D(λ) = det

 I − C coshλB −C sinhλB

TB sinhλB + Γ coshλB TB coshλB + Γ sinhλB − CT TB

 = 0 (6.4.9)

When det[Γ− TB − CT TBC] 6= 0, all eigenvalues are located in a strip. Note that

TB =



T1ρ1 0 0 0 0 0 0

0 T2ρ2 0 0 0 0 0

0 0 T3ρ3 0 0 0 0

0 0 0 T4ρ4 0 0 0

0 0 0 0 T5ρ5 0 0

0 0 0 0 0 T6ρ6 0

0 0 0 0 0 0 T7ρ7


, (6.4.10)

CT TBC =



T2ρ2 + T3ρ3 0 0 0 0 0 0

0 T4ρ4 + T5ρ5 0 0 0 0 0

0 0 T6ρ6 + T7ρ7 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


. (6.4.11)

The condition det[Γ− TB − CT TBC] 6= 0 means that

α1 6= T1ρ1 + T2ρ2 + T3ρ3, α2 6= T2ρ2 + T4ρ4 + T5ρ5,

α3 6= T3ρ3 + T6ρ6 + T7ρ7, αj 6= Tjρj , j = 4, 5, 6, 7.

Set  wj(λ) = Tjρj coshλρj + αj sinhλρj ,

vj(λ) = Tjρj sinhλρj + αj coshλρj ,
j = 1, 2, 3, 4, 5, 6, 7, (6.4.12)

 F2(λ) = 1
T2ρ2

[(w5v4T4ρ4 + w4v5T5ρ5) sinhλρ2 + w2w4w5] ,

G2(λ) = 1
T2ρ2

[(w5v4T4ρ4 + w4v5T5ρ5) coshλρ2 + v2w4w5] ,
(6.4.13)

and  F3(λ) = 1
T3ρ3

[(w7v6T6ρ6 + w6v7T7ρ7) sinhλρ3 + w3w6w7] ,

G3(λ) = 1
T3ρ3

[(w7v6T6ρ6 + w6v7T7ρ7) coshλρ3 + v3w6w7] .
(6.4.14)
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A complicated calculation shows that

D(λ) = [T2ρ2G2(λ)F3(λ) + T3ρ3G3(λ)F2(λ)] sinhλρ1 + w1(λ)F2(λ)F3(λ). (6.4.15)

We are now in a position to calculate inf
σ∈R

|D(iσ)|. Note that

inf
σ∈R

|wj(iσ)| 6= 0, inf
σ∈R

|vj(iσ)| 6= 0, j = 1, 2, 3, 4, 5, 6, 7,

vj(iσ)
wj(iσ)

=
vj(iσ)wj(iσ)
|wj(iσ)|2

=
αjTjρj + i

T 2
j ρ2

j−α2
j

2 sin 2σρj

T 2
j ρ

2
j cos2 σρj + α2

j sin2 σρj

and
i sinσρj

wj(iσ)
=
i sinσρj(Tjρj cosσρj − iαj sinσρj)

|wj(iσ)|2
=
αj sin2 σρj + i

Tjρj

2 sin 2σρj

T 2
j ρ

2
j cos2 σρj + α2

j sin2 σρj

,

where j = 1, 2, 3. From (6.4.13)–(6.4.14) we can get

inf
σ∈R

|F2(iσ)| > 0, inf
σ∈R

|F3(iσ)| > 0,

<(G2(iσ)F2(iσ)) = [|w5(iσ)|2α4(T4ρ4)2 + |w4(iσ)|2α5(T5ρ5)2]T2ρ2

+α2T2ρ2|w4(iσ)|2|w5(iσ)|2 > 0

and

<(G3(iσ)F3(iσ)) = [|w7(iσ)|2α6(T6ρ6)2 + |w6(iσ)|2α7(T7ρ7)2]T3ρ3

+α3T3ρ3|w6(iσ)|2|w7(iσ)|2 > 0.

Consequently, we have

D(iσ)
w1(iσ)F2(iσ)F3(iσ)

=

[
T2ρ2

G2(iσ)F2(iσ)
|F2(iσ)|2

+ T3ρ3
G3(iσ)F3(iσ)
|F3(iσ)|2

]
i sinσρ1w1(iσ)
|w1(iσ)|2

+ 1

=

[
T2ρ2

<(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
<(G3(iσ)F3(iσ))

|F3(iσ)|2

]
α1 sin2 σρ1

|w1(iσ)|2
+ 1

−

[
T2ρ2

=(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
=(G3(iσ)F3(iσ))

|F3(iσ)|2

]
T1ρ1 sin 2σρ1

2|w1(iσ)|2

+i

[
T2ρ2

<(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
<(G3(iσ)F3(iσ))

|F3(iσ)|2

]
T1ρ1 sin 2σρ1

2|w1(iσ)|2

+i

[
T2ρ2

=(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
=(G3(iσ)F3(iσ))

|F3(iσ)|2

]
α1 sin2 σρ1

|w1(iσ)|2
.

When sinσρ1 → 0, we have D(iσ) 6→ 0. Now we assume that sinσρ1 6→ 0, then[
T2ρ2

<(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
<(G3(iσ)F3(iσ))

|F3(iσ)|2

]
T1ρ1 sin 2σρ1

2|w1(iσ)|2

+

[
T2ρ2

=(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
=(G3(iσ)F3(iσ))

|F3(iσ)|2

]
α1 sin2 σρ1

|w1(iσ)|2
→ 0
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if and only if

−

[
T2ρ2

=(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
=(G3(iσ)F3(iσ))

|F3(iσ)|2

]

=

[
T2ρ2

<(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
<(G3(iσ)F3(iσ))

|F3(iσ)|2

]
T1ρ1 cosσρ1

α1 sinσρ1
+ o(1).

From above we get

D(iσ)
w1(iσ)F2(iσ)F3(iσ)

=

[
T2ρ2

<(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
<(G3(iσ)F3(iσ))

|F3(iσ)|2

]
α1 sin2 σρ1

|w1(iσ)|2
+ 1

+

[
T2ρ2

<(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
<(G3(iσ)F3(iσ))

|F3(iσ)|2

]
T 2

1 ρ
2
1 cos2 σρ1

α1|w1(iσ)|2
+o(1) + io(1)

=

[
T2ρ2

<(G2(iσ)F2(iσ))
|F2(iσ)|2

+ T3ρ3
<(G3(iσ)F3(iσ))

|F3(iσ)|2

]
1
α1

+ 1 + o(1) + io(1).

Therefore,
inf
σ∈R

|D(iσ)| 6= 0.

According to Theorem 6.3.4 and 6.3.5, we have the following result.

THEOREM 6.4.2 Let H be defined as in section 3 and let α1 6= T1ρ1 + T2ρ2 + T3ρ3,α2 6=
T2ρ2 +T4ρ4 +T5ρ5,α3 6= T3ρ3 +T6ρ6 +T7ρ7,αj 6= Tjρj , j = 4, 5, 6, 7. Then there is a sequence of
eigenvector and generalized eigenvectors of the system that forms a Riesz basis with parentheses
for the state space H. The system (6.4.6) is exponentially stable.

REMARK 6.4.2 As mentioned in Remark 6.3.1, Γ being a positive definite matrix is only
a sufficient condition for the system (6.4.1–6.4.3) decays exponentially. Similar to proof of
Theorem 6.4.1, we can prove that Γ = diag(0, 0, 0, α4, α5, α6, α7) stabilizes exponentially the
system. Further, if we suppose that the network of strings satisfy Tj = mj = 1, then we can use
three controllers to stabilize exponentially the network. The controllers are setup as follows:

1). α1 6= 0, α5α7 6= 0;
2). α1 = α1 = α3 = 0, one of αj,j = 4, 5, 6, 7, is 0.
In above both cases, it always holds that inf

σ∈R
|D(iσ)| > 0. Here we omit the details of

calculation.

6.4.2 n-serially connected strings

In this subsection we discuss the n serially connected strings with internal node and boundary
controls. This problem was proposed and discussed for n = 2 in [16]. The exponential stability
was investigated in [71]. Here, we give the exponential decay rate of the system and Riesz basis
property. Let us recall the model.
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qa1 a2q qa3 q q qan qan+1y1 y2 yn

Fig. 6.4.2. A long chain graph G

Let y(x, t), the transverse displacement of n connected strings at location x at time t, satisfy

mi
∂2y(x, t)
∂t2

− Ti
∂2y(x, t)
∂x2

= 0, i− 1 < x < i, i = 1, 2, · · · , n, t > 0 (6.4.16)

on the span [0, n]. We assume Dirichlet condition at the left hand x = 0 and Neumann boundary
condition at the right hand x = n where a control force un(t) is applied, i.e.,

y(0, t) = 0,
∂y(n, t)
∂x

= un(t), t > 0. (6.4.17)

At the i-th intermediate node x = i, we assume the continuity of displacement

y(i+, t) = y(i−, t), i = 1, 2, · · · , n− 1, t > 0, (6.4.18)

and discontinuity of vertical force component

Ti
∂y(i−, t)
∂x

− Ti+1
∂y(i+, t)
∂x

= ui(t), i = 1, 2, · · · , n− 1, t > 0, (6.4.19)

where uj(t),j = 1, 2, · · · , n− 1, are applied external forces.
An important task in engineering is to design controllers U = (u1(t), u2(t), · · · , un(t)) such

that the system comes back to its equilibrium. The authors of [16] designed the following
feedback controllers at the intermediated point x = i and the right end x = n,

ui(t) = −αi
∂y(i, t)
∂t

, αi > 0, i = 1, 2, · · · , n. (6.4.20)

Then the equation (6.4.16) together with (6.4.17)–( 6.4.20) forms a closed loop system. In what
following, we shall prove that this closed loop system is a Riesz system and decays exponentially.

Let yi(x, t) = y(i− 1 + x, t), x ∈ (0, 1), and

Y (x, t) = (y1(x, t), y2(x, t), · · · , yn(x, t)), x ∈ (0, 1), t > 0.

Then Eqs. (6.4.16) is equivalent to an equation in Cn

M
∂2Y (x, t)
∂t2

= T
∂2Y (x, t)
∂x2

, x ∈ (0, 1), t > 0 (6.4.21)

where
M = diag(m1,m2, · · · ,mn), T = diag(T1, T2, · · · , Tn). (6.4.22)

The continuity conditions at intermediate nodes together with the condition at the left hand
endpoint can be written into

Y (0, t) = CY (1, t), (6.4.23)
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where

C =



0 0 0 0 0 0 0

1 0 0 0 0 0 0

0 1 0 0 0 0 0
...

. . . . . .
...

...
. . . . . .

...

0 0 0 0 0 1 0


(6.4.24)

The discontinuity condition of vertical force at the intermediate nodes together with the con-
dition at the right hand endpoint can be written as

T
∂Y (1, t)
∂x

− CT T
∂Y (0, t)
∂x

= U(t) = −Γ
∂Y (1, t)
∂t

, (6.4.25)

here CT denotes the transpose matrix of C and

Γ = diag(α1, α2, · · · , αn) (6.4.26)

is a n× n positive definite matrix. Thus the closed loop system is written into

MYtt(x, t) = TYxx(x, t), x ∈ (0, 1), t > 0,

Y (0, t) = CY (1, t), t > 0,

TYx(1, t)− CT TYx(0, t) = −ΓYt(1, t), t > 0,

Y (x, 0) = Y0(x), Yt(x, 0) = Y1(x), x ∈ (0, 1).

(6.4.27)

where Y0(x) and Y1(x) are given suitable initial data.
In this case, we can take matrix

B2 = diag
[
m1

T1
,
m2

T2
, · · · , mn

Tn

]
,

then the condition (6.3.5) in previous section is equivalent to

D(λ) = det

 (I − C)eλB (I − C)e−λB

(Γ + TB)eλB − CT TB (Γ + TB)e−λB + CTTB

 ,

and the condition det[Γ̂−B − ĈTBĈ] 6= 0 is equivalent to det[Γ− TB − CT TBC] 6= 0.
Now let us determine D(λ). Let λ ∈ C be an eigenvalue, Y = (y1, y2, · · · , yn) be correspond-

ing an eigenfunction, then
mjλ

2yj(x) = Tjyj,xx

y1(0) = 0, yj(1) = yj+1(0), j = 1, 2, · · · , n. (6.4.28)

Tjyj,x(1)−Tj+1yj+1,x(0) = −αjλyj(1), j = 1, 2, · · · , n− 1, Tnyn,x(1) = −αnλyn(1). (6.4.29)

Set ρ2
j = mj

Tj
and

y1(x) = a1 sinhλρ1, yj(x) = aj sinhλρj + bj coshλρj , j = 2, 3, · · · , n.
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From (6.4.28) and (6.4.29) we get

[Tnρn coshλρn + αn sinhλρn]an + [Tnρn sinhλρn + αn coshλρn]bn = 0,

[Tjρj coshλρj + αj sinhλρj ]aj + [Tjρj sinhλρj + αj coshλρj ]bj = Tj+1ρj+1aj+1,

j = 2, · · · , n− 1,

sinhλρjaj + coshλρjbj = bj+1 j = 2, · · · , n− 1,

[T1ρ1 coshλρ1 + α1 sinhλρ1]a1 = T2ρ2a2

[sinhλρ1]a1 = b2.

(6.4.30)

Set Tn+1ρn+1 = 1 and

wj(λ) =
1

Tj+1ρj+1
[Tjρj coshλρj + αj sinhλρj ],

vj(λ) =
1

Tj+1ρj+1
[Tjρj sinhλρj + αj coshλρj ]. (6.4.31)

We can rewrite (6.4.30) into

(1, 0)

 wn(λ) vn(λ)

sinhλρn coshλρn

 an

bn

 = 0, wj(λ) vj(λ)

sinhλρj coshλρj

 aj

bj

 =

 aj+1

bj+1

 , a2

b2

 =

 w1(λ) v1(λ)

sinhλρ1 coshλρ1

 a1

0

 . (6.4.32)

Therefore, for 1 ≤ k ≤ n− 1, we have ak+1

bk+1

 =

k−1∏
j=0

 wk−j(λ) vk−j(λ)

sinhλρk−j coshλρk−j

 a1

0

 . (6.4.33)

Note that for j = 1, 2, · · · , n, the matrices wj(λ) vj(λ)

sinhλρj coshλρj

 =

 Tjρj

Tj+1ρj+1

αj

Tj+1ρj+1

0 1

 coshλρj sinhλρj

sinhλρj coshλρj


are invertible. So λ ∈ C is an eigenvalue if and only if

D(λ) = (1, 0)

n−1∏
j=0

 wn−j(λ) vn−j(λ)

sinhλρn−j coshλρn−j

 1

0

 = 0, (6.4.34)

or

D(λ) = D(λ)T = (1, 0)

 n∏
j=1

 wj(λ) sinhλρj

vj(λ) coshλρj

 1

0

 = 0. (6.4.35)
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Similar to previous subsection, a complicated calculation shows that

inf
σ∈R

|D(iσ)| > 0.

The condition det[Γ− TB − CT TBC] 6= 0 becomes

αj 6= Tjρj + Tj+1ρj+1, j = 1, 2, · · · , n− 1, αn 6= Tnρn. (6.4.36)

Combining Theorem 6.3.4, we have the following result.

THEOREM 6.4.3 Let (6.4.36) hold, then system (6.4.27) is exponentially stable. There is a
sequence of eigenvector and generalized eigenvectors of the system that forms a Riesz basis with
parentheses for the space H.

REMARK 6.4.3 In the long chains case, if it has continuous displacement, then we have
Y (0, t) = (Φ−)TY (v, t) and Y (1, t) = (Φ+)TY (v, t). At same time, it also satisfies the flow
continuous condition,

Y (v, t) = Φ−Y (0, t), Y (v, t) = Φ+Y (1, t).

So Y (0) = (Φ−)T Φ+Y (1). Denote C = (Φ−)T Φ+. We get Y (0) = CY (1).

(Φ−)T Φ+ =



1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0
. . . 0 0 0 0

0 0 0
. . . 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0





0 0 0 0 0 0

1 0 0 · · · 0 0

0 1 0 · · · 0 0

0 0
. . . 0 0 0

0 0 0
. . . 0 0

0 0 0 0 1 0

0 0 0 0 0 1



=



0 0 0 · · · 0 0 0

1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0

0 0
. . . · · · 0 0 0

0 0 0
. . . 0 0 0

0 0 0 · · · 1 0 0

0 0 0 · · · 0 1 0


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The dynamic condition

Φ+TYx(1) =



0 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0
. . . 0 0 0

0 0 0
. . . 0 0

0 0 0 0 1 0

0 0 0 0 0 1





T1y
′
1(1)

T2y
′
2(1)
...
...

Tn−1y
′
n−1(1)

Tny
′
n(1)



and

Φ−TYx(0) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0
. . . 0 0 0

0 0 0
. . . 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0





T1y
′
1(0)

T2y
′
2(0)
...
...

Tn−1y
′
n−1(0)

Tny
′
n(0)


Define the project operator P : Cn+1 → Cn by

P (v1, v2, · · · , vn, vn+1) = (v2, · · · , vn, vn+1)

which has matrix representation

P =



0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0
. . . 0 0 0

0 0 0 0
. . . 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0


.

The dynamic condition can write into

PΦ+TYx(1, t)− PΦ−TYx(0, t) + ΓY (1, t) = 0.

A direct verification shows that PΦ+ = In and PΦ− = CT . Therefore, we have

TYx(1, t)− CT TYx(0, t) = −ΓY (1, t).
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6.5 Conclusion remark

In this chapter, we discussed the abstract hyperbolic equation

MYtt(x, t) = TYxx(x, t), x ∈ (0, 1), t > 0,

Y (0, t) = CY (1, t), t > 0,

TYx(1, t)− CT TYx(0, t) = −ΓYt(1, t), t > 0,

Y (x, 0) = Y0(x), Yt(x, 0) = Y1(x), x ∈ (0, 1).

(6.5.1)

where M,T are positive definite n×n matrices, Γ is a nonnegative matrix, and C is a real n×n
matrix, and CT denotes the transpose of matrix C. The obtained main results are as follows:

1) If C satisfies the condition det(I ± C) 6= 0 and Γ is positive definite matrix, then the
system is asymptotically stable;

2) if Γ ≥ 0 satisfies the condition det[Γ̂−B−ĈTBĈ] 6= 0, spectra of the system is distributed
in a strip parallel to the imaginary axis, and the eigenvector and generalized eigenvectors form
a Riesz basis with parentheses for the Hilbert state space;

3) Suppose that det(I ± C) 6= 0. If infσ∈R |D(iσ)| > 0, then the system is exponentially
stable. If infσ∈R |D(iσ)| = 0, the system is at most asymptotically stable. In particular, when
Γ > 0, we have simple test of asymptotic stability, i.e, −1 6∈ σ(C).

Note that in the system assumptions, we only require that M and T are positive definite
n × n matrices, they need not to be the diagonal matrices. So these results can be applied to
more complex systems, for instance, the system with coupling equations, i.e., m1 0

0 m2

 y1,tt

y2,tt

 =

 T11 T12

T21 T22

 y1,xx

y2,xx

 , x ∈ (0, 1), (6.5.2)

where Tkk > 0 and T11T22 − T12T21 > 0. Here we do not study such systems.



Chapter 7

Continuous Network of Strings

In this chapter, we shall discuss the continuous network of strings:

mj(s)uj,tt(s, t) = (Tj(s)uj,s(s, t))s − qj(s)uj(s), s ∈ (0, 1)

u(aj , t) = uk(0, t) = ui(1, t) = 0, ∀k ∈ J−(aj), (or i ∈ J+(aj)), aj ∈ ∂GD,

u(aj , t) = uk(0, t) = ui(1, t), ∀k ∈ J−(aj), i ∈ J+(aj), aj ∈ V \∂GD∑
j∈J+(a)

Tj(1)uj,s(1, t)−
∑

k∈J−(a)

Tk(0)uk,s(0, t) + k(a)u(a, t) = −α(a)s(a)ut(a, t), a ∈ V \∂GD

uj(s, 0) = uj0(s), ujt(s, 0) = uj1(s), s ∈ (0, 1)

where Tj(s) and mj(s) are positive and twice continuous differentiable functions and qj(s) are
nonnegative continuous functions (or called potentials), s(a) = 0 or 1 is the function of vertex
selection and α(a)s(a) ≥ 0. Its vectorization form is

M(x)Utt(x, t) = (T(x)Ux(x, t))x −Q(x)U(x, t), x ∈ (0, 1)

∃U(v, t) ∈ V, s.t. U(1, t) = (Φ+)TU(v, t), U(0, t) = (Φ−)TU(v, t)

PΦ+T(1)Ux(1, t)− PΦ−T(0)Ux(0, t) + K(v)U(v, t) = −ΓSUt(v, t) ∈ V

U(x, 0) = U0(x), Ut(x, 0) = U1.

