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Abstract: The paper analyses the evolution of rockets used to extinguish fires developed in open space in conditions of 

turbulent atmosphere. After the general definitions of the turbulent atmosphere and working hypotheses, the model of 

uniform and linear turbulent atmosphere obtained from analytical relations is presented in detail. Starting from this 

model, the components of velocity of turbulence as functions of time are deduced. Introducing the components of 

velocity into the model of simulation of the rocket flight, a fascicle of the trajectories is obtained. The work novelty 

consists in the new technique used to model the turbulent atmosphere influence on unguided rocket flight.  
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1   Introduction 
Fire-extinguishing rocket trajectory must be evaluated 

in the early project design stage, when the extreme 

atmospheric turbulences, the vertical air flows and the 

no uniform wind must be considered as possible 

perturbations. The effect of large scale perturbation is 

important for establishing the average trajectory. A 

supplementary task would be to determine the trajectory 

dispersion due to perturbation gradients produced by 

the atmospheric gusts. The importance of the study lies 

in the results it provides: the probable trajectory, its 

dispersion and the rocket response to dynamic loading.  

This paper tries to provide an answer to the problem of 

turbulent atmosphere influence on fire-extinguishing 

rocket flight.  

 

 

2   Definition of Atmospheric Turbulence. 

Hypotheses 
Since turbulence is a random process that cannot be 

described by explicit functions of time, only a 

statistical, probabilistic approach can be taken. 

The velocity field, variable in time and space, may be 

considered as result of an average value and a 

perturbation around it. In the case of long time flights, 

the average value may be modelled as referencing the 

flight with respect to a mobile rectangular frame which 

moves with the wind’s average velocity. In a point 

located by ),,( 321 xxxr  the air average velocity is:  

[ ]Tuuutru 321),( = ,   (1) 

It may be described properly by a correlation matrix 

composed of elements like this: 

>τ+ξ+=<τξ ),(),(),(, trutruR jiji ,  (2) 

which represents the temporal and spatial average of the 

product between a component iu located at a point 

defined by r  at the time t, and the component ju  from 

the point ξ+r  at the time  τ+t . 

To this matrix we can associate a spectral function 

matrix whose elements are defined by the Fourier 

transform function: 
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The inverse of these elements belong to the correlation 

matrix: 
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Generally, the atmosphere turbulences are not Gaussian. 

However, for practical purposes, the normal repartition 

may be used, producing significant simplifications. On 

the other hand, the statistical parameters jiR , and ji,Θ of 

the turbulence are defined in each point in space, r  and 

variable with time t. 

A particular aspect of the fire-extinguishing rocket is 

that it flies a long time, with a slight change in velocity 

magnitude, due to slow burning of rocket propellant. 

This is a significant theoretical advantage because it 

allows admitting the hypothesis that the turbulence is a 

stationary process. Another hypothesis is that the 

turbulence could be considered homogenous on small 

intervals, which means that jiR , and ji,Θ  do not depend 

on r , alongside of at least a trajectory segment. At high 

altitude, the turbulence is identical in all points 

belonging to the same layer, which means it might be 

considered homogenous. Close to the ground often 

changes with altitude occur. However, in the case of 

small launch angles, homogenous turbulence might be 

considered along the trajectories close to ground. 
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jiR ,  and ji,Θ  usually depend on wind referenced frame 

axes orientation. If the statistical functions do not 

depend on space, the turbulence is considered isotropic, 

which makes the velocity components square means to 

be equal: 
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where the standard deviation σ  will be called 
turbulence intensity. 

Due to the fact that rocket velocity is much higher than 

their variation velocity, the turbulence may be regarded 

to as „a frozen model”. This allows us to neglect time in 

the function ),( tru , which corresponds to Taylor’s 

hypothesis. Consequently, the correlation and spectral 

functions become: 

)(),( ,, ξ→τξ jiji RR ;  )(),( ,, ΩΘ→ωΩΘ jiji ,  (6) 

Consequently, the simplest model is the one of 

homogenous and isotropic turbulences, Gaussian and 

„frozen”, a model which is used for the flight outside 

the ground proximity layer. Inside of this layer is 

necessary to consider anisotropic turbulence.  