(7.0.1)

where P : Cm → V = {(w(a1), w(a2), · · · , w(am))
∣∣ w(ak) = 0, ak ∈ ∂GD}, We shall study the

asymptotic property of this network.

7.1 Well-posedness of the continuous network

Let Cd(G) denote the set of all continuous functions on G with zero values at ∂GD. Then
u ∈ Cd(G) implies that there is d ∈ V such that U(1) = (Φ+)T d, U(0) = (Φ−)T d. For
simplicity, we set

H1
e (G) = {f ∈ Cd(G)

∣∣ f ′ ∈ H1(E)}.

164
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Let H be the state space defined by

H = H1
e (G)× L2(E)

equipped with inner product

((f, g), (u, v))H =
∫ 1

0

(T(x)f ′(x), u′(x))cndx+
∫ 1

0

(M(x)g(x), v(x))cndx

+
∫ 1

0

(Q(x)f(x), u(x))cndx+ (K(v)f(v), u(v))V.

Define the operator A in H by

A(w, z) = (z,M−1(x)[(T(x)w′(x))′ −Q(x)w(x)]), (w, z) ∈ D(A) (7.1.1)

with domain

D(A) = {(w, z) ∈ H2(E)×H1
e (G)

∣∣ w(v), z(v) ∈ V

PΦ+T(1)w′(1)− PΦ−T(0)w′(0) + K(v)w(v) = −ΓSz(v)}.
(7.1.2)

With this definition, we can rewrite (7.0.1) into an evolutionary equation in H
dW (t)

dt = AW (t), t > 0

W (0) = W0

(7.1.3)

where W (t) = (U(x, t), Ut(x, t))T and W (0) = (U0(x), U1(x))T .

PROPOSITION 7.1.1 Let A be defined by (7.1.1) and (7.1.2). Then A is a densely defined
and closed linear operator in H.

Let us consider the dual operator of A, A∗. We shall prove that

A∗(f, g) = −(g,M−1(x)[(T(x)f ′(x))′ −Q(x)f(x)]), (f, g) ∈ D(A∗) (7.1.4)

with domain

D(A∗) = {(f, g) ∈ H2(E)×H1
e (G)

∣∣ f(v), g(v) ∈ V

PΦ+T(0)f ′(1)− PΦ−T(1)f ′(0) + K(v)f(v) = ΓSg(v)}
(7.1.5)

Here we mainly find out the expression of A∗. For any (w, z) ∈ D(A), (f, g) ∈ D(A∗), we
have

((A(w, z), (f, g))H = ((w, z),A∗(f, g))H

=
∫ 1

0

[(T(x)z′(x), f ′(x))cn + ((T(x)w′(x))′ −Q(x)w(x), g(x))cn ]dx

+
∫ 1

0

(Q(x)z(x), f(x))cndx+ (K(v)z(v), f(v))V

= (z(1),T(1)f ′(1))cn − (z(0),T(0)f ′(0))cn −
∫ 1

0

(z(x), (T(x)f ′(x))′)cndx
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+(T(1)w′(1), g(1))cn − (T(0)w′(0), g(0))cn −
∫ 1

0

(T(x)w′(x), g′(x))cndx

−
∫ 1

0

(Q(x)w(x), g(x))cndx+
∫ 1

0

(z(x),Q(x)f(x))cndx+ (z(v),K(v)f(v))V

= ((Φ+)T z(v),T(1)f ′(1))cn − ((Φ−)T z(v),T(0)f ′(0))cn + (z(v),K(v)f(v))V

+(T(1)w′(1), (Φ+)T g(v))cn − (T(0)w′(0), (Φ−)T g(v))cn + (K(v)w(v), g(v))V

−
∫ 1

0

(T(x)w′(x), g′(x))cndx−
∫ 1

0

(M(x)z(x),M−1(x)((T(x)f ′(x))′ −Q(x)f(x)))cndx

−
∫ 1

0

(Q(x)w(x), g(x))cndx− (K(v)w(v), g(v))V

= (z(v),PΦ+T(1)f ′(1)− PΦ−T(0)f ′(0) + K(v)f(v))V

+(PΦ+T(1)w′(1)− PΦ−T(0)w′(0) + K(v)w(v), g(v))V

−
∫ 1

0

(T(x)w′(x), g′(x))cndx−
∫ 1

0

(M(x)z(x),M−1(x)((T(x)f ′(x))′ −Q(x)f(x)))cndx

−
∫ 1

0

(Q(x)w(x), g(x))cndx− (K(v)w(v), g(v))V

= (z(v),PΦ+T(1)f ′(1)− PΦ−T(0)f ′(0) + K(v)f(v))V − (ΓSz(v), g(v))V

−
∫ 1

0

(T(x)w′(x), g′(x))cndx−
∫ 1

0

(M(x)z(x),M−1(x)((T(x)f ′(x))′ −Q(x)f(x)))cndx

−
∫ 1

0

(Q(x)w(x), g(x))cndx− (K(v)w(v), g(v))V

where we have used the relations

g(1) = (Φ+)T g(v), g(0) = (Φ−)T g(v); z(1) = (Φ+)T z(v), z(0) = (Φ−)T z(v).

Therefore, due to ΓS being a diagonal matrix,

A∗(f, g) = −(g,M−1((T(x)f ′(x))′ −Q(x)f(x)))

and

D(A∗) =

(f, g) ∈ H2(E)×H1
e (0, 1)

∣∣ f(v), g(v) ∈ V,

PΦ+T(1)f ′(1)− PΦ−T(0)f ′(0) + K(v)g(v) = ΓSg(v)

 .

THEOREM 7.1.1 A and A∗ are dissipative operators in H. Hence A generates a C0 semi-
group of contraction on H and hence (7.1.3) is well-posed.

Proof For any (w, z) ∈ D(A), it holds that

(A(w, z), (w, z))H =
∫ 1

0

[(T(x)z′(x), w′(x))cn + ((T(x)w′(x))′ −Q(x)w(x), z(x))cn ]dx

+
∫ 1

0

(Q(x)z(x), w(x))cndx+ (K(v)z(v), w(v))V

= (z(v),PΦ+T(1)w′(1)− PΦ−T(0)w′(0) + K(v)w(v))cn

+
∫ 1

0

(T(x)z′(x), w(x))cndx−
∫ 1

0

(T(x)w′(x), z′(x))cndx
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−
∫ 1

0

(Q(x)w(x), z(x))cndx+
∫ 1

0

(Q(x)z(x), w(x))cndx,

and hence

2<(A(w, z), (w, z))H = (A(w, z), (w, z))H + ((w, z),A(w, z))H

= (z(v),PΦ+T(1)w′(1)− PΦ−T(0)w′(0) + K(v)w(v))V

+(PΦ+T(1)w′(1)− PΦ−T(0)w′(0) + K(v)w(v), z(v))V

= −(z(v),ΓSz(v))V − (ΓSz(v), z(v))V .

The dissipatedness of A follows from the nonnegativity of ΓS.
Similarly, for any (f, g) ∈ D(A∗),

(A∗(f, g), (f, g))H = −
∫ 1

0

(Tg′(x), f ′(x))cndx−
∫ 1

0

((Tf ′(x))′ −Q(x)f(x), g(x))cndx

−
∫ 1

0

(Q(x)g(x), f(x))cndx− (K(v)g(v), f(v))V

= −((f, g),A∗(f, g))H − (g(v),ΓSg(v))V − (ΓSg(v), g(v))V.

Therefore, we have

<(A∗(w, z), (w, z))H = −(ΓSg(v), g(v))V.

Also A∗ is dissipative. The Lumer-Phillips Theorem (e.g., see [92]) asserts that A generates a
C0 semigroup of contraction on H. Hence the system (7.1.3) is well-posed. �

REMARK 7.1.1 Define the energy function of (7.1.3) by

E(t) =
1
2
||(w(x, t), z(x, t))||2H

=
1
2

∫ 1

0

(T(x)wx(x, t), wx(x, t))cn + (Q(x)w(x, t), w(x, t))cndx

+
1
2

∫ 1

0

(M(x), z(x, t), z(x, t))cndx+
1
2
(K(v)w(v, t), w(v, t))V,

then we have
dE(t)
dt

= −(ΓSz(v, t), z(v, t))V ≤ 0 (7.1.6)

Therefore, for any t > 0, it holds the equality

E(t) +
∫ t

0

(ΓSz(v, t), z(v, t))Vdt = E(0). (7.1.7)

7.2 Asymptotic stability of the system

In this section, we discuss the asymptotic stability of the system (7.1.3). According to Theorem
7.1.1, the system (7.1.3) is dissipative, which implies the spectrum of A are lying in the left-half
complex plane, i.e., σ(A) ⊂ {λ ∈ C

∣∣ <λ ≤ 0}. Therefore, by the stability theorem in [70], we
need only to discuss whether or not there is a spectral point of A on the imaginary axis.
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7.2.1 λ = 0 ∈ ρ(A)

For any (f, g) ∈ H, we consider the solvability of the equation: A(w, z) = (f, g), i.e.,

z = f

M−1(x)[(T(x)w′(x))′ −Q(x)w(x)] = g

w(1) = (Φ+)Tw(v), w(0) = (Φ−)Tw(v)

PΦ+T(1)w′(1)− PΦ−T(0)w′(0) + K(v)w(v) = −ΓSz(v).

(7.2.1)

From the second equation in (7.2.1) we get

(T(x)w′(x))′ −Q(x)w(x) = M(x)g(x).

For any test function φ(x) ∈ Cd(G) ∩H2(E), it holds that∫ 1

0

[(T(x)w′(x)), φ′(x))cn + (Q(x)w(x), φ(x))cn ]dx− (T(x)w′(x), φ(x))cn

∣∣1
0

= −
∫ 1

0

(M(x)g(x), φ(x))cndx.

Note that φ(v) ∈ V and

(T(x)w′(x), φ(x))cn

∣∣1
0

= (T(1)w′(1), φ(1))cn − (T(0)w′(0), φ(0))cn

= (Φ+T(1)w′(1), φ(v))V − (Φ−T(0)w′(0), φ(v))V

= (P[(Φ+T(1)w′(1)− Φ−T(0)w′(0)), φ(v))V

= (−K(v)w(v)− ΓSz(v), φ(v))V

and hence ∫ 1

0

[(T(x)w′(x)), φ′(x))cn + (Q(x)w(x), φ(x))cn ]dx+ (K(v)w(v), φ(v))V

= −(ΓSf(v), φ(v))V −
∫ 1

0

(M(x)g(x), φ(x))cndx. (7.2.2)

The bilinear form B(w, z) defined by, ∀w, z ∈ Cd(G) ∩H1(E) = H1
e (G)

B(w, z) =
∫ 1

0

[(T(x)w′(x)), z′(x))cn + (Q(x)w(x), z(x))cn ]dx+ (K(v)w(v), z(v))V

is coercive and bounded, this is because B(w,w) = ‖w‖2H1(G) can define a norm on H1
e (G) and

|B(w, z)| ≤ ‖w‖H1
e (G) ·‖z‖H1

e (G). The Lax-Milgram’s Theorem asserts that there exists unique a
w(x) ∈ H2

e (G) satisfying (7.2.2) and hence satisfying (7.2.1). Therefore, (w, z) = (w, f) ∈ D(A)
and A(w, z) = (f, g). So 0 ∈ ρ(A).

Observe that D(A) ⊂ H2(E)×H1(E), the Sobolev Embedding Theorem ensures that A−1

is a compact operator on H. Therefore, we have the following result.

THEOREM 7.2.1 Let A be defined by (7.1.1) (7.1.2). Then 0 ∈ ρ(A), and A−1 is compact.
Hence the spectrum of A consists of all isolated eigenvalues of finite multiplicity.
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7.2.2 Eigenvalue problem

In this subsection, we concentrate our attention on the eigenvalue problem of A. It is easy to see
that the eigenvalue problem of A is equivalent to the following boundary eigenvalue problem:

λ2M(x)f(x) = (T(x)f ′(x))′ −Q(x)f(x), g(x) = λf(x), x ∈ (0, 1)

∃f(v) ∈ V s.t.f(1) = (Φ+)T f(v), f(0) = (Φ−)T f(v)

PΦ+T(1)f ′(1)− PΦ−T(0)f ′(0) + K(v)f(v) = −λΓSf(v).

(7.2.3)

For each j ∈ {1, 2, · · · , n}, let sj(x, λ) and cj(x, λ) be the solutions to differential equation

λ2mj(x)wj(x) = (Tj(x)w′j(x))
′ − qj(x)wj(x), x ∈ (0, 1)

with sj(0, λ) = 0, s′j(0, λ) = 1 and cj(0, λ) = 1, c′j(0, λ) = 0, respectively. Obviously they are
the entire functions of finite exponential type with respect to λ (see, [85]).

Define the diagonal matrices by

S(x, λ) = diag(s1(x, λ), s2(x, λ), · · · , sn(x, λ)),

C(x, λ) = diag(c1(x, λ), c2(x, λ), · · · , cn(x, λ)),
(7.2.4)

Obviously, S(x, λ) and C(x, λ) satisfy the differential equation in (7.2.3). Thus the general
solution to the differential equation in (7.2.3) is of the form

f(x) = C(x, λ)f(0) + S(x, λ)f ′(0),

so
f ′(x) = C ′(x, λ)f(0) + S′(x, λ)f ′(0).

Substituting them into the boundary conditions in (7.2.3) lead to f(0) = (Φ−)T f(v), f(v) ∈ V
and

f(1) = (Φ+)T f(v) = C(1, λ)(Φ−)T f(v) + S(1, λ)f ′(0)

PΦ+T(1)[C ′(1, λ)(Φ−)T f(v) + S′(1, λ)f ′(0)]− PΦ−T(0)[f ′(0)] + K(v)f(v) = −λΓSf(v)

i.e., [C(1, λ)(Φ−)T − (Φ+)T ]f(v) + S(1, λ)f ′(0) = 0

P[Φ+T(1)C ′(1, λ)(Φ−)T + K(v) + λΓS]f(v) + P[Φ+T(1)S′(1, λ)− Φ−T(0)]f ′(0) = 0.
(7.2.5)

Let k = dim V and U be isomorphic mapping between V and Ck. Then there exists d ∈ Ck

such that Uf(v) = d. Hence [C(1, λ)(Φ−)T − (Φ+)T ]U−1d+ S(1, λ)f ′(0) = 0

UP[Φ+T(1)C ′(1, λ)(Φ−)T + K(v) + λΓS]U−1d+ UP[Φ+T(1)S′(1, λ)− Φ−T(0)]f ′(0) = 0.
(7.2.6)
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Obviously, the above algebraic equations has a nonzero solution if and only if the determinant
of the coefficients matrix vanishes, i.e., ∆(λ) = 0, where ∆(λ) is defined by

∆(λ) = det

∣∣∣∣∣∣ UP[Φ+T(1)C ′(1, λ)(Φ−)T + K(v) + λΓS]U−1 UP[Φ+T(1)S′(1, λ)− Φ−T(0)]

[C(1, λ)(Φ−)T − (Φ+)T ]U−1 S(1, λ)

∣∣∣∣∣∣ .
(7.2.7)

Thus, one has the following result.

THEOREM 7.2.2 Let A be defined as (7.1.1) and (7.1.2). Then we have

σ(A) = {λ ∈ C
∣∣ ∆(λ) = 0}

where ∆(λ) is defined by (7.2.7).

7.2.3 Criterion on asymptotic stability

In this subsection we analyze the asymptotic stability of the system (7.1.3). Firstly we introduce
an auxiliary operator A0 defined by

A0(w, z) = (z,M−1(x)[(T(x)w′(x))′ −Q(x)w(x)]), (w, z) ∈ D(A0) (7.2.8)

with domain
D(A0) = {(w, z) ∈ H2(E)×H1

e (G)
∣∣ w(v), z(v) ∈ V

PΦ+T(1)w′(1)− PΦ−T(0)w′(0) + K(v)w(v) = 0}.
(7.2.9)

Obviously, A0 is a skew-adjoint operator in H.
Define the vertex observation operator Ŝ from H to V by

Ŝ(f, g) = Sg(v), ∀(f, g) ∈ H1
e (G)× Cd(G). (7.2.10)

With these operators we can prove the following asymptotic stability result.

THEOREM 7.2.3 Let A0 be defined by (7.2.8) and (7.2.9) and Ŝ : D(Ŝ) → V be the obser-
vation operator defined by (7.2.10). Then the system (7.1.3) is asymptotically stable if and only
if

N (λI −A0) ∩N (Ŝ) = {θ}, ∀λ ∈ C. (7.2.11)

Proof Since A is a dissipative operator, and Theorem 7.2.1 says that σ(A) = σp(A), so the
system (7.1.3) is asymptotically stable if and only if there is no eigenvalue of A on the imaginary
axis according to the stability theorem [70].

We prove that there is an eigenvalue of A on the imaginary axis, i.e., σ(A) ∩ iR 6= ∅, if and
only if

N (λI −A0) ∩N (Ŝ) 6= {θ}.

In fact, suppose that there are a λ = ik, k ∈ R and a nonzero vector (w, z) ∈ D(A) such that
A(w, z) = λ(w, z), then by the dissipation of A, we have

<λ||(w, z)||2 = <〈A(w, z), (w, z)〉H = −(ΓSz(v), z(v))V ≤ 0
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which shows that Sz(v) = 0, i.e., (w, z) ∈ N (Ŝ). By the definition of D(A0) in (7.2.9), we see
that (w, z) ∈ D(A0) and A0(w, z) = λ(w, z). Therefore

(w, z) ∈ N (λI −A0) ∩N (Ŝ) 6= {θ}.

Conversely, if there is a λ ∈ C such that N (λI − A0) ∩ N (Ŝ) 6= {θ}, then from (λI −
A0)(w, z) = 0 we get that λ ∈ iR, this together with Ŝ(w, z) = Sz(v) = 0 gives that (w, z) ∈
D(A) and (λI −A)(w, z) = 0. Therefore λ ∈ σ(A) ∩ iR. The proof is then complete. �

7.3 Geometric method in analysis of asymptotic stability

In this section we explore a geometric approach in analysis of asymptotic stability of the system
(7.1.3). From the proof of Theorem 7.2.3 we can see that, in order to check the condition
(7.2.11), we only need to check it for λ ∈ σ(A0). It is equivalent to check whether or not
there exists a nonzero vector (w(x), λw(x)) ∈ D(A0), where w(x) is a solution of the following
second-order differential equations

λ2mj(x)wj(x) + qj(x)wj(x) = (Tj(x)w′j(x))
′

wj(1) = wi(0) = w(a), ∀j ∈ J+(a), i ∈ J−(a), a ∈ V,∑
j∈J+(a) Tj(1)w′j(1)−

∑
i∈J−(a) Ti(0)w′i(0) + k(a)w(a) = 0, a ∈ V \∂GD

wj(1) = wi(0) = w(a) = 0, ∀j ∈ J+(a), i ∈ J−(a), a ∈ ∂GD

Tj(1)w′j(1) + k(a)wj(a) = 0, j ∈ J+(a), a ∈ ∂G\∂GD

w(a) = 0, a ∈ Vo.

(7.3.1)

where Vo denotes the set of all observation vertices, which are also the controlled vertices.
Obviously if (7.3.1) has a nonzero solution, then there is at least an eigenvalue of A on the
imaginary axis; if (7.3.1) has uniquely an zero solution, then there is no eigenvalue of A on the
imaginary axis.

Observe that boundary eigenvalue problem (7.3.1) is defined on the graph G. We can reduce
it into a boundary eigenvalue problem on a subgraph G1 ⊂ G. The subgraph G1 is obtained
by cutting out all the controlled boundary edges and the resulted edges satisfying condition
w(a) = w′j(1) = w′i(0) = 0, j ∈ J+(a), i ∈ J−(a).

For the resulted subgraph G1 = (E1, V1), the Dirichlet vertex set V1d consists of all such
vertices a ∈ V if a ∈ V is an endpoint of the cut off edge, or a ∈ ∂GD ∪ Vo. The corresponding
boundary eigenvalue problem of the second-order differential equations on G1 is

λ2mj(x)wj(x) + qj(x)wj(x) = (Tj(x)w′j(x))
′, x ∈ (0, 1)

wj(1) = wi(0) = w(a), ∀j ∈ J+(a), i ∈ J−(a), a ∈ V1,∑
j∈J+(a) Tj(1)w′j(1)−

∑
i∈J−(a) Ti(0)w′j(0) + k(a)w(a) = 0, a ∈ V1,int

Tj(1)w′j(1) + k(a)wj(a) = 0, j ∈ J+(a), a ∈ ∂G\∂Gd

w(a) = 0, a ∈ V1d.

(7.3.2)

Clearly, (7.3.1) has a nonzero solution if and only if (7.3.2) has.
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Now we divide the resulted subgraph G1 into several simpler subgraph G1j , j = 1, 2, · · · , k
such that G1j ∩G1i ⊂ V1d, and then discuss the eigenvalue problem on each G1j .

Let the second-order differential operator on each subgraph G1j have eigenvalue set σ1j for
the Dirichlet Problem. Here we emphasize that we only take the Dirichlet boundary at the
Dirichlet vertices.

Obviously if ∩k
j=1σj 6= ∅, then the system is unstable. However, ∩k

j=1σj = ∅ is not a
sufficient condition for system stable. In this case, we process the subgraph G1 according the
following procedure:

1) If there are two indices i and j such that σ1i ∩ σ1j = ∅, then we divide the subgraph G1

into subgraph pairs
G1\G1i ∼ G1i, and (G1\G1j ∼ G1j)

and take zero value of Neumann-Kirchhoff condition of G1i and G1\G1i respectively at the
intersection vertices (correspondingly, G1j and G1\G1j ).

2) The resulted subgraph, for instance, G1\G1j , together with the Neumann-Kirchhoff con-
dition at the intersection vertices composes a new eigenvalue problem. If one can see obviously
that the eigenvalue problem has uniquely a zero solution, one can cut out this subgraph. If not,
we repeat the first step and compare reminder σ1i and σ1k.

3) If for any i and j, it holds that σi ∩ σj 6= ∅, then we can divide the subgraph G1

into subgraph sequence G1\G1j , j = 1, 2, · · · , k since ∩k
j=1σj = ∅, and take the zero value of

Neumann-Kirchhoff condition of G1j at the intersection vertices.
4) If for some G1\G1k one can see obviously that the eigenvalue problem has no nonzero

solution, one can cut out this subgraph from the subgraph sequence. If not, we repeat the third
step for each subgraph G1\G1j or the first step.

In this manner, if all edges of G are cut out, then the system is asymptotically stable.
Otherwise, the system is unstable.

Based on previous analysis, we get an approach of analyzing stability–Geometric method,
this is achieved by deleting edge (or subgraph). This approach can be used to analyze more
complicated networks involving un-normalized networks.

To explain how to reduce a graph, we give two examples.

EXAMPLE 7.3.1 Let G be a tree-shaped graph, whose structure is shown in Fig. 7.3.1
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Fig 7.3.1. Tree shaped graph with controllers at a4, a5 and a6
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Consider a continuous network of strings on G

mj(x)wj,tt(x, t) = (Tj(x)wj,x(x, t))x − qj(x)wj(x, t), x ∈ (0, 1)

w1(0, t) = 0, w1(1, t) = w2(0, t) = w3(0, t) = w(a1, t),

T1(1)w1,x(1, t)− T2(0)w2,x(0, t)− T3(0)w3,x(0, t) = 0

w2(1, t) = w4(0, t) = w5(0, t) = w(a2, t),

T2(1)w2,x(1, t)− T4(0)w4,x(0, t)− T5(0)w5,x(0, t) = 0

w3(1, t) = w6(0, t) = w7(0, t) = w(a3, t),

T3(1)w3,x(1, t)− T6(0)w6,x(0, t)− T7(0)w7,x(0, t) = 0

Tj(1)wj,x(1, t) = −αjwj,t(1, t), αj > 0, j = 4, 5, 6

T7(1)w7,x(1, t) = 0,

wj(x, 0) = wj0(x), wj,t(x, 0) = wj1(x).

(7.3.3)

Step 1. The asymptotic stability is equivalent to verification of the following differential
equations having no nonzero solution

λ2mj(x)wj(x) = (Tj(x)wj,x(x))x − qj(x)wj(x), x ∈ (0, 1)

w1(0) = 0, w1(1) = w2(0) = w3(0) = w(a1),

T1(1)w1,x(1)− T2(0)w2,x(0)− T3(0)w3,x(0) = 0

w2(1) = w4(0) = w5(0) = w(a2),

T2(1)w2,x(1)− T4(0)w4,x(0)− T5(0)w5,x(0) = 0

w3(1) = w6(0) = w7(0) = w(a3),

T3(1)w3,x(1)− T6(0)w6,x(0)− T7(0)w7,x(0) = 0

Tj(1)wj,x(1) = 0, wj(1) = 0, j = 4, 5, 6

T7(1)w7,x(1) = 0.

(7.3.4)

Step 2. Cut out the boundary edges w4, w5 and w6 from G. Since w2,x(1) = w2(1) = 0
at a2, one can cut out w2 again. So the resulted subgraph is shown in Fig.7.3.2, in which
V1d = {root, a1, a3}
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Q
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Q
QQPPPPPP

w1

w3

w7 a7

◦
a1

◦
a3

Fig 7.3.2. Resulted subgraph with Dirichlet vertices: the root, a1, a3
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Then the asymptotic stability is equivalent to verification of the following differential equations
having no nonzero solution

λ2mj(x)wj(x) = (Tj(x)wj,x(x))x − qj(x)wj(x), x ∈ (0, 1), j = 1, 3, 7

w1(0) = w1(1) = w3(0) = w3(1) = w7(0) = 0,

T1(1)w1,x(1)− T3(0)w3,x(0) = 0

T3(1)w3,x(1)− T7(0)w7,x(0) = 0

T7(1)w7,x(1) = 0.

(7.3.5)

Step 3. Divide the graph G1 into three subgraph G11, G12 and G13, where G11, G12 and
G13 consist only one of w1,w3 and w7, respectively.

Let sj(x, λ) be unique a solution to equation λ2mj(x)wj(x) = (Tj(x)wj,x(x))x − qj(x)wj(x), x ∈ (0, 1),

wj(0) = 0, w′j(0) = 1.

For G11, the eigenvalue problem is λ2m1(x)w1(x) = (T1(x)w1,x(x))x − q1(x)w1(x), x ∈ (0, 1),

w1(0) = w1(1) = 0.

The eigenvalues are gives by
σ1 = {λ ∈ C

∣∣ s1(1, λ) = 0}.

For G12, the eigenvalue problem is λ2m3(x)w3(x) = (T3(x)w3,x(x))x − q3(x)w3(x), x ∈ (0, 1),

w3(0) = w3(1) = 0.

The eigenvalues are gives by
σ2 = {λ ∈ C

∣∣ s2(1, λ) = 0}.

For G13, the eigenvalue problem is λ2m7(x)w7(x) = (T7(x)w7,x(x))x − q7(x)w7(x), x ∈ (0, 1),

w7(0) = 0, T7(1)w7,x(1, t) = 0.

The eigenvalues are gives by
σ3 = {λ ∈ C

∣∣ s′7(1, λ) = 0}.

Obviously, if ∩3
j=1σj 6= ∅, then the system is unstable. If ∩3

j=1σj = ∅, we consider the
following cases.

1) If σ1 ∩σ2 = ∅, then one cut out edge w1, and takes w1,x(1) = 0. The boundary condition
in (7.3.5) yields w3,x(0) = 0. This together with w3(0) = 0 leads to w3(x) ≡ 0, so one can cut
out edge w3. For same reason one can cut out edge w7.
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2) If σ1 ∩ σ2 6= ∅, σ1 ∩ σ3 6= ∅ and σ2 ∩ σ3 6= ∅, we divide the graph G1 into the subgraph
sequence

G1\G11, G1\G12, G1\G13

and take the zero value of Neumann-Kirchhoff condition of G1j at the intersection vertices.
Obviously, the eigenvalue problem on each subgraph G1\G1j has no nonzero solution. We

can cut out the subgraph G1\G11, G1\G12 and G1\G13 from the subgraph sequence. By now
we cut out all edges from G. Therefore we have achieved the following result.

THEOREM 7.3.1 If
3⋂

j=1

σj = ∅, then the system (7.3.3) is asymptotically stable.

EXAMPLE 7.3.2 Let us consider a graph G with multi-circuit as shown in Fig. 7.3.3, with
boundary controller at a2 and interior controllers at a4, a6, a8, a10 and a12
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Fig. 7.3.3. A planar network with multi-circuit

The direct edges are defined by

e1 = (a1, a2), e2 = (a1, a3), e3 = (a3, a4), e4 = (a4, a1),

e5 = (a1, a5), e6 = (a6, a1), e7 = (a1, a7), e8 = (a8, a1),

e9 = (a1, a9), e10 = (a10, a1), e11 = (a1, a11), e12 = (a12, a1)

e13 = (a5, a6), e14 = (a7, a8), e15 = (a9, a10), e16 = (a11, a12)

their parameterization x have same direction.

Let wj(x, t) be defined on ej and satisfy the differential equations

mj(x)wj,tt(x, t) = (Tj(x)wj,x(x, t))x − qj(x)wj(x, t), x ∈ (0, 1)

and the boundary condition

T1(1)w1,x(1, t) + k1w(a2, t) = −α1wt(a2, t)

and the connection conditions: geometric conditions

w(a, t) = wi(0, t) = wj(1, t), j ∈ J+(a), i ∈ J−(a), a 6= a2.
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and dynamic conditions∑
j∈J+(a)

Tj(1)wj,x(1, t)−
∑

i∈J−(a)

Ti(0)wi,x(0, t) = −α(a)wt(a, t), a 6∈ {a3, a5, a7, a9, a11}

and ∑
j∈J+(a)

Tj(1)wj,x(1, t)−
∑

i∈J−(a)

Ti(0)wi,x(0, t) = 0, a ∈ {a3, a5, a7, a9, a11}

Similar to discussion in Example 7.3.1, firstly we can delete the boundary edge e1 from G.
The resulted subgraph G1 is shown as in Fig.7.3.4
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Fig. 7.3.4. The resulted subgraph G1 with multi-subgraphs G1j

Obviously, the Dirichlet vertex set is V1d = {a1, a4, a6, a8, a10, a12}. G1 has a subgraph
sequence {G1j}5j=1.

We are now in a position to solve the boundary eigenvalue problem on each subgraph G1j .
Here we reemphasize that we only take the Dirichlet boundary at the Dirichlet vertices. For
example, G11, corresponding Dirichlet boundary eigenvalue problem is

λ2mk(x)wk(x) = (Tk(x)wk,x(x))x − qk(x)wk(x), x ∈ (0, 1), k = 2, 3, 4,

w2(0) = w4(1) = 0, w3(1) = w4(0) = 0, w2(1) = w3(0)

T2(1)w2,x(1)− T3(0)w3,x(0) = 0.

In fact, we can easily determine σj . We divide the subgraph G1j into two subgraph G1j,1,
G1j,2, where

G1j,1 = (a1, a2j+2), G1j,2 = (a1, a2j+1) ∪ (a2j+1, a2j+2).

Let σj,k be eigenvalue set of the Dirichlet Problem corresponding to G1j,k. Then we have
σj = σj,1 ∩ σj,2, which is called the Dirichlet spectrum.

Let σj be the Dirichlet spectrum corresponding to subgraph G1j , j = 1, 2, 3, 4, 5. If there is
some σk = ∅, we can remove this subgraph from G1. Further we compare the nonempty {σj}.
According to the structure of subgraph G1, we discuss the stability as follows:

1) If there are i and j such that σi ∩ σj 6= ∅, then the system is unstable.
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For example, σ1 ∩ σ5 6= ∅. We prove this assertion by three steps.
Step 1. For G11 and λ ∈ σ1 ∩ σ5, one constructs a function W1(x, λ) satisfies boundary

eigenvalue problem on G11 with Dirichlet boundary at a1.
Suppose that w(x, λ) is a nonzero solution on (a1, a3)∪ (a3, a4) with Dirichlet boundary a1

and a4, w4(x, λ) is a nonzero solution on (a4, a1) with Dirichlet boundary at both ends. Define
the function by

W1(x, λ) =

 w(x, λ), x ∈ (a1, a3) ∪ (a3, a4)

γw4(x, λ), x ∈ (a4, a1)

where γ is a parameter. We can choose γ such that W1(x, λ) satisfy the dynamic condition at
a4

T3(1)w′3(1, λ)− T4(0)w′4(0, λ) = 0.

For simplicity, we define

∂W1(x, λ)
∂~n

= γT4(1)w′4(1)− T2(0)w′(0)

Similarly, for G15 one constructs the function W5(x, λ) and define ∂W2
∂~n .

Step 2. Choose a parameter β such that

∂W1(x, λ)
∂~n

+ β
∂W2(x, λ)

∂~n
= 0.

Step 3. For λ ∈ σ1 ∩σ5, one constructs a nonzero function W (x, λ) defined on G1 satisfying
the boundary eigenvalue problem on G1.

Set

W (x, λ) =


0, x ∈ G12 ∪G13 ∪G14

W1(x, λ), x ∈ G11

βW2(x, λ), x ∈ G15

then W (x, λ) satisfies all conditions. Clearly, the system is unstable
2) If σj ∩ σi = ∅ for any i and j, we have subgraph sequence G1j , j = 1, 2, 3, 4, 5. We solve

the boundary eigenvalue problem on G1j .

c
a1

G1j

T
T

T
T

T

a a2j+1�
�
�
�
�
ca2j+2

Fig 7.3.5. Resulted subgraph sequence with Dirichlet vertices a1, a2j+2
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For example, on G11, corresponding boundary eigenvalue problem is

λ2mk(x)wk(x) = (Tk(x)wk,x(x))x − qk(x)wk(x), x ∈ (0, 1), k = 2, 3, 4,

w2(0) = w4(1) = 0, w3(1) = w4(0) = 0, w2(1) = w3(0)

T2(1)w2,x(1)− T3(0)w3,x(0) = 0,

T3(1)w3,x(1)− T4(0)w4,x(0) = 0,

T4(1)w4,x(1)− T2(0)w2,x(0) = 0.

If for any i, the boundary eigenvalue problem on G1j has no nonzero solution, then the
system is asymptotically stable. Otherwise, the system is unstable.

by now we have proved the following result.

THEOREM 7.3.2 If σi ∩ σj = ∅,∀i 6= j ∈ {, 1, 2, 3, 4, 5} and each boundary eigenvalue prob-
lem on G1j has no nonzero solution, then the system is asymptotically stable. Otherwise, the
system is unstable.

REMARK 7.3.1 In example 7.3.2, we distinguish the boundary eigenvalue problem on G1j

from the Dirichlet boundary eigenvalue problem. Denote σ̂j the set of eigenvalue for the bound-
ary eigenvalue problem on G1j. Obviously, σ̂j ⊂ σj. Usually, σ̂j = ∅, but σj 6= ∅.

Here we give an example to show that σ̂j = ∅, but σj 6= ∅.

EXAMPLE 7.3.3 We consider the boundary eigenvalue problem on a triangle-circuit shown
as in Fig.7.3.6.

s
a1

y2

T
T

T
T

T

q a2�
�
�
�
�
sa3

y3

y1

Fig 7.3.6. Triangle-circuit with Dirichlet vertices a1 and a3

λ2π2y3(x) = y′′3 (x)− π2y(x), x ∈ (0, 1),

y3(0) = y3(1) = 0

λ22π2yk(x) = y′′k (x), x ∈ (0, 1), k = 1, 2,

y1(0) = y2(1) = 0, y1(1) = y2(0), y′1(1) = y′2(0),

y′2(1)− y′3(0) = 0,

y′3(1)− y′1(0) = 0.

(7.3.6)

Firstly, we calculate the Dirichlet spectrum.
The Dirichlet spectrum determined by y3 is

σ3 = {λn = ±i
√
n2 + 1

∣∣ n ∈ N}
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and the Dirichlet spectrum determined by y1 and y2 is

σ12 = {λ = ± ik
√

2
2

∣∣ k ∈ N}.

Therefore, the Dirichlet spectrum of the system is

σ3 ∩ σ12 = {±
√

2}

and the functions corresponding λ = ±
√

2 are

y3(x) = β sinπx, y1(x) = y2(x) = sin 2πx, x ∈ (0, 1).

But the boundary eigenvalue problem (7.3.6) has only zero solution. This is because the con-
dition y′2(1) = y′3(0) requires β = 2:

2π cos 2π = βπ

while y′3(1) = y′1(0) requires β = −2:

βπ cosπ = 2π.

Therefore, σ̂ = ∅. �

7.4 Continuous networks and their equivalent forms

7.4.1 Variable coefficient equation and its equivalent form

Let us consider variable coefficients equation

m(x)wtt(x, t) = (T (x)wx(x, t))x − q(x)w(x, t), x ∈ (0, 1) (7.4.1)

whose energy function is

E(t) =
1
2

∫ 1

0

[T (x)|wx(x, t)|2 + q(x)|w(x, t)|2 +m(x)|wt(x, t)|2]dx

Set

ξ = ξ(x) =
∫ x

0

√
m(r)
T (r)

dr, ` =
∫ 1

0

√
m(r)
T (r)

dr.

Then

x′(ξ) =
dx

dξ
=

√
T (x)
m(x)

and
d lnx′(ξ)

dξ
=
x′′(ξ)
x′(ξ)

=
1
2

[
T ′(x)
T (x)

− m′(x)
m(x)

]
x′(ξ)

where x(ξ) is the inverse function of ξ(x).
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We change the expression form of the energy function

E(t) =
1
2

∫ 1

0

[T (x)|wx(x, t)|2 + q(x)|w(x, t)|2 +m(x)|wt(x, t)|2]dx

=
1
2

∫ 1

0

[
|
√
T (x)wx(x, t)|2 +

q(x)
T (x)

|
√
T (x)w(x, t)|2 +

m(x)
T (x)

|
√
T (x)wt(x, t)|2

]
dx.

Introduce a function
√
T (x)w(x, t) = y(x, t), then we have√

T (x)wx(x, t) = yx(x, t)− T ′(x)
2T (x)

y(x, t),

and

E(t) =
1
2

∫ 1

0

[
|yx(x, t)− T ′(x)

2T (x)
y(x, t)|2 +

q(x)
T (x)

|y(x, t)|2 +
m(x)
T (x)

|yt(x, t)|2
]
dx

Define a new function

v(ξ, t) =
1√
x′(ξ)

y(x(ξ), t), ξ ∈ (0, `)

then

yx(x, t) =
1√
x′(ξ)

[vξ(ξ, t) +
1
4
(
T ′(x)
T (x)

− m′(x)
m(x)

)x′(ξ)v(ξ, t)]

and

E(t) =
1
2

∫ `

0

∣∣∣∣∣ 1√
x′(ξ)

[vξ(ξ, t) +
1
4
(
T ′(x)
T (x)

− m′(x)
m(x)

)x′(ξ)v(ξ, t)]− T ′(x)
2T (x)

√
x′(ξ)v(ξ, t)

∣∣∣∣∣
2

x′(ξ)dξ

+
1
2

∫ `

0

[
q(x)
T (x)

|
√
x′(ξ)v(ξ, t)|2 +

m(x)
T (x)

|
√
x′(ξ)vt(ξ, t)|2

]
x′(ξ)dξ

=
1
2

∫ `

0

∣∣∣∣vξ(ξ, t)−
1
4
[
T ′(x)
T (x)

+
m′(x)
m(x)

]x′(ξ)v(ξ, t)
∣∣∣∣2 dξ

+
1
2

∫ `

0

[
q(x)
T (x)

(x′(ξ))2|v(ξ, t)|2 +
m(x)
T (x)

(x′(ξ))2|vt(ξ, t)|2
]
dξ

=
1
2

∫ `

0

∣∣∣∣∣vξ(ξ, t)−
1
4
[
T ′(x)
T (x)

+
m′(x)
m(x)

]

√
T (x)
m(x)

v(ξ, t)

∣∣∣∣∣
2

dξ

+
1
2

∫ `

0

[
q(x)
m(x)

|v(ξ, t)|2 + |vt(ξ, t)|2
]
dξ

Set

ρ(ξ) = 4
√
T (x)m(x), q̂(ξ) =

q(x)
m(x)

.

Then we have

ρ′(ξ) =
1
4
[
T ′(x)
T (x)

+
m′(x)
m(x)

]

√
T (x)
m(x)

and the energy function

E(t) =
1
2

∫ `

0

[
|vξ(ξ, t)− ρ′(ξ)v(ξ, t)|2 + q̂(ξ)|v(ξ, t)|2 + |vt(x, t)|2

]
dξ (7.4.2)
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Therefore, v(ξ, t) satisfies the following equation

∂2
t v(ξ, t) + (q̂(ξ) + ρ′′(ξ) + (ρ′(ξ))2)v(ξ, t) = ∂2

ξv(ξ, t), ξ ∈ (0, `), t > 0 (7.4.3)

the boundary conditions are of the form

v(ξ, t); vξ(ξ, t)− ρ′(ξ)v(ξ, t), ξ = 0, `. (7.4.4)

The relation of both functions w(x, t) and v(ξ, t) is given by

v(ξ, t) = ρ(ξ)w(x(ξ), t), ξ ∈ (0, `). (7.4.5)

7.4.2 Continuous networks versus discontinuous networks

In this subsection, we consider the various forms of the continuous network of strings:

mj(s)wj,tt(s, t) = (Tj(s)wj,s(s, t))s − qj(s)wj(s), s ∈ (0, 1)

w(a, t) = wk(0, t) = wi(1, t) = 0, ∀k ∈ J−(a), (or i ∈ J+(a)), a ∈ ∂GD,

w(a, t) = wk(0, t) = wi(1, t), ∀k ∈ J−(a), i ∈ J+(a), a ∈ V \∂GD∑
j∈J+(a)

Tj(1)wj,s(1, t)−
∑

k∈J−(a)

Tk(0)wk,s(0, t) + k(a)w(a, t) = −α(a)s(a)wt(a, t), a ∈ V \∂GD

uj(s, 0) = uj0(s), ujt(s, 0) = uj1(s), s ∈ (0, 1)
(7.4.6)

Let

ξj(s) =
∫ s

0

√
mj(r)
Tj(r)

dr, s ∈ (0, 1), `j =
∫ 1

0

√
mj(r)
Tj(r)

dr

ρj(ξj) = 4

√
Tj(s)mj(s), q̂j(ξj) =

qj(s)
mj(s)

.

Under the transform
vj(ξj , t) = ρj(ξj)wj(s(ξj), t), ξj ∈ (0, `j)

the differential equations in (7.4.6) become

vj,tt(ξj , t) + (q̂j(ξj) + ρ′′j (ξj) + ρ′
2
j (ξj))vj(ξj , t) = vj,ξξ(ξj , t), ξ ∈ (0, `j), (7.4.7)

the Dirichlet boundary vertices become

w(a, t) =
vj(0, t)
ρj(0)

=
vi(`i, t)
ρi(`i)

= 0, j ∈ J−(a), i ∈ J+(a), a ∈ ∂GD.

At the other vertices, a ∈ V \∂GD, the geometric continuity conditions become

w(a, t) =
vk(0, t)
ρk(0)

=
vi(`i, t)
ρi(`i)

, ∀k ∈ J−(aj), i ∈ J+(aj), (7.4.8)

and corresponding dynamic conditions become

∑
j∈J+(a)

ρj(`j)[vj,ξ(`j , t)− ρ′j(`j)vj(`j , t)]

−
∑

k∈J−(a)

ρk(0)[vk,ξ(0, t)− ρ′k(0)vk(0, t)]

+k(a)w(a, t) = −α(a)s(a)wt(a, t), a ∈ V \∂GD

(7.4.9)
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Using (7.4.8), we rewrite (7.4.9) into

∑
j∈J+(a)

ρj(`j)vj,ξ(`j , t)−
∑

k∈J−(a)

ρk(0)vk,ξ(0, t)

+

[
k(a)−

∑
j∈J+(a)

ρ2
j (`j)ρ

′
j(`j) +

∑
k∈J−(a)

ρ2
k(0)ρ′k(0)

]
w(a, t)

= −α(a)wt(a, t), a ∈ V \∂GD

(7.4.10)

Therefore, we get a new discontinuous network of strings

vj,tt(ξj , t) + (q̂j(ξj) + ρ′′j (ξj) + ρ′
2
j (ξj))vj(ξj , t) = vj,ξξ(ξj , t), ξj ∈ (0, `j), t > 0

w(a, t) = vj(0,t)
ρj(0)

= vi(`i,t)
ρi(`i)

= 0, j ∈ J−(a), i ∈ J+(a), a ∈ ∂GD

w(a, t) = vk(0,t)
ρk(0) = vi(`i,t)

ρi(`i)
, ∀k ∈ J−(a), i ∈ J+(a), a ∈ V \∂GD∑

j∈J+(a)

ρj(`j)vj,ξ(`j , t)−
∑

k∈J−(a)

ρk(0)vk,ξ(0, t)

+

[
k(a)−

∑
j∈J+(a)

ρ2
j (`j)ρ

′
j(`j) +

∑
k∈J−(a)

ρ2
k(0)ρ′k(0)

]
w(a, t)

= −α(a)s(a)wt(a, t), a ∈ V \∂GD

vj(ξ, 0) = ρj(ξj)wj0(s(ξj)), vjt(ξj , 0) = ρj(ξj)wj,1(s(ξ)), ξ ∈ (0, `j)

(7.4.11)

Since the transform vj(ξj , t) = ρj(ξj)wj(s(ξj), t) is invertible, so system (7.4.11) is equivalent
to system (7.4.6).

Let E = {ej = (0, `j), j = 1, 2, · · · , n} and V = {a1, a2, · · · , am}, we define a basic space by

H1
E(E) =

v(x) = (vj(ξj))n
j=1 ∈ H1(E)

∣∣∣ vj ∈ H1[0, `j ], v(a) = 0, a ∈ ∂GD,

wv(a) = vk(0)
ρk(0) = vj(`j)

ρj(`j)
, k ∈ J−(a), j ∈ J+(a), a ∈ V \∂GD


equipped the inner product

(f, g)HE
=

n∑
j=1

∫ `j

0

(f ′j(s)−ρ′(s)f(s))(g′j(s)− ρ′(s)g(s))ds+q̂j(s)f(s)g(s)ds+
m∑

j=1

k(a)wf (a)wg(a)

where wf (a) = fk(0)
ρk(0) = fj(`j)

ρj(`j)
indicates that wf (a) depends on f . Clearly, H1

E(E) is a Hilbert
space.

Now let the state space corresponding to (7.4.11) be H = H1
E × L2(E) with the norm

||(f, g)||H =
√
||f ||2HE

+ ||g||2L2 , which also is a Hilbert space. Define an operator in H by

A(f, g) = (g, f ′′ + (ρ′′ + ρ′
2 + q̂)f), (f, g) ∈ D(A) (7.4.12)

with domain

D(A) =

(f, g) ∈ H
∣∣∣
f = {fj} ∈ H2(E) ∩H1

E , g = {gj} ∈ H1
E(E),

∀a ∈ V \∂GD,
∑

j∈J+(a)

ρj(`j)f ′j(`j)−
∑

k∈J−(a)

ρk(0)f ′k(0)

+[k(a)− ρ̂(a)]wf (a) = −α(a)s(a)wg(a)

 (7.4.13)
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where
ρ̂(a) =

∑
j∈J+(a)

ρ2
j (`j)ρ

′
j(`j)−

∑
k∈J−(a)

ρ2
k(0)ρ′k(0). (7.4.14)

Then the system (7.4.11) can be rewritten into an evolutionary equation in H
dV (t)

dt = AV (t), t > 0

V (0) = V0

(7.4.15)

where V (t) = (v(x, t), vt(x, t)) ∈ H and V0 = ({vj(ξ, 0)}, {vjt(ξ, 0)}) ∈ H.
Then the energy function of the system (7.4.11) is

E(t) =
1
2
||V (t)||2H =

1
2
||v(ξ, t)||2HE

+
1
2
‖vt(ξ, t)‖2L2

in addition, it holds that
dE(t)
dt

= −
∑
a∈V

α(a)s(a)w2
v,t(a, t).

Therefore, we have the following result.

THEOREM 7.4.1 The system (7.4.11) is asymptotically stable if and only if the system
(7.4.6) is.

7.5 Comparison of systems

In this section we shall discuss properties of the system (7.4.11)(or (7.4.15)). Since (7.4.11)
is still a system of variable coefficients, to treat it, we introduced a complex norm on H1

E(E)
in preceding section. Note that the inner product on H1

E(E) is too complex to calculate in
practice. For simplicity, let M = max

1≤j≤n
{ max

s∈[0,`j ]
qj(s)}, we take an equivalent inner product in

H1
E(E) defined by

(f, g)Ve
=

n∑
j=1

∫ `j

0

[f ′j(s))g′j(s)ds+Mfj(s)gj(s)]ds+
∑
a∈V

k(a)wf (a)wg(a), f, g ∈ H1
E(E).

Then an equivalent norm on H is given by

||(f, g)||2H = ||f ||2Ve
+ ||g||2L2 =

n∑
j=1

∫ `j

0

[|f ′j(s)|2 +M |fj(s)|2 + |gj(s)|2]ds+
∑
a∈V

k(a)|wf (a)|2.

In what follows, we shall discuss the system (7.4.15) in H under this norm.
To discuss system (7.4.15), we firstly consider the following system

uj,tt(ξ, t) = uj,ξξ(ξ, t)−Muj(ξ, t), ξ ∈ (0, `j), t > 0

wu(a, t) = uj(0,t)
ρj(0)

= ui(`i,t)
ρi(`i)

= 0, j ∈ J−(a), i ∈ J+(a), a ∈ ∂GD

wu(a, t) = uk(0,t)
ρk(0) = ui(`i,t)

ρi(`i)
, ∀k ∈ J−(a), i ∈ J+(a), a ∈ V \∂GD∑

j∈J+(a)

ρj(`j)uj,ξ(`j , t)−
∑

k∈J−(a)

ρk(0)uk,ξ(0, t) + k(a)wu(a, t)

= −α(a)s(a)wu,t(a, t), a ∈ V \∂GD

uj(ξ, 0) = ρj(ξj)wj0(s(ξj)), ujt(ξj , 0) = ρj(ξj)wj,1(s(ξ)), ξ ∈ (0, `j)

(7.5.1)
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Define an operator in H by

AF (f, g) = (g, f ′′ −Mf), (f, g) ∈ D(AF ) (7.5.2)

with domain

D(AF ) =

(f, g) ∈ H
∣∣∣ f = {fj}H2(E) ∩H1

E , g = {gj} ∈ H1
E(E), and for each a ∈ V \∂GD∑

j∈J+(a)

ρj(`j)f ′j(`j)−
∑

k∈J−(a)

ρk(0)f ′k(0) + k(a)wf (a) = −α(a)s(a)wg(a)


(7.5.3)

Then the system (7.5.1) can be rewritten into an evolutionary equation in H
dU(t)

dt = AFU(t), t > 0

U(0) = U0

(7.5.4)

where U(t) = (u(x, t), ut(x, t)) ∈ H and U0 = ({uj(ξ, 0)}, {ujt(ξ, 0)}) ∈ H.

THEOREM 7.5.1 Let AF be defined by (7.5.2) and (7.5.3). Then the following statements
are true.

1) AF is a densely defined and closed liner operator in H;
2) AF and A∗F are dissipative in H;
3) AF generates a C0 semigroup of contraction on H;
4) The energy function of the system (7.5.1) (or (7.5.3) E(t) defined by E(t) = 1

2 ||U(t)||2H
satisfies

dE(t)
dt

= −
∑
a∈V

α(a)s(a)|wu,t(a, t)|2

Proof Here we only prove that AF is dissipative in H, the other verifications are directly, we
omit the detail.

For any real (f, g) ∈ H, it holds that

〈AF (f, g), (f, g)〉 =
n∑

j=1

∫ `j

0

[g′j(ξ)f
′
j(ξ) + f ′′j (ξ)gj(ξ)]dξ +

∑
a∈V

k(a)wg(a)wf (a)

=
n∑

j=1

f ′j(`j)gj(`j)−
n∑

j=1

f ′j(0)gj(0) +
∑
a∈V

k(a)wg(a)wf (a)

=
∑
a∈V

wg(a)

 ∑
j∈J+(a)

f ′j(`j)ρj(`j)−
∑

k∈J−(a)

f ′k(0)ρk(0) + k(a)wf (a)


= −

∑
a∈V

α(a)s(a)w2
g(a).

So AF is dissipative. �

Now we define an operator B1 : H1
E(E) → C by

B1f =
∑
a∈V

ρ̂(a)wf (a), f ∈ H1
E(E) (7.5.5)
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where ρ̂(a) is defined by (7.4.14). Further we define an operator B : H → H by

B(f, g) = (0, [ρ′′ + ρ′
2 + q̂ −M ]f), ∀(f, g) ∈ H. (7.5.6)

For these operators we have the following result.

THEOREM 7.5.2 Let B1 and B be defined by (7.5.5) and (7.5.6), respectively. Then the
following statements are true.

1) B1 is a bounded linear operator on H1
E(E), and so is its dual operator B∗1 : C → (H1

E(E))′.
2) B is a bounded and compact linear operator on H.

Proof Obviously, B1 and B are linear operators in H. We at first prove the first assertion.
For any f ∈ H1

E(E), f = {fj(ξ)}, it holds that

`jfj(`j) =
∫ `j

0

ξf ′j(ξ)dξ +
∫ `j

0

fj(ξ)dξ

and

`jfj(0) =
∫ `j

0

(ξ − `j)f ′j(ξ)dξ +
∫ `j

0

fj(ξ)dξ.

So we have

|fj(`j)|2, |fj(0)|2 ≤ 2
(
`j
3

+
1

M`j

)∫ `j

0

[|f ′j(ξ)|2 +M |fj(ξ)|2]dξ

and hence∑
a∈V

|ρ̂(a)wf (a)|2 ≤
n∑

j=1

|ρj(`j)ρ′j(`j)|2|fj(`j)|2 +
n∑

j=1

|ρj(0)ρ′j(0)|2|fj(0)|2

≤ max
1≤j≤n

{
max

ξ∈(0,`j)
{|ρj(ξ)ρ′j(ξ)|2}

(
2`j
3

+
2

M`j

)}
||f ||2Ve

.

Therefore, B1 is a bounded operator on H1
E(E). By the duality, B∗1 is bounded from C to

(H1
E(E))′.
In order to obtain an expression of B∗1 , for any f ∈ H1

E(E) and c ∈ C, we calculate the dual
product

(B∗1c, f)(H1
E)′,H1

E
= (c,B1f) = c

∑
a∈V

ρ̂(a)wf (a)

= c
∑
a∈V

 ∑
j∈J+(a)

ρj(`j)ρ′j(`j)fj(`j)−
∑

k∈J−(a)

ρk(0)ρ′k(0)fk(0)


= c

n∑
j=1

[ρj(`j)ρ′j(`j)fj(`j)− ρj(0)ρ′j(0)fj(0)]

= c
n∑

j=1

∫ `j

0

[ρj(ξ)ρ′j(ξ)δj(ξ − `j)− ρj(ξ)ρ′j(ξ)δj(ξ)]fj(ξ)dξ.

From above equality we get

[B∗1c]j(ξ) = [ρj(ξ)ρ′j(ξ)δj(ξ − `j)− ρj(ξ)ρ′j(ξ)δj(ξ)]c, ξ ∈ [0, `j ].
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The first assertion is true.
Next, for any (f, g) ∈ H,

||B(f, g)||2H =
n∑

j=1

∫ `j

0

|(ρ′′j (ξ) + (ρ′j(ξ)
2 + q̂j(ξ)−M)fj(ξ)|2dξ

≤
max

1≤j≤n
max

ξ∈(0,`j)
{|ρ′′j (ξ) + ρ′

2(ξ) + q̂(ξ)|}+ 1

M

n∑
j=1

∫ `j

0

M |fj(ξ)|2dξ

≤
max

1≤j≤n
max

ξ∈(0,`j)
{|ρ′′j (ξ) + ρ′

2(ξ) + q̂(ξ)|}+ 1

M
||(f, g)||2H

So B is also bounded on H. Note that R(B) ⊂ H2(E) × H1
E(E), the Sobolev Embedding

Theorem asserts that B is compact. The proof is then complete. �

Now we regard the system (7.4.11)( or (7.4.15)) as the perturbation system (7.5.1)( or (7.5.4),
respectively). Then we can rewrite the operator A defined by (7.4.13) into the following form

A(f, g) = AF (f, g)− B1(f, g) + B(f, g), B1(f, g) = (0, B∗1B1f) (7.5.7)

Let T (t) and S(t) be the C0 semigroup generated by A and AF , respectively. Then the relation
between T (t) and S(t) is given by

T (t) = S(t)−
∫ t

0

S(t− s)B1T (s)ds+
∫ t

0

S(t− s)BT (s)dt. (7.5.8)

The following theorem gives a comparison result.

THEOREM 7.5.3 Let T (t) and S(t) be the C0 semigroup generated by A and AF , then
T (t) − S(t) are compact operators on H for all t ≥ 0. Hence ress(T (t)) = ress(S(t)) for all
t > 0, where ress(T ) denotes the essential spectrum radius of operator T .

Proof Thanks to the second assertion of Theorem 7.5.2, the third term at the right-hand side
of equality (7.5.8) are compact operators on H for ∀t ≥ 0. So we only need to prove the term∫ t

0

S(t− s)B1T (s)ds, ∀t > 0

are compact operators.
For any (f, g) ∈ H, denote (v(t), vt(t)) = T (t)(f, g), then

B1T (s)(f, g) = (0, B∗1B1v(s)) = (0, B∗1)B1v(s),

and
S(t− s)B1T (s)(f, g) = (0, β(·, t− s)B1v(s))

where (0, β(·, t)) = S(t)(0, B∗1), β(·, t) ∈ (H1
E(E))′ and is continuous in t, and B1v(s) is a scalar

continuous function in s. Therefore, we have∫ t

0

S(t− s)B1T (s)(f, g)ds =
(

0,
∫ t

0

β(·, t− s)B1v(s)ds
)
, ∀t > 0
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Thus, by using the admissibility of B∗1 , for each t ≥ 0, there exists a constants K(t) such that∥∥∥∥∫ t

0

S(t− s)B1T (s)(f, g)ds
∥∥∥∥2

=
n∑

j=1

∫ `j

0

∣∣∣∣∫ t

0

βj(ξ, t− s)B1v(s)ds
∣∣∣∣2 dξ

=
∫ t

0

∫ t

0

 n∑
j=1

∫ `j

0

βj(ξ, t− r)βj(ξ, t− s)dξ

B1v(r)B1v(s)drds

≤ K2(t)
∫ t

0

|B1v(s)|2ds.

Let O be a bounded set in H, whose bound denotes MO. Then for any (f, g) ∈ O, we have

||(v(t), vt(t)||H ≤ ||T (t)||||(f, g)||H ≤MO, t ≥ 0

due to T (t) being contraction. So, for each fixed t > 0, {B1v(s), (f, g) ∈ O} is a bounded set in
L2[0, t]. Note that v(t) is differentiable in t and vt(t) is a square integrable function. Therefore,
{B1v(s), (f, g) ∈ O} is a compact set in L2[0, t]. Therefore, for each t > 0,∫ t

0

S(t− s)B1T (s)ds, ∀t > 0

is a compact operator on H. The desired result follows. �

REMARK 7.5.1 Let K(H) be the set consisting of all compact operator on Hilbert space H,
T be a bounded linear operator. The radius of essential spectrum of T is defined by

ress(T ) = lim
n→∞

n
√
||[T ]n||

where ||[T ]|| = inf{||T −K||,K ∈ K(H)}

As a consequence of Theorem 7.5.3, we have the following corollary.

COROLLARY 7.5.1 Let A and AF be defined as before. Then σ(A) and σ(AF ) have same
bound of the essential spectrum. Hence they have same the right-asymptote of the spectrum.

As a direct result of above corollary, we have the stability result of system (7.4.11).

COROLLARY 7.5.2 Let T (t) and S(t) be the C0 semigroups generated by A and AF re-
spectively. Suppose that T (t) and S(t) are asymptotically stable. Then system (7.4.11) is
exponentially stable if and only if the system (7.5.1) is.

7.6 Conclusion remark

In this chapter, we discussed the continuous network of strings:

mj(s)uj,tt(s, t) = (Tj(s)uj,s(s, t))s − qj(s)uj(s), s ∈ (0, 1)

u(aj , t) = uk(0, t) = ui(1, t) = 0, ∀k ∈ J−(aj), (or i ∈ J+(aj)), aj ∈ ∂GD,

u(aj , t) = uk(0, t) = ui(1, t), ∀k ∈ J−(aj), i ∈ J+(aj), aj ∈ V \∂GD∑
j∈J+(a)

Tj(1)uj,s(1, t)−
∑

k∈J−(a)

Tk(0)uk,s(0, t) + k(a)u(a, t) = −α(a)s(a)ut(a, t), a ∈ V \∂GD

uj(s, 0) = uj0(s), ujt(s, 0) = uj1(s), s ∈ (0, 1)
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We presented the geometric approach for checking the asymptotic stability of the system. Fur-
ther, we translated the system into the following form

vj,tt(ξ, t) + (q̂j(ξ) + ρ′′j (ξ) + ρ′
2
j (ξ))vj(ξ, t) = vj,ξξ(ξ, t), ξ ∈ (0, `j), t > 0

wv(a, t) = vj(0,t)
ρj(0)

= vi(`i,t)
ρi(`i)

= 0, j ∈ J−(a), i ∈ J+(a), a ∈ ∂GD

wv(a, t) = vk(0,t)
ρk(0) = vi(`i,t)

ρi(`i)
, ∀k ∈ J−(a), i ∈ J+(a), a ∈ V \∂GD∑

j∈J+(a)

ρj(`j)vj,ξ(`j , t)−
∑

k∈J−(a)

ρk(0)vk,ξ(0, t)

+

[
k(a)−

∑
j∈J+(a)

ρ2
j (`j)ρ

′
j(`j) +

∑
k∈J−(a)

ρ2
k(0)ρ′k(0)

]
wv(a, t)

= −α(a)s(a)wv,t(a, t), a ∈ V \∂GD

vj(ξ, 0) = ρj(ξj)wj0(s(ξj)), vjt(ξj , 0) = ρj(ξj)wj,1(s(ξ)), ξ ∈ (0, `j)

wherein the major terms are of the constants coefficient in the differential equations, although
they are still of variable coefficients.

By comparing with a system with constant coefficients, we got that the exponential stability
of the system can be determined via the following system

uj,tt(ξ, t) = uj,ξξ(ξ, t)−Muj(ξ, t), ξ ∈ (0, `j), t > 0

wu(a, t) = uj(0,t)
ρj(0)

= ui(`i,t)
ρi(`i)

= 0, j ∈ J−(a), i ∈ J+(a), a ∈ ∂GD

wu(a, t) = uk(0,t)
ρk(0) = ui(`i,t)

ρi(`i)
, ∀k ∈ J−(a), i ∈ J+(a), a ∈ V \∂GD∑

j∈J+(a)

ρj(`j)uj,ξ(`j , t)−
∑

k∈J−(a)

ρk(0)uk,ξ(0, t) + k(a)wu(a, t)

= −α(a)s(a)wu,t(a, t), a ∈ V \∂GD

uj(ξ, 0) = ρj(ξj)wj0(s(ξj)), ujt(ξj , 0) = ρj(ξj)wj,1(s(ξ)), ξ ∈ (0, `j).

Therefore, to assert the exponential stability of the continuous network of strings with variable
coefficients, we need only to discuss the exponential stability of above system of the constant
coefficients.



Chapter 8

Stabilization of Serially

Connected Strings

In this chapter we study the stabilization problem of serially connected vibrating strings via
joint feedback controls. Suppose that both ends of the strings are clamped, at the interior nodes,
the shearing forces are continuous, but their displacements are discontinuous. We observe the
shearing forces at interior nodes, and then design the compensators by the observation values.
Finally we stabilize the system by using the feedback controllers at the interior nodes. We
prove that the closed loop system is asymptotically stable under certain conditions. By a
detail spectral analysis, we show that under certain conditions there exists a sequence of the
generalized eigenvectors of the closed loop system that forms a Riesz basis with parentheses for
the Hilbert state space. Hence we obtain the spectrum determined growth property.

8.1 Model and design of controllers

The modern large flexible space structures are often made of serially connected elastic elements;
they are usually modeled as strings, beams, shell etc. Among them, the long chains flexible
structure is the simplest one, for instance, the railway or aerial cable system in our real-life.
Therefore, in the present chapter, we consider a network of strings defined on a long chains
graph G as shown in Fig. 8.1.1. For such elastic structure, we need to control its vibration in
practice.

qa1 a2q qa3 q q qan qan+1w1 w2 wn

Fig. 8.1.1. A long chain graph G
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Suppose that each string in the system is homogeneous and inextensible, and denote by
wj(x, t) the transversal deflection of the string departing from its equilibrium at position x

between aj and aj+1 at time t. The motion of strings in the vibrating system are governed by
the partial differential equations

mj
∂2wj(x, t)

∂t2
= Tj

∂2wj(x, t)
∂x2

, j = 1, 2, · · ·n, x ∈ (0, 1), t > 0, (8.1.1)

where mj > 0, Tj > 0, j = 1, 2, · · · , n, are mass density and tension, respectively.
Suppose that the system is clamped at both ends, i.e.

w1(0, t) = wn(1, t) = 0, t > 0. (8.1.2)

At the interior nodes, the shearing forces of strings are assumed to be continuous

Tjwj,x(1, t) = Tj+1wj+1,x(0, t), j = 1, 2, · · · , n− 1, t > 0, (8.1.3)

but the displacements are discontinuous. We act the control at each interior node, i.e.,

wj(1, t)− wj+1(0, t) = uj(t), j = 1, 2, · · · , n− 1, t > 0, (8.1.4)

where uj(t), j = 1, 2, · · · , n− 1, are external exciting forces.
We observe the shearing force Tjwj,x(1, t) at interior node aj+1. For the system (8.1.1)–

(8.1.4), if we choose simple feedback control law

wj,t(1, t)− wj+1,t(0, t) = −αjTjwj,x(1, t), j = 1, 2, · · · , n− 1, t > 0,

then 0 is still an eigenvalue of system operator, in fact, its multiplicity is n − 1. With these
feedback control law, corresponding closed loop system can not come back to its equilibrium
position. Therefore, we design compensators as follows

dEj(t)
dt

= −α̂jEj(t) + Tjwj,x(1, t), j = 1, 2, · · · , n− 1. (8.1.5)

Here the aim of the compensators is to remove the 0 eigenvalue of the system and to improve
lower frequency of the system. Because 0 is an eigenvalue of multiplicity (n−1), we need (n−1)
compensators. Finally, we take the feedback control law as

uj(t) = −αjEj(t), αj > 0, j = 1, 2, · · · , n− 1. (8.1.6)

Thus the system (8.1.1)–(8.1.6) become a closed loop system:

mjwj,tt(x, t) = Tjwj,xx(x, t), j = 1, 2, · · ·n, j − 1 < x < j, t > 0,

w1(0, t) = wn(1, t) = 0, t > 0,

Tjwj,x(1, t) = Tj+1wj+1,x(0, t), j = 1, 2, · · · , n− 1, t > 0,

wj(1, t)− wj+1(0, t) = −αjEj(t), j = 1, 2, · · · , n− 1, t > 0,
dEj(t)

dt = −α̂jEj(t) + Tjwj,x(1, t), j = 1, 2, · · · , n− 1, t > 0.

(8.1.7)

here and hereafter we shall use abbreviations wt = ∂w
∂t and wx = ∂w

∂x .
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Set
W (x, t) = (w1(x, t), w2(x, t), · · · , wn(x, t))T .

Define n× n diagonal matrices:

M = diag (m1,m2, · · · ,mn) , T = diag (T1, T2, · · · , Tn) ,

and
α = diag(α1, α2, · · · , αn−1), α̂ = diag(α̂1, α̂2, · · · , ˆαn−1).

We define operators P : Cn+1 → Cn−1 by

P (v1, v2, · · · , vn, vn+1)T = (v2, · · · , vn)T .

Let Φ± be the incoming (outgoing) incidence matrix of the linear graph G. For simplification,
we introduce operators PΦ+ = Pn−1 and PΦ− = Ln−1. It is easy to check that Pn−1 and
Ln−1 : Cn → Cn−1 with properties

Pn−1(y1, y2, y3, · · · , yn)T = (y1, y2, y3, · · · , yn−1)T ,

Ln−1(y1, y2, y3, · · · , yn)T = (y2, y3, y4, · · · , yn)T .

If we set matrix

C =



0 0 0 0 0

1 0 0 0 0

0 1 0 0 0
... · · ·

. . . · · ·
...

0 · · · · · · 1 0


n×n

, (8.1.8)

then we have
Ln−1C = Pn−1, Pn−1C

T = Ln−1

where CT denotes the transpose of the matrix C. Moreover, we define operators E1 and En

from Cn to C by

E1(y1, y2, y3, · · · , yn)T = y1, En(y1, y2, y3, · · · , yn)T = yn.

With the help of these notations, the differential equations in (8.1.7) can be rewritten into
an equation in Cn:

MWtt(x, t) = TWxx(x, t), x ∈ (0, 1), t > 0. (8.1.9)

The boundary conditions of the system become

E1W (0) = EnW (1) = 0; (8.1.10)

the dynamic continuous conditions at the interior nodes can be written into

Pn−1[TWx(1, t)]− Ln−1[TWx(0, t)] = 0; (8.1.11)
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the feedback control conditions at the interior nodes become

Pn−1W (1, t)− Ln−1W (0, t) = −αE(t); (8.1.12)

the compensators designed above become

dE(t)
dt

= −α̂E(t)+Ln−1TWx(0, t). (8.1.13)

Therefore, the equations (8.1.7) are equivalent to the following differential equation in Cn:

MWtt(x, t) = TWxx(x, t), x ∈ (0, 1), t > 0,
dE(t)

dt =−α̂E(t)+Ln−1TWx(0, t), t > 0,

E1W (0, t) = EnW (1, t) = 0, t > 0,

Pn−1[TWx(1, t)]− Ln−1[TWx(0, t)] = 0, t > 0,

Pn−1W (1, t)− Ln−1W (0, t) = −αE(t), t > 0

(8.1.14)

with appropriate initial data.

8.2 Well-posed-ness and asymptotic stability of the sys-

tem

In this section we study the well-posed-ness and asymptotic stability of the closed loop system
(8.1.7). To this end, we formulate the system into a Hilbert state space. Let us begin with
introducing some notations.

Set
Wk = Hk([0, 1],Cn)×Hk−1([0, 1],Cn)× Cn−1.

Let the state space be

H =

(f, g, p) ∈ W1

∣∣∣∣∣∣ E1f(0) = Enf(1) = 0

Pn−1f(1)−Ln−1f(0) =−αp


endowed with the inner product, for (fj , gj , pj) ∈ H, j = 1, 2,

((f1, g1, p1), (f2, g2, p2))H :=
∫ 1

0

(Tf1,x(x), f2,x(x))c dx+
∫ 1

0

(Mg1(x), g2(x))c dx+(α̂αp1, p2)c−1,

(8.2.1)
where (·, ·)c and (·, ·)c−1 denote the inner product in Cn and Cn−1, respectively. Since T and M
are positive definite matrices, a direct verification shows that ‖(f, g, p)‖ =

√
((f, g, p), (f, g, p))H

induces a norm on H and (H, || · ‖) is a Hilbert space.
We define an operator A in H by

A


W

Z

Q

 =


Z

M−1TWxx

−α̂Q+ Ln−1TWx(0)

 (8.2.2)



8.2. WELL-POSED-NESS AND ASYMPTOTIC STABILITY OF THE SYSTEM 193

and

D(A) =
{
(W,Z,Q) ∈ W2

∣∣ A(W,Z,Q)T ∈ H;Pn−1TWx(1) = Ln−1TWx(0)
}
. (8.2.3)

Then, we can rewrite (8.1.14) into an evolutionary equation in H
dU(t)

dt = AU(t), t > 0,

U(0) = U0,
(8.2.4)

where U(t) = (W (x, t),Wt(x, t), Q(t))T and U(0) = (W 0(x), Z0(x), Q0)T ∈ H is given.

THEOREM 8.2.1 Let H and A be defined as before. Then A is dissipative, A−1 is compact,
and hence A generates a C0 semigroup of contraction on H.

Proof We prove firstly thatA is a dissipative operator. For any (W,Z,Q) ∈ D(A), A(W,Z,Q) ∈
H implies Z ∈ H1([0, 1],Cn) and

Pn−1Z(1)− Ln−1Z(0) = −α(−α̂Q+ Ln−1TWx(0))

and Pn−1W (1)− Ln−1W (0) = −αQ. So we have(
A(W,Z,Q)T , (W,Z,Q)T

)
H

=
∫ 1

0

(TZx(x),Wx(x))cdx+
∫ 1

0

(MM−1TWxx(x), Z(x))cdx+ (α̂α(−α̂Q+Ln−1TWx(0)), Q)c−1

=
∫ 1

0

(TZx(x),Wx(x))cdx+ (TWx, Z)c|10 −
∫ 1

0

(TWx, Zx)cdx

+(α̂α−1(Pn−1Z(1)− Ln−1Z(0)), Pn−1W (1)− Ln−1W (0))c−1

and (
(W,Z,Q)T ,A(W,Z,Q)T

)
H

=
∫ 1

0

(Wx(x),TZx(x))cdx+
∫ 1

0

(Z(x),MM−1TWxx(x))cdx+ (α̂αQ,−α̂Q+Ln−1TWx(0))c−1

=
∫ 1

0

(Wx(x),TZx(x))cdx+ (Z,TWx)c|10 −
∫ 1

0

(Zx,TWx)cdx

+(α̂α−1(Pn−1W (1)− Ln−1W (0)), (Pn−1Z(1)− Ln−1Z(0)))c−1.

Since T and M are positive definite matrices, and (W,Z,Q) ∈ D(A), so we have

2<
(
(W,Z,Q)T ,A(W,Z,Q)T

)
H

= (TWx, Z)c|10 + (α̂α−1(Pn−1Z(1)− Ln−1Z(0)), Pn−1W (1)− Ln−1W (0))c−1

+(Z,TWx)c|10 + (α̂α−1(Pn−1W (1)− Ln−1W (0)), Pn−1Z(1)− Ln−1Z(0))c−1

= (TWx(1), Z(1))c − (TWx(0), Z(0))c + (Z(1),TWx(1))c − (Z(0),TWx(0))c

+(α̂α−1(Pn−1Z(1)− Ln−1Z(0)), Pn−1W (1)− Ln−1W (0))c−1

+(α̂α−1(Pn−1W (1)− Ln−1W (0)), Pn−1Z(1)− Ln−1Z(0))c−1

= (CT TWx(0), Z(1))c − (TWx(0), Z(0))c + (Z(1), CT TWx(0))c − (Z(0),TWx(0))c
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+(α̂α−1(Pn−1Z(1)− Ln−1Z(0)), Pn−1W (1)− Ln−1W (0))c−1

+(α̂α−1(Pn−1W (1)− Ln−1W (0)), Pn−1Z(1)− Ln−1Z(0))c−1

= (TWx(0), CZ(1)− Z(0))c + (CZ(1)− Z(0),TWx(0))c

+(α̂α−1(Pn−1Z(1)− Ln−1Z(0)), Pn−1W (1)− Ln−1W (0))c−1

+(α̂α−1(Pn−1W (1)− Ln−1W (0)), Pn−1Z(1)− Ln−1Z(0))c−1

= (Ln−1TWx(0), Ln−1(CZ(1)− Z(0)))c−1 + (Ln−1(CZ(1)− Z(0)), Ln−1TWx(0))c−1

+(α̂α−1(Pn−1Z(1)− Ln−1Z(0)), Pn−1W (1)− Ln−1W (0))c−1

+(α̂α−1(Pn−1W (1)− Ln−1W (0)), Pn−1Z(1)− Ln−1Z(0))c−1

= (Ln−1TWx(0), Pn−1Z(1)− Ln−1Z(0))c−1 + (Pn−1Z(1)− Ln−1Z(0), Ln−1TWx(0))c−1

+(α̂α−1(Pn−1Z(1)− Ln−1Z(0)), Pn−1W (1)− Ln−1W (0))c−1

+(α̂α−1(Pn−1W (1)− Ln−1W (0)), Pn−1Z(1)− Ln−1Z(0))c−1

= − ((−α̂Q+Ln−1TWx(0)), α(−α̂Q+Ln−1TWx(0)))c−1

− (α(−α̂Q+Ln−1TWx(0)), (−α̂Q+Ln−1TWx(0)))c−1

= −2
∥∥∥α 1

2 (−α̂Q+Ln−1TWx(0))
∥∥∥2

c−1
≤ 0.

Therefore, A is dissipative in H.
Next, we prove that A−1 exists and is compact. Clearly, A is densely defined and closed

operator in H. For any fixed F = (F1, F2, F3) ∈ H, we consider the solvability of the equation
AY = F , Y = (W,Z,Q) ∈ D(A), i.e.,

Z(x) = F1(x),

TWxx(x) = MF2(x),

−α̂Q+ Ln−1TWx(0) = F3

(8.2.5)

with boundary conditions 
E1W (0) = EnW (1) = 0,

Pn−1[TWx(1)]− Ln−1[TWx(0)] = 0,

Pn−1W (1)− Ln−1W (0) = −αQ.

(8.2.6)

Solving the differential equation in (8.2.5), we get

TWx(x)− TWx(0) =
∫ x

0

MF2(s)ds,

TWx(1)− TWx(0) =
∫ 1

0

MF2(s)ds.

So we have

Pn−1(CT − I)TWx(0) = Pn−1

∫ 1

0

MF2(s)ds,
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i.e.,

Pn−1



−T1w1,x(0) + T2w2,x(0)

−T2w2,x(0) + T3w3,x(0)

−T3w3,x(0) + T4w4,x(0)
...

−Tn−1wn−1,x(0) + Tnwn,x(0)


= Pn−1

∫ 1

0

MF2(s)ds.

A direct calculation leads to

T2w2,x(0) =
∫ 1

0

m1F21(s)ds+ T1w1,x(0),

· · ·

Tjwj,x(0) =
j−1∑
i=1

∫ 1

0

miF2i(s)ds+ T1w1,x(0),

· · ·

Tnwn,x(0) =
n−1∑
i=1

∫ 1

0

miF2i(s)ds+ T1w1,x(0).

Now we define the vectors In×1 and G1 by

In×1 :=


1

1
...

1


n×1

, G1 :=



0∫ 1

0
m1F21(s)ds

2∑
i=1

∫ 1

0
miF2i(s)ds

3∑
i=1

∫ 1

0
miF2i(s)ds

...
n−1∑
i=1

∫ 1

0
miF2i(s)ds


.

So we have
TWx(0) = T1w1,x(0)In×1 +G1.

Thus

TWx(x) = TWx(0) +
∫ x

0

MF2(s)ds

= T1w1,x(0)In×1 +G1 +
∫ x

0

MF2(s)ds. (8.2.7)

From above we get

W (1)−W (0) =
∫ 1

0

Wx(s)ds =
∫ 1

0

T−1

[
T1w1,x(0)In×1 +G1 +

∫ x

0

MF2(s)ds
]

= T−1

[
T1w1,x(0)In×1x+G1x+

∫ x

0

ds

∫ s

0

MF2(r)dr
]
.
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From the third equation in (8.2.5), we get

Q = α̂−1(Ln−1TWx(0)− F3)

= α̂−1
(
T1w1,x(0)I(n−1)×1 + Ln−1G1 − F3

)
.

Because of wn(1) = 0, we have W (1) =

 Pn−1W (1)

0

, and hence

W (1) = CTW (0)− αα̂−1

 T1w1,x(0)I(n−1)×1 + Ln−1G1 − F3

0

 .

Thus,

W (1)−W (0)

= CTW (0)− αα̂−1

 T1w1,x(0)I(n−1)×1 + Ln−1G1 − F3

0

−W (0)

= T−1

[
T1w1,x(0)In×1 +G1 +

∫ 1

0

ds

∫ s

0

MF2(r)dr
]
.

Therefore, we get

W (0) = (CT − I)−1

αα̂−1

 T1w1,x(0)I(n−1)×1 + Ln−1G1 − F3

0


+T−1

[
T1w1,x(0)In×1 +G1 +

∫ 1

0

ds

∫ s

0

MF2(r)dr
]}

.

Since w1(0) = 0 and

−w1(0) =
n−1∑
i=1

αiα̂i
−1

T1w1,x(0) +
i∑

j=1

∫ 1

0

mjF2j(s)ds− F3i


+

n∑
i=1

Ti
−1

(
T1w1,x(0) +

∫ 1

0

ds

∫ s

0

miF2i(r)dr
)

+
n∑

i=2

Ti
−1

i−1∑
j=1

∫ 1

0

mjF2jds,

a direct calculation yields

w1,x(0) =

−
n−1P
i=1

αi
α̂i

 
iP

j=1

R 1

0
mjF2j(s)ds − F3i

!
−

nP
i=1

1
Ti

R 1

0
ds
R s

0
miF2i(r)dr −

nP
i=2

1
Ti

i−1P
j=1

R 1

0
mjF2jds

n−1P
i=1

αi
α̂i

T1 +
nP

i=1

1
Ti

T1

:= G2.

So we have

Q = α̂−1
(
a1G2I(n−1)×1 + Ln−1G1 − F3

)
,
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W (0) = (CT − I)−1

αα̂−1

 T1G2I(n−1)×1 + Ln−1G1 − F3

0


+T−1

[
T1G2In×1 +G1 +

∫ 1

0

ds

∫ s

0

MF2(r)dr
]}

and hence

W (x) = T−1

[
T1w1,x(0)In×1x+G1x+

∫ x

0

ds

∫ s

0

MF2(r)dr
]

+W (0)

= T−1

[
T1G2In×1x+G1x+

∫ x

0

ds

∫ s

0

MF2(r)dr
]

+(CT − I)−1

αα̂−1

 T1G2I(n−1)×1 + Ln−1G1 − F3

0


+T−1

[
T1G2In×1 +G1 +

∫ 1

0

ds

∫ s

0

MF2(r)dr
]}

.

Let W (x) and Q be given by above, then (W,F1, Q)) ∈ D(A) and A(W,F1, Q) = F . So A−1

exists and A−1F = (W,F1, Q). Note that

(W,F1, Q) ∈ D(A) ⊂ H2 ×H1 × Cn−1 ⊂ H1 × L2 × Cn−1.

The Sobolev’s Embedding Theorem asserts that A−1 is compact on H. Therefore, A generates
a C0 semigroup of contraction by the Lumer-Phillips Theorem (cf. [92]). �

As a consequence of Theorem 8.2.1, we have the following result.

COROLLARY 8.2.1 The spectrum of A consists of all isolated eigenvalue, i.e., σ(A) =
σp(A).

In order to get the asymptotic stability of the closed loop system (8.2.4), thank to a result
in [70], we only need to check that there is no eigenvalue on the imaginary axis.

THEOREM 8.2.2 Let H and A be defined as before, S(t) be the C0 semigroup generated by
A. If function equations in σ cos

√
m1
T1
σ = 0, cos

√
mn

Tn
σ = 0, sin

√
m2
T2
σ = 0,

sin
√

m3
T3
σ = 0, · · · · · · , sin

√
mn−1
Tn−1

σ = 0
(8.2.8)

have no solution on the real axis, then S(t) is asymptotically stable.

Proof We see from Theorem 8.2.1 that 0 /∈ σ(A) . It only needs to check that λ = iσ is not
an eigenvalue of A provided that σ ∈ R, σ 6= 0 .

By contradiction, if λ = iσ is an eigenvalue of A and (W,Z,Q) is corresponding an eigen-
vector, then we have

Z(x) = λW (x), TWxx(x) = λMZ(x), x ∈ (0, 1), −α̂Q+ Ln−1TWx(0) = λQ,

and hence

0 = <λ ((W,Z,Q), (W,Z,Q))H
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= < (A(W,Z,Q), (W,Z,Q))H
= λ2(Q,−α−1Q)c−1 + λ2(−α−1Q,Q)c−1

which implies that Q = 0. Thus W satisfies the equations:

λ2MW (x) = TWxx(x),

E1W (0) = EnW (1) = 0,

Pn−1TWx(1)− Ln−1TWx(0) = 0,

Pn−1W (1)− Ln−1W (0) = 0,

Ln−1TWx(0) = 0.

(8.2.9)

Let us consider the first string. Due to E1W (0) = 0, we have

w1(x) = c11 sinh
√
m1

T1
λx = ic11 sin

√
m1

T1
σx.

Since Pn−1TWx(1) = Ln−1TWx(0) = 0, we have

w1,x(1) = c11

√
m1

T1
λ cosh

√
m1

T1
λ = c11

√
m1

T1
λ cos

√
m1

T1
σ = 0.

Thus we have either c11 = 0 or cos
√

m1
T1
σ = 0.

If c11 = 0, then w1(x) = 0. From this we can easily deduce that w2(x) = w3(x) = · · · =
wn(x) = 0, i.e, W (x) = 0, and hence (W,Z,Q) = 0, which contradicts that (W,Z,Q) is an
eigenvector of A. Therefore, cos

√
m1
T1
σ = 0.

When cos
√

m1
T1
σ = 0, from Pn−1TWx(1) = Ln−1TWx(0) = 0 and EnW (1) = 0 we can

obtain that
wj(x) = cj cosh

√
mj

Tj
λx = cj cos

√
mj

Tj
σx, j = 2, 3, · · · , n,

wj,x(1) = −cj
√
mj

Tj
σ sin

√
mj

Tj
σ = 0, j = 2, 3, · · · , n− 1.

Therefore, σ ∈ R satisfies the following function equations: cos
√

m1
T1
σ = 0, cos

√
mn

Tn
σ = 0, sin

√
m2
T2
σ = 0,

sin
√

m3
T3
σ = 0, · · · · · · , sin

√
mn−1
Tn−1

σ = 0.

This also contradicts the assumption. Therefore, there is no an eigenvalue of A on the imaginary
axis. The stability theorem [70] asserts that the closed loop system (8.2.4) is asymptotically
stable. �

8.3 Asymptotic analysis of spectrum of A
In this section we discuss the asymptotic distribution of the spectrum of A. Theorem 8.2.1
shows that σ(A) = σp(A), so we need only to discuss the eigenvalues of A.
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Let λ ∈ σ(A) and (W,Z,Q) ∈ D(A) be a corresponding eigenvector. Then Z(x) = λW (x),
and W (x) satisfies the following differential equations

λ2MW (x)− TWxx(x) = 0,

E1W (0) = EnW (1) = 0,

Pn−1TWx(1)− Ln−1TWx(0) = 0,

Pn−1W (1)− Ln−1W (0) = −αQ,

λQ = −α̂Q+ Ln−1TWx(0).

(8.3.1)

For the sake of convenience, we denote

B = diag
(√

m1

T1
,

√
m2

T2
, · · · ,

√
mn

Tn

)
=
√

T
−1√

M. (8.3.2)

The general solution of the differential equations in (8.3.1) is of the form

W = eBλxη1 + e−Bλxη2

where η1 and η2 are vectors in Cn that will be determined later. Using the boundary conditions
in (8.3.1), we get

E1(η1 + η2) = 0,
En(eBλη1 + e−Bλη2) = 0,
Pn−1T(λBeBλη1 − λBe−Bλη2)− Ln−1T(λBη1 − λBη2) = 0,
Pn−1

(
eBλη1 + e−Bλη2

)
− Ln−1(η1 + η2) = −α(λ+ α̂)−1Ln−1T(λBη1 − λBη2).

Since λ 6= 0, we can write the above into the matrix form S11(λ) S12(λ)

S21(λ) S22(λ)

 η1

η2

 = 0, (8.3.3)

where

S11(λ) =

 E1

Pn−1

√
TMeBλ − Ln−1

√
TM


S12(λ) =

 E1

−Pn−1

√
TMe−Bλ + Ln−1

√
TM


S21(λ) =

 Pn−1e
Bλ − Ln−1 + λα(λ+ α̂)−1Ln−1

√
TM

0 0 0 · · · 0 e
√

mn
an

λ


S22(λ) =

 Pn−1e
−Bλ − Ln−1 − λα(λ+ α̂)−1Ln−1

√
TM

0 0 0 · · · 0 e−
√

mn
Tn

λ


where we have used TB =

√
TM. Set matrices

Ŝ11 =

 1 0 0 · · · 0 0

Pn−1

√
TMeBλ − Ln−1

√
TM


n×n
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Ŝ12 =

 1 0 0 · · · 0 0

−Pn−1

√
TMe−Bλ + Ln−1

√
TM


n×n

Ŝ21 =

 Pn−1e
Bλ − Ln−1 + λα(λ+ α̂)−1Ln−1

√
TM

0 0 0 · · · 0 e
√

mn
Tn

λ


n×n

Ŝ22 =

 Pn−1e
−Bλ − Ln−1 − λα(λ+ α̂)−1Ln−1

√
TM

0 0 0 · · · 0 e−
√

mn
Tn

λ


n×n

Set

∆(λ) = det

 Ŝ11 Ŝ12

Ŝ21 Ŝ22

 .

Then, λ ∈ C is an eigenvalue of A if and only if ∆(λ) = 0. Therefore we only need to discuss
the zeros of ∆(λ).

When <λ→ +∞, we have

lim
<λ→+∞

∆(λ)

e

nP
i=1

q
mi
Ti

λ

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 · · · · · · 0
√
m1T1 0 0 · · · · · · 0

0
√
m2T2 0 · · · · · · 0

0 0
√
m3T3 · · · · · · 0

...
...

...
. . .

...
...

0 0 · · · · · ·
√
mn−1Tn−1 0

1 0 0 · · · · · · 0

0 1 0 · · · · · · 0

0 0 1 · · · · · · 0
...

...
...

. . .
...

...

0 0 · · · · · · 1 0

0 0 · · · · · · · · · 1
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1 0 0 · · · · · · 0

0
√
m2T2 0 · · · · · · 0

0 0
√
m3T3 · · · · · · 0

...
...

...
. . .

...
...

0 0 · · · · · ·
√
mn−1Tn−1 0

0 0 · · · · · · · · ·
√
mnTn

0 −1− α1

√
m2T2 0 · · · · · · 0

0 0 −1− α2

√
m3T3 · · · · · · 0

...
...

...
. . .

...
...

0 0 · · · · · · −1− αn−2

√
mn−1Tn−1 0

0 0 · · · · · · · · · −1− αn−1

√
mnTn

0 0 0 · · · · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)n2

{√
T1m1(1 + α1

√
T2m2) +

√
T2m2

}
×
{√

T2m2(1 + α2

√
T3m3) +

√
T3m3

}
× · · · ×

{√
Tn−2mn−2(1 + αn−2

√
Tn−1mn−1) +

√
Tn−1mn−1

}
×
{√

Tn−1mn−1(1 + αn−1

√
Tnmn) +

√
Tnmn

}
6= 0

and when <λ→ −∞,

lim
<λ→−∞

∆(λ)

e
−

nP
i=1

q
mi
Ti

λ

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 · · · · · · 0

0 −
√
m2T2 0 · · · · · · 0

0 0 −
√
m3T3 · · · · · · 0

...
...

...
. . .

...
...

0 0 · · · · · · −
√
mn−1Tn−1 0

0 0 · · · · · · · · · −
√
mnTn

0 −1 + α1

√
m2T2 0 · · · · · · 0

0 0 −1 + α2

√
m3T3 · · · · · · 0

...
...

...
. . .

...
...

0 0 · · · · · · −1 + αn−2

√
mn−1Tn−1 0

0 0 · · · · · · · · · −1 + αn−1

√
mnTn

0 0 0 · · · · · · 0
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0 0 0 · · · · · · 0

−
√
m1T1 0 0 · · · · · · 0

0 −
√
m2T2 0 · · · · · · 0

0 0 −
√
m3T3 · · · · · · 0

...
...

...
. . .

...
...

0 0 · · · · · · −
√
mn−1Tn−1 0

1 0 0 · · · · · · 0

0 1 0 · · · · · · 0

0 0 1 · · · · · · 0
...

...
...

. . .
...

...

0 0 · · · · · · 1 0

0 0 · · · · · · · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

{√
T1m1(−1 + α1

√
T2m2)−

√
T2m2

}
×
{√

T2m2(−1 + α2

√
T3m3)−

√
T3m3

}
× · · · ×

{√
Tn−2mn−2(−1 + αn−2

√
Tn−1mn−1)−

√
Tn−1mn−1

}
×
{√

Tn−1mn−1(−1 + αn−1

√
Tnmn)−

√
Tnmn

}
.

So we have

lim
<λ→−∞

∣∣∣∣∣∣ ∆(λ)

e
−

nP
i=1

q
mi
Ti

λ

∣∣∣∣∣∣ > 0

provided that α satisfies

αi 6=
1√
miTi

+
1√

mi+1Ti+1

, i = 1, 2, · · · , n− 1.

When the above conditions are fulfilled, there exist positive constants d1, d2 and h such that

d1e
|<λ|

nP
i=1

q
mi
ai ≤ |∆(λ)| ≤ d2e

|<λ|
nP

i=1

q
mi
ai , |<λ| > h, (8.3.4)

which implies that the zeros of ∆(λ) lie in the strip of |<λ| ≤ h.
By now we have proved the following result.

THEOREM 8.3.1 Let A be defined as before. If the gain constants satisfy the conditions

αi 6=
1

√
miai

+
1

√
mi+1ai+1

, i = 1, 2, · · · , n− 1, (8.3.5)

then there is a positive constant h such that

σ(A) = {λ ∈ C
∣∣ ∆(λ) = 0} ⊂ {λ ∈ C

∣∣ |<λ| ≤ h}. (8.3.6)

Let us recall some notions before we proceed. A set σ is said to be separable if

inf
λ,µ∈σ,λ6=µ

|λ− µ| > 0.
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An entire function f of exponential type is said to be of sine type if
(a). the zeros of f lie in a strip {λ ∈ C

∣∣ |y| ≤ h, λ = y + ix} for some h > 0;
(b). there are positive constants c1, c2 and y0 ∈ R such that

c1e
|y| ≤ |f(y + ix)| ≤ c2e

|y|, |y| ≥ |y0|.

The following result for the sine type functions is due to Levin (cf. see [9]).

LEMMA 8.3.1 If f is an entire function of sine type, then the set of its zeros is a union of
finitely many separated sets.

As a direct consequence of Lemma 8.3.1 together (8.3.5), we have the following result.

COROLLARY 8.3.1 Let A be defined as before. Suppose that conditions in (8.3.5) are ful-
filled. Then σ(A) is a union of finitely many separated sets.

8.4 Completeness and Riesz basis property of root vectors

of A
In this section we discuss the completeness and Riesz basis property of eigenvectors and general-
ized eigenvectors of A. Firstly, we establish the completeness of the eigenvectors and generalized
eigenvectors of A and then use the spectral distribution of A to obtain the Riesz basis property.

THEOREM 8.4.1 Suppose that the conditions in (8.3.5) are fulfilled, then the system of
eigenvectors and generalized eigenvectors of A is complete in H.

Proof We can assume that σ(A) = {λk, k ∈ N} due to Theorem 8.2.1. Set

Sp(A) =

{∑
k

yk, yk ∈ E(λk,A)H, λk ∈ σ(A)

}

where E(λk,A) is the Riesz projection corresponding to λk. Then the completeness of eigen-
vectors and generalized eigenvectors of A is equivalent to Sp(A) = H. We shall finish the proof
of completeness by showing that for any F = (f1, f2, f3) ⊥ Sp(A) implies F = 0.

Let F = (f1, f2, f3) ⊥ Sp(A), then R∗(λ,A)F is an H-valued entire function on C . For any
G = (g1, g2, g3) ∈ H, the scalar function

U(λ) = (G,R∗(λ,A)F )H, ∀λ ∈ C (8.4.1)

also is an entire function. In particular, it holds that lim
<λ→+∞

U(λ) = 0 because A is the

generator of a C0 semigroup. For λ ∈ ρ(A), we have

U(λ) = (R(λ,A)G,F )H.
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In what follows, we prove that U(λ) is bounded on the negative real axis. To this end, denote
by Y1 = R(λ,A)G, λ ∈ ρ(A) ∩ R− where Y1 = (y1, z1, Q1) ∈ D(A). Then (λI − A)Y1 = G is
equivalent to the equations 

λy1 − z1 = g1,

λz1 −M−1Ty1,xx = g2,

λQ1 + α̂Q1 − Ln−1Ty1,x(0) = g3,

Pn−1Ty1,x(1) = Ln−1Ty1,x(0),

E1y1(0) = Eny1(1) = 0,

Pn−1y1(1)− Ln−1y1(0) = −αQ1.

(8.4.2)

We introduce Y2 = (y2, z2, Q2) ∈ H, which satisfies auxiliary equations:

λy2 − z2 = g1,

λz2 −M−1Ty2,xx = g2,

λQ2 + α̂Q2 − Ln−1Ty2,x(0) = g3,

Pn−1Ty2,x(1) = Ln−1Ty2,x(0),

E1y2(0) = Eny2(1) = 0,

Pn−1y2(1)− Ln−1y2(0) = 0,

α̂Q2 − Ln−1Ty2,x(0) = 0,

(8.4.3)

where λ is the same as that in (8.4.2). Then we have

‖G‖‖Y2‖ ≥ |<(G, Y2)|

=
∣∣∣<(∫ 1

0

[(Tg1,x, y2,x)c + (Mg2, z2)c] dx+ (α̂αg3, Q2)c−1

) ∣∣∣
=

∣∣∣<(∫ 1

0

[(T(λy2 − z2)x, y2,x)c + (M(λz2 −M−1Ty2,xx), z2)c]dx+ (α̂αg3, Q2)c−1

) ∣∣∣
=

∣∣∣<(∫ 1

0

((λTy2,x, y2,x)cdx−
∫ 1

0

(Tz2,x, y2,x)cdx+
∫ 1

0

λ(Mz2, z2)cdx

−
∫ 1

0

(Ty2,xx, z2)cdx+ (α̂αg3, Q2)c−1

) ∣∣∣
=

∣∣∣<(∫ 1

0

(λTy2,x, y2,x)cdx+
∫ 1

0

λ(Mz2, z2)cdx− (Ty2,x, z2)c|10 + (α̂αλQ2, Q2)c−1

) ∣∣∣
=

∣∣∣<λ(∫ 1

0

(Ty2,x, y2,x)cdx+
∫ 1

0

(Mz2, z2)cdx+ (α̂αQ2, Q2)c−1

)
−<(Ty2,x, z2)c|10

∣∣∣
=

∣∣∣<λ‖Y2‖2 + < [(Ty2,x(1), z2(1))c − (Ty2,x(0), z2(0))c]
∣∣∣

=
∣∣∣<λ‖Y2‖2 −Re[(Pn−1Ty2,x(1), Pn−1z2(1))c−1 − (Ln−1Ty2,x(0), Ln−1z2(0))c−1]

∣∣∣
=

∣∣∣<λ‖Y2‖2 + <[(Ln−1Ty2,x(0), Pn−1z2(1)− Ln−1z2(0))c−1]
∣∣∣

= |<λ|‖Y2‖2,

i.e.,
‖G‖‖Y2‖ ≥ |<λ| ‖Y2‖2.
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Therefore, we have

‖Y2‖ ≤
1
|<λ|

‖G‖, λ ∈ ρ(A) ∩ R−. (8.4.4)

Now set Y3(λ) = Y1 − Y2 = (y3, z3, Q3), then the components of Y3(λ) satisfy the following
equations 

λy3 − z3 = 0,

λz3 −M−1Ty3,xx = 0,

λQ3 + α̂Q3 − Ln−1Ty3,x(0) = 0,

Pn−1Ty3,x(1) = Ln−1Ty3,x(0),

E1y3(0) = Eny3(1) = 0,

Pn−1y3(1)− Ln−1y3(0) = −α(Q3 +Q2).

(8.4.5)

Clearly, y3(x) is of the form
y3(x) = eBλxη̂1 + e−Bλxη̂2, (8.4.6)

where η̂1, η̂2 are the vectors in Cn, they are determined later. Substituting (8.4.6) into the
boundary conditions in (8.4.5), we get

D(λ)

 η̂1

η̂2

 =

 0

Q2

 (8.4.7)

where

D(λ) =

 Ŝ11 Ŝ12

Ŝ21 Ŝ22

 .

According to a result in Kato’s book [66, Formula (4.12),pp. 28], there is a constant µ > 0
such that

‖D−1‖ ≤ µ
‖D‖n−1

detD
,

where D is a matrix and µ > 0 is a constant independent of D. By a complicated calculation
we can show that there exists µ1 > 0 such that

‖D(λ)−1‖ ≤ µ1
1

eρ1|λ|
, (8.4.8)

where ρ1 = min
√

mj

Tj
, j = 1, 2, · · · , n, ‖ · ‖ is the norm in Cn. So we have∥∥∥∥∥∥
 η̂1

η̂2

∥∥∥∥∥∥ ≤ ‖D(λ)−1‖‖

 0

Q2

 ‖ = ‖D(λ)−1‖‖Q2‖.

Therefore, we have estimate ∥∥∥∥∥∥
 η̂1

η̂2

∥∥∥∥∥∥ ≤ µ1
1

eη1|λ|
‖Q2‖. (8.4.9)

Since Q3 = (λ+ α̂)−1Ln−1Ty3,x(0), a direct calculation leads to

Q3 = (λ+ α̂)−1Ln−1

√
TMλ(η̂1 − η̂2).
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Consequently, we have

‖Q3‖ ≤
|<λ|∣∣ |<λ| − ‖α̂‖ ∣∣‖√TM(η̂1 − η̂2)‖ ≤

‖
√

TM‖|<λ|∣∣ |<λ| − ‖α̂‖ ∣∣
∥∥∥∥∥∥
 η̂1

η̂2

∥∥∥∥∥∥ .
Combining (8.4.9) we have

‖Q3‖ ≤ υ1
|<λ|
eη1|λ|

‖
√

TM‖∣∣ |<λ| − ‖α̂‖ ∣∣‖Q2‖. (8.4.10)

From (8.4.5) we can get∫ 1

0

(Ty3,xx, y3)cdx =
∫ 1

0

λ2(My3(x), y3(x))cdx

= (Ty3,x, y3)c|10 −
∫ 1

0

(Ty3,x, y3,x)cdx.

Therefore, we can calculate the norm of ||Y3|| as follows

‖Y3‖2 =
∫ 1

0

(Ty3,x, y3,x)cdx+
∫ 1

0

(Mz3, z3)cdx+ (α̂αQ3, Q3)c−1

= (Ty3,x, y3)c|10 + (α̂αQ3, Q3)c−1

= (Ty3,x(1), y3(1))c − (Ty3,x(0), y3(0))c + (α̂αQ3, Q3)c−1

= (Pn−1Ty3,x(1), Pn−1y3(1))c−1 − (Ln−1Ty3,x(0), Ln−1y3(0))c−1 + (α̂αQ3, Q3)c−1

= (Ln−1Ty3,x(0), Pn−1y3(1)− Ln−1y3(0))c−1 + (α̂αQ3, Q3)c−1

= (Ln−1Ty3,x(0),−α(Q2 +Q3))c−1 + (α̂αQ3, Q3)c−1

= (−λQ3, αQ3)c−1 + (−λQ3 − α̂Q3, αQ2)c−1

≤ |<λ|‖α‖‖Q3‖2 + |<λ|‖α‖‖Q3‖‖Q2‖+ ‖α̂α‖‖Q3‖‖Q2‖

≤

(
µ2

1|Reλ|3‖α‖‖TM‖
e2η1|λ|(|<λ| − ‖α̂‖)2

+
υ1‖α‖‖

√
AM‖|<λ|2

eη1|λ|
∣∣(|<λ| − ‖α̂‖)∣∣ +

µ1‖α̂α‖‖
√

TM‖|Reλ|
eη1|λ|

∣∣(|<λ| − ‖α̂‖)∣∣
)
‖Q2‖2

≤

(
µ2

1|<λ|3‖α‖‖TM‖
e2η1|λ|(|<λ| − ‖α̂‖)2

+
υ1‖α‖‖

√
AM‖|<λ|2

eη1|λ|
∣∣(|<λ| − ‖α̂‖)∣∣ +

µ1‖α̂α‖‖
√

TM‖|<λ|
eη1|λ|

∣∣(|<λ| − ‖α̂‖)∣∣
)
‖Y2‖2

≤

(
µ2

1|<λ|3‖α‖‖TM‖
e2η1|λ|(|<λ| − ‖α̂‖)2

+
µ1‖α‖‖

√
TM‖|<λ|2

eη1|λ|
∣∣(|<λ| − ‖α̂‖)∣∣ +

µ1‖α̂α‖‖
√

TM‖|<λ|
eη1|λ|

∣∣(|<λ| − ‖α̂‖)∣∣
)
‖G‖2

|<λ|2
,

that is, for λ ∈ ρ(A) ∩ R−,

‖Y3‖2 ≤

(
µ2

1|<λ|3‖α‖‖TM‖
e2η1|λ|(|<λ| − ‖α̂‖)2

+
µ1‖α‖‖

√
TM‖|<λ|2

eη1|λ|
∣∣(|<λ| − ‖α̂‖)∣∣ +

µ1‖α̂α‖‖
√

TM‖|<λ|
eη1|λ|

∣∣(|<λ| − ‖α̂‖)∣∣
)
‖G‖2

|<λ|2
.

(8.4.11)
We know from Theorem 8.3.1 that λ ∈ ρ(A) ∩ R− for |<λ| sufficiently large. (8.4.4) together
with (8.4.11) lead to

lim
<λ→−∞

‖R(λ,A)G‖ = lim
<λ→−∞

‖Y2 + Y3‖ = 0. (8.4.12)

That leads to U(λ) is bounded on the real axis.
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Since U(λ) is an entire function of finite exponential type, U(λ) is uniformly bounded on
the line <λ = α > 0, the Phragmén-Linderöf Theorem (cf. [127]) asserts that

|U(λ)| ≤M, ∀λ ∈ C.

The Liouville’s Theorem further says that U(λ) ≡ 0. Note that U(λ) = (G,R∗(λ,A)F )H for
any given G ∈ H. It must be R∗(λ,A)F = 0. This means that F = 0. Therefore Sp(A) = H,
the desired result follows. �

Next we discuss the generation of Riesz basis of the generalized eigenvectors of A. Firstly,
we introduce a result, which comes from [119] and is an extension of the result in [117].

THEOREM 8.4.2 Let A be the generator of a C0 semigroup T (t) on a separable Hilbert space
H. Suppose that the following conditions are satisfied:

1) The spectrum of A has a decomposition

σ(A) = σ1(A) ∪ σ2(A) (8.4.13)

where σ2(A) consists of the isolated eigenvalues of A of finite multiplicity (repeated many times
according to its algebraic multiplicity).

2) There exists a real number α ∈ R such that

sup{<λ, λ ∈ σ1(A)} ≤ α ≤ inf{<λ, λ ∈ σ2(A)} (8.4.14)

3) The set σ2(A) is an union of finite many separated sets.
Then the following statements are true:
i). There exist two T (t)-invariant closed subspaces H1, H2 and H1 ∩ H2 = {0} such that

σ(A
∣∣
H1

) = σ1(A) and σ(A
∣∣
H2

) = σ2(A); and there exists a finite combination E(Ωk,A) of
some {E(λk,A)}∞k=1 :

E(Ωk,A) =
∑

λ∈Ωk∩σ2(A)

E(λ,A) (8.4.15)

such that {E(Ωk,A)H2}k∈N forms a Riesz basis of subspaces for H2. Furthermore,

H = H1 ⊕H2.

ii). If sup
k≥1

||E(λk,A)|| <∞, then

D(A) ⊂ H1 ⊕H2 ⊂ H. (8.4.16)

iii). H has a decomposition of the topological direct sum, H = H1 ⊕H2, if and only if

sup
n≥1

∥∥∥∥∥
n∑

k=1

E(Ωk,A)

∥∥∥∥∥ <∞. (8.4.17)

Now we can prove the following result.

THEOREM 8.4.3 Let H and A be defined as before. If conditions in (8.3.5) are fulfilled,
then there is a sequence of eigenvectors and generalized eigenvectors of A that forms a Riesz
basis with parentheses for H. Indeed, in this case, A generates a C0 group on H. In particular,
the system associated with A will satisfy the spectrum determined growth condition.
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Proof Set σ1(A) = {−∞}, σ2(A) = σ(A). Theorem 8.3.1 shows that all conditions in
Theorem 8.4.2 are fulfilled. So the results of Theorem 8.4.2 are true. Hence there is a sequence
of eigenvectors and generalized eigenvectors of A that forms a Riesz basis with parentheses for
H2. Theorem 8.4.1 says that the eigenvectors and generalized eigenvectors is complete in H,
that is H2 = H. Therefore the sequence is also a Riesz basis with parentheses for H. The
Riesz basis property of the eigenvectors and generalized eigenvectors together with distribution
of spectrum of A implies that A generates a C0 group on H. At the same time, the Riesz basis
property together with the uniform boundedness of multiplicities of eigenvalues of A ensure
that the system associated with A satisfies the spectrum determined growth condition. The
proof is then complete. �

We have the following remark about the exponential stability of this system.

REMARK 8.4.1 When both endpoints are clamped, if one applies the controllers only at the
interior nodes, the closed loop system usually is not exponentially stable, even though the system
of two-connected strings it also needs to satisfy much more strict conditions, see ([114])

8.5 Conclusion remark

In this chapter, we studied the property of serially connected strings with discontinuous dis-
placements. One wants to stabilize the system by the tension feedback of the interior nodes.
The main results are as follows:

1) Since 0 is an eigenvalue of geometrical multiplicity n − 1 for the uncontrolled system,
one needs at least n− 1 controllers (the number of controllers is not less than the geometrical
multiplicity of the eigenvalue);

2). If the function equations in σ cos
√

m1
T1
σ = 0, cos

√
mn

Tn
σ = 0, sin

√
m2
T2
σ = 0,

sin
√

m3
T3
σ = 0, · · · · · · , sin

√
mn−1
Tn−1

σ = 0
(8.5.1)

has no solution on the real axis, then the closed loop system is asymptotically stable. Otherwise,
the system is unstable;

3). If the feedback gains αj satisfy conditions

αi 6=
1√
miTi

+
1√

mi+1Ti+1

, i = 1, 2, · · · , n− 1, (8.5.2)

then the frequencies of the closed loop system are in a strip parallel to the imaginary axis. In
this case, there is a sequence of eigenvectors and generalized eigenvectors of the system that
forms a Riesz basis with parenthesis for the Hilbert state space.

4). The system satisfies the spectrum determined growth condition.
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Let us revisit the controlled system

mj
∂2wj(x,t)

∂t2 = Tj
∂2wj(x,t)

∂x2 , j = 1, 2, · · ·n, x ∈ (0, 1), t > 0,

w1(0, t) = wn(1, t) = 0, t > 0

Tjwj,x(1, t) = Tj+1wj+1,x(0, t), j = 1, 2, · · · , n− 1, t > 0,

wj(1, t)− wj+1(0, t) = uj(t), j = 1, 2, · · · , n− 1, t > 0,

(8.5.3)

where uj(t), j = 1, 2, · · · , n− 1, are external exciting forces.
The observable nodal values of the system are

W ′(v) = (w′(a1, t), w′(a2, t), w′(a3, t), · · · , w′(an, t), w′(an+1, t)).

Set yj(x, t) = Tjwj,x(x, t), then yj(x, t) is a continuous function on (0, 1) and satisfies

mjyj,tt(x, t) = Tjyj,xx(x, t).

With this transform, the first boundary condition in (8.5.3) becomes

y1,x(0, t) = 0, yn,x(1, t) = 0.

the second is
yj(1, t) = yj+1(0, t),

and the third becomes

1
mj

yj,x(1, t)− 1
mj+1

yj+1,x(0, t) = uj,tt(t) = ûj(t), j = 1, 2, · · · , n− 1.

Thus we deduce the system satisfied displacement continuity,

mj
∂2yj(x,t)

∂t2 = Tj
∂2yj(x,t)

∂x2 , j = 1, 2, · · ·n, x ∈ (0, 1), t > 0,

y1,x(0, t) = yn,x(1, t) = 0, t > 0

yj(1, t) = yj+1(0, t), j = 1, 2, · · · , n− 1, t > 0,
1

mj
yj,x(1, t)− 1

mj+1
yj+1,x(0, t) = ûj(t), j = 1, 2, · · · , n− 1, t > 0,

(8.5.4)

This is a system both ends free and is acted the controllers on all the interior nodes.

REMARK 8.5.1 For n = 1, the system of string with both ends free, literature [120] gives a
complete controller design and stability analysis. The authors in [79] presented the controller
design for serially connected strings.



Chapter 9

Network of Strings with A

Triangle-Shape Circuit

In this chapter we consider a continuous network of strings with a triangle-shaped circuit. Sup-
pose that the network of strings at all internal nodes are continuously joined, and its boundary
(the exterior vertices) are free. The velocity feedback controllers are placed on all vertices of the
network. This system is a particular case of the general continuous network of strings. For the
sake of completeness, we firstly discuss in section 2 the well-posed-ness of the closed loop system
by the semigroup theory. In section 3, by spectral analysis of the system operator, we show
that the spectra of the system are located in the left half complex plane and are distributed in a
strip parallel to the imaginary axis under certain conditions. Further we prove in section 4 that
there is a sequence of the generalized eigenvectors of the system that forms a Riesz basis with
parentheses for the Hilbert state space, and hence the spectrum determined growth condition
holds. In section 5, we analyze conditions of asymptotical stability of the network. The result
shows that if there is one of ratio of the wave speeds of strings in triangle-shape circuit being
a irrational number, then the system is asymptotically stable. Finally, in section 6, we give a
conclusion remark.

9.1 Introduction

Networks of vibrating strings are often used as models in large flexible space structures, satellite
antenna, and information transmission and so on. In last two decades, the control problem of
elastic networks had been one of hot topics in control engineering and mathematical control
field, involving controllability, observability and stabilization ([5], [6], [34], [72], [71]). Riesz
basis approach, as one of the powerful tools in control theory of distribute parameter system
([26],[43],[45],[79],[119], [111], [117]), was used successfully in study of control of vibration of
flexible system. In particular, Xu et al in [125] obtained Riesz basis property for a class of
abstract differential equations, which has applied to study of tree-shaped network of strings.

210
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But network systems with circuit were seldom studied. Here we consider a planar network of
elastic strings with a triangle circuit, whose structure is shown as Fig. 9.1.1. Suppose that
every string has unit length. The network is linked as follows (see, Fig 9.1.1)

e1
q
a1

e2

T
T

T
T

T
T

q a2

e3

�
�
�
�
�
�
qa3

e4
���

���q a4

e5

HHH
HHHqa5

e6

qa6

Fig 9.1.1. A planar network of strings with a triangle circuit

where ek represents the k-th string, and ak, k = 1, 2, . . . , 6 represent the nodes of the network.
The parameterization directions of strings are as follows

e1 = (a1, a2), e2 = (a2, a3), e3 = (a3, a1)

e4 = (a1, a4), e5 = (a2, a5), e3 = (a3, a6).

We place controllers on all vertices. Then the motion of the controlled network system is
governed by the partial differential equations

Tk
∂2yk(x, t)
∂x2

= mk
∂2yk(x, t)

∂ t2
, x ∈ (0, 1), t > 0,

y1(0, t) = y3(1, t) = y4(0, t),

y2(0, t) = y1(1, t) = y5(0, t),

y3(0, t) = y2(1, t) = y6(0, t),

T 1
∂y1(1, t)

∂x
− T2

∂y2(0, t)
∂x

− T5
∂y5(0, t)

∂x
= u1(t),

T 2
∂y2(1, t)

∂x
− T3

∂y3(0, t)
∂x

− T6
∂y6(0, t)

∂x
= u2(t),

T 3
∂y3(1, t)

∂x
− T1

∂y1(0, t)
∂x

− T4
∂y4(0, t)

∂x
= u3(t),

T4
∂y4(1, t)

∂x
= u4(t), T5

∂y5(1, t)
∂x

= u5(t), T6
∂y6(1, t)

∂x
= u6(t),

yk(x, 0) = yk,0(x),
∂yk(x, 0)

∂t
= yk,1(x), k = 1, 2, . . . , 6.

(9.1.1)

where yk(x, t) describes the transversal displacement of the k-th string on position x at time t,
the constant coefficients mk and Tk are the mass density and the tension of the k-th string of
the network, respectively.

We design the feedback controllers uk(t), k = 1, 2, . . . , 6 as follows

uk(t) = −βk
∂yk(1, t)

∂t
− γkyk(1, t), βk, γk > 0, (9.1.2)
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Let

Y (x, t) = [y1(x, t), y2(x, t), y3(x, t), y4(x, t), y5(x, t), y6(x, t)]
T = [Ylp(x, t)T , Ynl(x, t)T ]T ,

(9.1.3)
where Ylp(x, t) = [y1(x, t), y2(x, t), y3(x, t)]

T denotes the part of interior circuit and Ynl(x, t) =
[y4(x, t), y5(x, t), y6(x, t)]T denotes the exterior of the circuit, where the superscript T denotes
the transpose of matrix.

Define the diagonal matrices

M = diag{m1, m2, m3,m4, m5, m6}, T = diag{T1, T2, T3, T4, T5, T6}

β = diag{β1, . . . , β6}, γ = diag{γ1, . . . , γ6}

Then the closed loop system (9.1.1)–(9.1.2) can be rewritten as follows:

MYtt(x, t) = TYxx(x, t), x ∈ (0, 1), t > 0,

Y (0, t) = CY (1, t),

TYx(1, t)− CT TYx(0, t) = −βYt(1, t)− γY (1, t),

Y (x, 0) = Y0(x), Yt(x, 0) = Y1(x),

(9.1.4)

where

C =

 Clp 0

Clp 0

 , Clp =


0 0 1

1 0 0

0 1 0

 ,

and
Y0 = [y1,0(x), . . . , y6,0(x)]T , Y1 = [y1,1(x), . . . , y6,1(x)]T .

In this chapter, we mainly analyze the stability of the closed loop system (9.1.4).

9.2 Well-pose-ness of the system

To discuss the well-posed-ness of the system (9.1.4), firstly we formulated it into an appropriate
Hilbert state space.

Let Hk[(0, 1),C6] (k = 1, 2) be the usual vector-valued Sobolev space and L2[(0, 1),C6] be
the usual vector-valued square integrable function space, which also a Hilbert space.

Set
V k

E (0, 1) = {f ∈ Hk[(0, 1),C6]
∣∣ f(0) = Cf(1)},

and define the state space by

H = V 1
E(0, 1)× L2[(0, 1),C6]

equipped with an inner product, ∀(f, g)T , (u, v)T ∈ H

〈(f, g), (u, v)〉H =
∫ 1

0

[(Tf ′(x), u′(x))C6 + (Mg(x), v(x))C6 ]dx+ (γf(1), u(1))C6
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where (·, ·)C6 denotes the inner product of the complex space C6. Clearly, H is a Hilbert space.
In the space H, we define an operator A by

A

 f

g

 =

 g(x)

M−1Tf ′′(x)

 (9.2.1)

with the domain

D(A) =

(f, g) ∈ H
∣∣ f ∈ V 2

E(0, 1), g ∈ V 1
E(0, 1),

Tf ′(1)− CT Tf ′(0) = −βg(1)− γf(1),

 . (9.2.2)

Thus we can rewrite (9.1.4) into an abstract evolutionary equation in H
dZ(t)

dt = AZ(t), t > 0

Z(0) = Z0.
(9.2.3)

where Z(t) = (Y (x, t), Yt(x, t))T , Z0 = (Y0, Y1)T .
Firstly, we have the following conclusion.

THEOREM 9.2.1 Let H be defined as before and A be defined by in (9.2.1) and (9.2.2).
Then the following assertions hold

1) A is dissipative and A−1 is compact on H;
2) the spectrum of A consists of all isolated eigenvalues of finite multiplicity, i.e. σ(A) =

σp(A);
3) A generates a C0 semigroup of contraction S(t) on H. Hence the closed loop system

(9.1.4) or the evolution system (9.2.3) is well-posed.

Proof Firstly, for any (f, g)T ∈ D(A), we have

<(A(f, g)T , (f, g)T )H = <
{

(Tf ′(x), g(x))C6

∣∣1
0

+ (γg(1), f(1))C6

}
= <{(Tf ′(1), g(1))C6 − (Tf ′(0), g(0))C6 + (γg(1), f(1))C6}
= <

{
(Tf ′(1)− CT Tf ′(0), g(1))C6 + (γg(1), f(1))C6

}
where we have used the conditions g(0) = Cg(1) and f(0) = Cf(1). Again using the condition
Tf ′(1)− CT Tf ′(0) = −βg(1)− γf(1), we get that

<(A(f, g)T , (f, g)T )H = −(βg(1), g(1))C6 ≤ 0 (9.2.4)

i.e. A is a dissipative operator.
Next, we prove 0 ∈ ρ(A), i.e. A−1 exists and is bounded. For each fixed (ζ, ν)T ∈ H, we

solve the resolvent equation

A(f, g)T = (ζ, ν)T , (f, g)T ∈ D(A), (9.2.5)

i.e., 

g(x) = ζ(x),

Tf ′′(x) = Mν(x).

f(0) = Cf(1),

Tf ′(1)− CT Tf ′(0) = −βg(1)− γf(1)
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Integrating the second equation from x to 1 leads to

Tf ′(x) = Tf ′(1)−
∫ 1

x

Mν(x)dx. (9.2.6)

So,

Tf(x) = Tf(1)− (1− x)Tf ′(1) +
∫ 1

x

%(s)ds, (9.2.7)

where %(x) =
∫ 1

x
Mν(s)ds, f(1) and Tf ′(1) are unknown.

From (9.2.6) we get that Tf ′(1) = Tf ′(0)+%(0). Substituting it into the dynamic boundary
condition yields

γf(1) + (I − CT )Tf ′(1) = −βζ(1)− CT %(0).

From (9.2.7) we get
Tf ′(1)− T(I − C)f(1) = κ, (9.2.8)

where κ =
∫ 1

0
%(s)ds. Therefore we get the following linear equations with unknown vectors

f(1) and Tf ′(1) γ (I − CT )

−T(I − C) I

 f(1)

Tf ′(1)

 =

 −βζ(1)− CT %(0)

κ

 (9.2.9)

Denote by γlp = diag{γ1, γ2, γ3}, γnl = diag{γ4, γ5, γ6}, Tlp = diag{T1, T2, T3} and Tnl =
diag{T4, T5, T6}. A direct calculation of the determinant gives

det

 γ (I − CT )

−T(I − C) I

 = det

 γ + (I − CT )T(I − C) 0

−T(I − C) I


= det(γ + (I − CT )T (I − C))

= det
(
γlp + (I − CT

lp)Tlp(I − Clp) + CT
lpTnlClp − CT

lpTnl [γnl + Tnl]
−1 TnlClp

)

= det


d1 −T2 −T1

−T2 d2 −T3

−T1 −T3 d3

 6= 0

where d1 = γ1 + T1 + T2 + γ5T5
γ5+T5

, d2 = γ2 + T2 + T3 + γ6T6
γ6+T6

and d3 = γ3 + T1 + T3 + γ4T4
γ4+T4

.
Thus, f(1) and Tf ′(1) are uniquely solvable via (9.2.9). Hence f(x) and g(x) can be determined
by ζ, ν uniquely, which implies that A−1 exists. By the arbitrariness of (ζ, ν) ∈ H, so A−1 is
bounded, i.e., 0 ∈ ρ(A). Note that D(A) ⊂ H2 × H1, the Sobolev’s Embedding Theorem
asserts that A−1 is compact on H.

As a result of resolvent compact operator, we know the assertion 2) holds. Finally, according
to Lumer-Phillips Theorem ([92]), A generates a C0 semigroup of contraction. �

REMARK 9.2.1 From the proof of Theorem 9.2.1 we see that A−1 exists and is bounded
provided that γ satisfies

∑6
k=1 γ

2
k 6= 0, γk ≥ 0. So

∑6
k=1 γ

2
k 6= 0 is a sufficient and necessary

condition for 0 ∈ ρ(A)
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9.3 Spectral analysis

In this section, we consider the eigenvalue problem of the system (9.2.3)(i.e., the closed loop
system (9.1.4)).

Let λ ∈ σ(A) and (f, g)T ∈ D(A) be corresponding an eigenvector, then (λI−A)(f, g)T = 0,
i.e., 

Tf ′′(x) = λ2Mf(x),

g(x) = λf(x),

f(0) = Cf(1),

Tf ′(1)− CT Tf ′(0) = −(λβ + γ)f(1).

(9.3.1)

Set η(x) = (f(x), λ−1Tf ′(x))T , then η(x) satisfies

dη

dx
= λ

 0 T−1

M 0

 η (9.3.2)

with boundary condition I 0

0 −CT

 η(0) +

 −C 0

β̃ I

 η(1) = 0, (9.3.3)

where β̃ = β+λ−1γ. The theory of ordinary differential equations shows that the fundamental
matrix of (9.3.2) is given by

W (x, λ) = Q̂

 exp(−λxB) 0

0 exp(λxB)

 Q̂−1 (9.3.4)

where

Q̂ =

 −Q−1
MT Q−1

MT

I I

 , Q̂−1 =
1
2

 −QMT I

QMT I


whereQMT = M1/2T1/2 = diag{c1, . . . , c6}, B = M1/2T−1/2 = diag{b1, . . . , b6}, bk = m

1/2
k T

−1/2
k ,

ck =
√

(mkTk). Substituting it into boundary condition (9.3.3) leads to

D(λ)η(0) = 0,

where

D(λ) =

 I 0

0 −CT

+

 −C 0

β̃ I

W (1, λ)

 . (9.3.5)

Therefore, the problem (9.3.2) and (9.3.3) have a nonzero solution if and only if

∆(λ) = det(D(λ)) = 0. (9.3.6)

Since the eigenvalue problem (9.3.1) is equivalent to the problem (9.3.2) and (9.3.3), so the
zeros of ∆(λ) are the eigenvalues of the operator A.
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Since

D(λ)Q̂ =

D− +D+

 eλB 0

0 eλB

 e−λB 0

0 I

 ,

where

D− =

 CQ−1
MT Q−1

MT

I − β̃Q−1
MT −CT

 , (9.3.7)

D+ =

 −Q−1
MT −CQ−1

MT

−CT I + β̃Q−1
MT

 , (9.3.8)

in addition,

det(D−) = det

 CQ−1
MT Q−1

MT

I − βQ−1
MT −CT


= det(Q−1

MT ) det
(
I + CTQMTCQ

−1
MT − βQ−1

MT

)
,

we conclude that

∆− = lim
<λ→−∞

∆(λ)
det(exp(−λB))

= det
(
I + CTQMTCQ

−1
MT − βQ−1

MT

)
= (1 + (c2 + c5 − β1)/c1)(1 + (c3 + c6 − β2)/c2)

(1 + (c1 + c4 − β3)/c3)(1− β4/c4)(1− β5/c5)(1− β6/c6)

and

∆+ = lim
<λ→+∞

∆(λ)
det(exp(λB))

= det
(
I + CTQMTCQ

−1
MT + βQ−1

MT

)
= (1 + (c2 + c5 + β1)/c1)(1 + (c3 + c6 + β2)/c2)

(1 + (c1 + c4 + β3)/c3)(1 + β4/c4)(1 + β5/c5)(1 + β6/c6).

Therefore, when ∆− 6= 0, i.e., β satisfies the following conditions

β1 6= c1 + c2 + c5 =
√
m1T1 +

√
m2T2 +

√
m5T5,

β2 6= c2 + c3 + c6 =
√
m2T2 +

√
m3T3 +

√
m6T6,

β3 6= c1 + c3 + c4 =
√
m1T1 +

√
m3T3 +

√
m4T4,

βk 6= ck =
√
mkTk, k = 4, 5, 6,

(9.3.9)

there exist positive constants c̃1, c̃2 and δ such that for |<(λ)| > δ,

c̃1 exp (<(λ)tr(B)) ≤ |∆(λ )| ≤ c̃2 exp (<(λ)tr(B)) , (9.3.10)

which shows that the zeros of ∆(λ) are located in the region {λ ∈ C
∣∣ |<λ| ≤ δ}. By Theorem

9.2.1, we conclude
σ(A) ⊂

{
λ ∈ C

∣∣ −δ ≤ <λ ≤ 0
}
. (9.3.11)
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In addition, the inequality (9.3.10) shows that ∆(iλ) is an entire function of sine type on C
(see, [9, Definition II, 1.27, pp61]). Levin theorem (see, [9, Proposition II, 1.28]) asserts that
the set of zeros of ∆(λ) is a union of finitely many separable sets. So is σ(A).

By above analysis, we have achieved the following result.

THEOREM 9.3.1 Let A be defined by (9.2.1)–(9.2.2). Then we have

σ(A) =
{
λ ∈ C

∣∣ ∆(λ) = 0
}
. (9.3.12)

In particular, when β satisfies (9.3.9), σ(A) is a union of finite many separated sets, and there
exists a positive constant δ such that (9.3.11) holds.

9.4 Completeness and Riesz basis of root vectors of A
In this section, we discuss the completeness and basis property of root vectors of A. We begin
with the following lemma.

LEMMA 9.4.1 Let H be defined as before, and A0 be the uncontrolled operator in H defined
by

A0 (f, g) =
(
g(x),M−1Tf ′′(x)

)
, (9.4.1)

with

D(A 0) =

(f, g) ∈ H
∣∣ f ∈ V 2

E(0, 1), g ∈ V 1
E(0, 1),

Tf ′(1)− CT Tf ′(0) = −γf(1)

 (9.4.2)

and
∑6

k=1 γ
2
k 6= 0, γk ≥ 0. Then the following assertions hold

1) A 0 is a skew-adjoint operator in H;
2) for any (ζ, ν)T ∈ H and λ ∈ R, the solution of the resolvent equation

(λI −A0) (f, g)T = (ζ, ν)T (9.4.3)

satisfies
‖g(1)‖2C6 ≤ 2c2‖(ζ, ν)T ‖2H (9.4.4)

where c > 0 is a constant.

Proof It is easy to check that A 0 is a skew-adjoint operator in H, which implies that

‖λR(λ,A0)‖ ≤ 1, ∀<λ 6= 0. (9.4.5)

Without loss of generality, we assume that γ1 6= 0. The resolvent equation (9.4.3) implies that
g(x) = λf(x)− ζ(x) and g(1) = λf(1)− ζ(1). So, we have

g(1) = g(0) +
∫ 1

0

g′(x)dx = Cg(1) +
∫ 1

0

(λf ′(x)− ζ ′(x))dx

= (g3(1), g1(1), g2(1), g3(1), g1(1), g2(1)) +
∫ 1

0

(λf ′(x)− ζ ′(x))dx.
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Note that the following two inequalities,∥∥∥∥∫ 1

0

T 1/2f ′(x)dx
∥∥∥∥2

≤
∫ 1

0

(Tf ′(x), f ′(x))C6dx,

∫ 1

0

(Tf ′(x), f ′(x))C6dx+ γ1|f1(1)|2 ≤ ‖(f, g)T ‖2.

Thus we have

‖g(1)‖2c6 ≤ 3
∥∥∥∥∫ 1

0

λf ′(x)dx
∥∥∥∥2

+ 3
∥∥∥∥∫ 1

0

ζ ′(x)dx
∥∥∥∥2

+ 6(|λf1(1)|2 + |ζ1(1)|2)

≤ c2|λ|2
(∫ 1

0

(Tf ′(x), f ′(x))C6dx+ γ1|f1(1)|2
)

+c2
(∫ 1

0

(Tζ ′(x), ζ ′(x))C6dx+ γ1|ζ1(1)|2
)

≤ c2
(
|λ|2‖R(λ,A0)(ζ, ν)T ‖2H + ‖(ζ, ν)T ‖2H

)
≤ 2c2‖(ζ, ν)T ‖2H

where c2 = max{3‖T−1/2‖2, 6(γ1)−1}. The proof is then complete. �

Using above lemma, we can prove the main result in this section.

THEOREM 9.4.1 Let A be defined by (9.2.1) –(9.2.2). If β satisfies (9.3.9), then the system
of eigenvectors and generalized eigenvectors of A is complete in H.

Proof Denote by

Sp(A) = span

{∑
k

yk

∣∣∣∣∣ yk ∈ E(λ k,A)H,∀λk ∈ σ(A)

}
,

where E(λk,A) is the Riesz projector corresponding to λk. We shall prove Sp(A) = H.
Let (ζ̃, ν̃)T ∈ H such that (ζ̃, ν̃)T⊥Sp(A). For any (ζ, ν)T ∈ H given, we define a function

on complex plane C by
F (λ ) = 〈 (ζ, ν)T , R∗(λ, A)(ζ̃, ν̃)T 〉H. (9.4.6)

Clearly, F (λ) is an entire function of finite exponential type and

|F (λ)| ≤ (<λ)−1 ‖(ζ, ν)‖
∥∥∥(ζ̃, ν̃)∥∥∥ , for <λ > 0.

Hence lim
<λ→+∞

|F (λ)| = 0.

Now we consider the following equations (λI −A) (f, g)T = (ζ, ν)T

(λI −A0)
(
f̂ , ĝ

)T

= (ζ, ν)T ,
(9.4.7)

where λ ∈ ρ(A) ∩ ρ(A0) and λ < 0. Let u(x) = f(x)− f̂(x), v(x) = g(x)− ĝ(x), then

R (λ,A) (ζ, ν)T = R (λ,A0) (ζ, ν)T + (u, v)T (9.4.8)
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and (u, v)T satisfies equation

Tu′′(x) = λ2Mu(x),

v(x) = λu(x),

u(0) = Cu(1),

Tu′(1)− CT Tu′(0) + (γ + λβ)u(1) = −βĝ(1).

(9.4.9)

According to (9.4.6) and (9.4.8), it holds that

F (λ) = 〈R (λ,A0) (ζ, ν)T , (ζ̃, ν̃)T 〉H + 〈(u, v)T
, (ζ̃, ν̃)T 〉H. (9.4.10)

Set η(x) = (u(x), λ−1Tu′(x))T . Similar to (9.3.2), the solution of (9.4.9) satisfies

η(x) = W (x, λ)η0 (9.4.11)

and
D(λ)η0 = λ−1(0, βĝ(1))T , (9.4.12)

where W (x, λ) and D(λ) are defined as (9.3.4) and (9.3.5), respectively.
Taking transform

η̃ =

 e−λA 0

0 I

 Q̂−1η0, (9.4.13)

then from (9.4.12) we deduce that

η̃ = λ−1

D− +D+

 eλA 0

0 eλA

−1 0

βĝ(1)

 ,

whereD− andD+ are defined by (9.3.7) and (9.3.8), respectively. Obviously, ‖η̃‖ = O(λ−1)‖ĝ(1)‖
for sufficiently large −λ > 0. Therefore, from (9.4.13), (9.4.11) and (9.3.4) we obtain

η(x) = Q̂

 eλ(1−x)A 0

0 eλxA

 η̃.

So, we have
u(x) = −Q−1

MT e
λ(1−x)Aη̃1 +Q−1

MT e
λxAη̃2,

and
u(1) = −Q−1

MT η̃1 +Q−1
MT e

λAη̃2.

When −λ is large enough, we have

‖u(1)‖2 = O(|λ |−2) ‖ĝ(1)‖2 . (9.4.14)

From (9.4.9) it follows that∥∥(u, v)T
∥∥2

= −〈u(1), βĝ(1)〉C6 − 〈u(1), λβu(1) 〉C6 .
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The equality (9.4.10) combining with (9.4.4) in Lemma 9.4.1 yields that∥∥(u, v)T
∥∥ ≤ O(|λ|−1/2)

∥∥(ζ, ν)T
∥∥
H .

Therefore, when −λ > 0 is sufficiently large, we have

|F (λ )| ≤ |λ−1|
∥∥(ζ, ν)T

∥∥
H ·
∥∥∥(ζ̃, ν̃)T

∥∥∥
H

+
∥∥∥(u, v)T

∥∥∥
H
·
∥∥∥(ζ̃, ν̃)T

∥∥∥
H

≤
(
|λ−1|+O(|λ |−1/2)

)∥∥(ζ, ν)T
∥∥
H ·
∥∥∥(ζ̃, ν̃)T

∥∥∥
H

≤ O(|λ |−1/2)
∥∥(ζ, ν)T

∥∥
H ·
∥∥∥(ζ̃, ν̃)T

∥∥∥
H
.

Since F (λ) is an entire function of finite exponential type, the Phrángmen-Lindelöf theorem (see
[127]) and the above inequality show that F (λ) ≡ 0. From (9.4.6) we get that R∗(λ, A)(ζ̃, ν̃)T ≡
0, which leads to (ζ̃, ν̃)T ≡ 0. Therefore, Sp (A) = H, the desire result follows. �

Combining Theorem 9.2.1, Theorem 9.3.1 and the result in[125, Theorem 3.4], we have the
following basis property of root vectors of A.

THEOREM 9.4.2 Let H be defined as before and A be defined by (9.2.1)–(9.2.2). If β satisfies
9.3.9, then there is a sequence of eigenvectors and generalized eigenvectors of A that forms a
Riesz basis with parentheses for H. Hence the C0 semigroup S(t) generated by A satisfies the
spectrum determined growth assumption.

Proof Set σ1(A) = {−∞}, σ2(A) = σ(A). Theorem 9.2.1 and Theorem 9.3.1 ensure all
the conditions in [125, Theorem 3.4] are fulfilled. Thus there is a sequence of eigenvectors
and generalized eigenvectors of A that forms a Riesz basis with parentheses for H2 = Sp(A).
Theorem 9.4.1 says that the root vectors are complete in H, the sequence is also a Riesz basis
with parentheses for H. The Riesz basis property together with the uniform boundedness of
the multiplicities of eigenvalues of A implies that S(t) satisfies the spectrum determined growth
assumption. The proof is then complete. �

9.5 Asymptotical stability of the closed loop system

In this section we analyze stability of the system (9.2.3). Firstly, as a consequence of the Riesz
basis property, we have the following stability result of the system.

THEOREM 9.5.1 Let A be defined by (9.2.1) and (9.2.2), and β satisfy condition (9.3.9).
Then the following statements are true:

1) If inf
λ∈iR

|∆(λ )| 6= 0, then the system is exponentially stable.

2) If inf
λ∈iR

|∆(λ )| = 0, then the system at most is asymptotically stable but not exponentially

stable.

Proof Under assumption in proposition, Theorem 9.4.2 shows that the system (9.2.3) satisfies
the spectrum determined growth condition. Note that

σ(A) = {λ ∈ C
∣∣ ∆(λ) = 0} ⊂ {λ ∈ C

∣∣ <λ ≤ 0}.
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If inf
λ∈iR

|∆(λ)| 6= 0, then the imaginary axis is not an asymptote of σ(A), which implies the system

is exponentially stable. If there exists a λ ∈ iR such that ∆(λ) = 0, then the system is unstable.
If the imaginary axis is an asymptote of σ(A), then there exists a sequence λn = αn + iβn such
that αn → 0 as n→∞. Since ∆(λ) is sine-type function, so is ∆′(λ). Thus we have

sup
|<λ|≤δ

|∆′(λ)| <∞.

Note that
∆(αn + iβn)−∆(iβn) = ∆′(αnθn + iβn)αn, θn ∈ (0, 1).

So we have inf
λ∈iR

|∆(λ)| = 0. In this case, the system is asymptotically stable but not exponen-

tially stable. The proof is then complete. �

REMARK 9.5.1 In the proof of Theorem 9.5.1, we only show if infλ∈iR |∆(λ)| > 0, the
imaginary axis is not an asymptote of σ(A). If the imaginary axis is an asymptote of σ(A),
then infλ∈iR |∆(λ)| = 0. A question is if infλ∈iR |∆(λ)| = 0, whether the imaginary axis is an
asymptote of σ(A). In fact, using the property of sine-type function we can prove that if the
imaginary axis is not an asymptote of σ(A), then infλ∈iR |∆(λ)| > 0.

According to Theorem 9.5.1 and the spectrum determined growth assumption, the closed
loop system (9.2.3) is asymptotically stable if and only if

σ(A) ⊂ { λ ∈ C | − δ ≤ <(λ) < 0 } . (9.5.1)

To guarantee the asymptotic stability, it is necessary that there is no spectral points of A on
the imaginary axis. The following theorem gives a sufficient and necessary condition for no
spectral point of A on the imaginary axis.

THEOREM 9.5.2 Let A be defined as (9.2.1) and (9.2.2). If βk > 0, k = 1, . . . , 6 and at

least one of all ratios

√
m1/T1√
m2/T2

,

√
m2/T2√
m3/T3

and

√
m3/T3√
m1/T1

is irrational number, then there is no

spectral points of A on the imaginary axis.

Proof Assume that λ ∈ σp(A) and λ = iθ(0 6= θ ∈ R), (f, g)T ∈ D(A) is corresponding an
eigenvector, then (9.2.4) implies that

<λ〈(f, g)T , (f, g)T 〉H = <(A(f, g)T , (f, g)T )H = −〈βg(1), g(1)〉C6 = 0 (9.5.2)

so, g(1) = 0. This together with (9.3.1) yields that
Tf ′′(x) = −θ2Mf(x), g(x) = θf(x)

f(0) = f(1) = 0

Tf ′(1)− CT Tf ′(0) = 0.

(9.5.3)
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i.e., 

Tjf
′′
j (x) = −θ2mjfj(x), j = 1, 2, 3, 4, 5, 6

fj(0) = fj(1) = 0,= 1, 2, 3, 4, 5, 6,

T1f
′
1(1)− T2f

′
2(0)− T5f

′
5(0) = 0

T2f
′
2(1)− T3f

′
3(0)− T6f

′
6(0) = 0

T3f
′
3(1)− T1f

′
1(0)− T4f

′
5(0) = 0

f ′4(1) = f ′5(1) = f ′6(1) = 0.

(9.5.4)

Set bk =
√
mk/Tk,k = 1, . . . , 6, the general solution to (9.5.4) are of the form

fj(x) = aj sin(θbjx), (9.5.5)

From the boundary conditions (9.5.4), one gets that aj = 0, j = 4, 5, 6. If aj 6= 0, j = 1, 2, 3,
then

fj(1) = 0, if and only if sin θbj = 0, j = 1, 2, 3. (9.5.6)

Since

sin θbj = 0 ⇐⇒ θbj = kjπ, kj ∈ N, j = 1, 2, 3,

we have
b1
b2

=
k1

k2
,

b1
b3

=
k1

k3
(9.5.7)

and hence bi

bj
=
√

mi/Ti√
mj/Tj

are rational numbers. This contradicts to the assumption of Theorem

9.5.1. Therefore, at least one of aj , j = 1, 2, 3 vanishes. This together with (9.5.3) and (9.5.4)
leads to f(x) = g(x) = 0. Therefore there is no spectral point of A on the imaginary axis. �

As a consequence of Theorems 9.5.1 and 9.5.2, the following conclusion is immediately.

COROLLARY 9.5.1 Suppose that all conditions of Theorem 9.5.2 hold, then the closed loop
system (9.1.4) (or the system (9.2.3)) is asymptotically stable at least.

From above discussions we see that the stability of the system is closely relative to shape of
the graph. Note that the conditions in Theorem 9.5.2 are the necessary and sufficient conditions
for the system being asymptotically stable. If those conditions are fulfilled, whether or not the
system might achieve the exponential stability? This is an unsolve problem.

9.6 Conclusions

In this chapter we discussed the stability of a network of strings with a triangle circuit. In
particular, we obtained the Riesz basis property of the system. By the elasticity theory, the

wave speed of the constant coefficient string is
√

m
T . Using the ratio

√
mk/Tk√
mp/Tp

of wave speeds of

the p-th string and k-th string in Theorem 9.5.1, we give the sufficient and necessary condition
for the closed loop system (9.1.4) being asymptotically stable.



9.6. CONCLUSIONS 223

If `k 6= 1, we can take a change of variable: x = `ks, under which the system is changed
into we obtain that

Tk
∂2yk(s, t)
∂s2

= `2kmk
∂2yk(s, t)

∂t2
, 0 < s < 1, t > 0, (9.6.1)

where yk(s, t) = yk(`ks, t). Therefore, the result can be applied to the general network of the
form (9.1.1).

In the system (9.1.1), all vertices are controlled. This control method is improvable. From
the stability analysis we see that if we setup only controllers on the exterior vertices, then the
corresponding system has same property. From this point of view, the interior controllers are
unavailing (relative to exterior controller). This motivates us to study the location problem of
controllers for more complex network.
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