For the isotropic turbulence, using Batchelor’s relation: 
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where ξ=ξ ; ji,δ - Kroneker’s symbol; 

The longitudinal correlation function
 

)(ξf  represents 

the correlation between velocity components along an 

axis, given in two points of that axis (Figure 1.): 
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Because of the hypothesis regarding isotropy: 
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and: 
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Fig. 1 Longitudinal correlation of velocity components  

 

The other function )(ξg , is the lateral correlation 

function and represents the correlation between the 

transversal velocity components with respect to an axis 

(Figure 2), defined in two points: 
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Based on the hypothesis regarding isotropy, it results: 
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Fig. 2 Transversal correlation of velocity 

components 
 

 

3   The Uniform Turbulence Model 
For the characteristic correlation functions, the 

following relations from work [1] may be used: 
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where: 
aL

ξ
=ζ , 339,1=a  and L representing the 

characteristic length. Γ  is the second degree Euler 
function and υK  is the second degree Bessel modified 

function. The Fourier transforms of the functions )(ξf  

and )(ξg  are spectral one-dimensional functions: 
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Figures 3 and 4 illustrate graphical representation of 

functions defined by (14) and (15). 

For these spectral functions, through experimental 

measurements, several models have been established, 

among which, the most commonly used are the von 

Karman model: 
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and the Dryden model: 
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Fig. 3  Characteristic correlation functions 
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Fig. 4 Characteristic spectral functions  

 

The established experimental relations [1] are in good 

accordance with relations (15) and may be successfully 

used in the case of the study models with uniform 

turbulence. However, in the case of linear turbulence 

method, due to necessity to define cross correlation 

functions which show the mutual dependence between 

velocity components, the characteristic functions 

defined by (14) will be used.  

In case of altitudes over 650m the boundary layer 

influence is diminished and the atmosphere may be 

considered, a unique value for the characteristic length 

L being recommended, both to longitudinal and lateral 

spectral functions. For the model considered, according 

to [1] and [2] L=762m. The standard deviation is the 

same along all the three directions, depending only on 

the turbulence intensity: ]/[53,1 sm=σ  - low 

turbulence; ]/[05,3 sm=σ  - mean turbulence; 

]/[4,6 sm=σ - height turbulence (storm).  

The turbulence model obtained in this way is the simplest 

possible, being known as the uniform field model, in which 

only the linear components of velocity along the three axes, 

reduced in the gravity centre of the rocket, are considered: 

ggg wvu ,, .  

 

4   The Linear Turbulence Method 
A higher order approximation is the one of a linear 

field, the turbulence velocities being considered as 

linear functions depending on position.   

Authors of [1], [2] and [3] developed in case of airplane 

linear turbulence models in four points. These models 

also allow calculation of rotation velocity components 

ggg rqp ,,  due to turbulence. Starting from the method 

proposed in [1], we developed for rockets a linear 

model of turbulence in two points, which allow 

deducing of angular velocity of pitch and yaw motion.  

In the linear turbulence case, due to the slender axi-

symmetrical shape of the rocket, some gradients may be 

neglected. We shall consider a model of the rocket in 

two points as shown in Figure 5. 
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(F)
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v

 
Fig. 5 Model of the rocket in two points 

 

The length vl , called aerodynamic length, represents the 

distance from the mass centre to the focal point. Based 

on this model, the pitch and yaw velocities, equivalent 

to the velocity gradients, are: 
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to which there are added the linear velocities due 

translation for the uniform turbulence: 

0wwg = ; 0uug = ; 0vvg =     (19) 

To calculate the velocities produced by turbulence, we 

expressed their correlation functions through the 

characteristic functions f and g, proceeding as in the 

case of uniform distribution, we calculated the spectral 

functions corresponding to the correlation functions 

and, from these, we found some possible forms of the 

translation and rotation velocities generated by 

turbulence. For the case of the pitch turbulence velocity 

the following initial relation was used:  
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obtaining: 
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Fig. 6 Correlation functions calculus schema 
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Similarly the angular yaw velocity: 
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from which we obtained: 
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From the previous relations and (13), the correlation 

functions for the rotation velocities were determined. 

The two rotation velocity components are equal, 

rrqq RR = , due to axial symmetry (Figure 7). The 

spectral function for the rotation velocity is represented 

in Figure 8. We compare the velocity components 

calculated with the linear turbulence field theory to 

those obtained using the uniform field theory. These 

proved to be identical.  
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Fig. 7 Correlation function for rotation velocities 

0 2 4 6
-2

-1.5

-1

-0.5

0

0.5

q
q
lv
/

Ω L/1000

H> 650 m
L= 762 m
a=1.339

σ
2

2
Φ

(
L
)

*
1
0
0
0
0

1  
Fig. 8 Spectral function for the rotation velocity 

 

Thus, for the longitudinal component we obtained:  
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For the lateral component we obtained:  
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Relations (24)…(26) show that for linear model we 

found the same characteristic f and g from Figure 3 and 

the spectral functions shown in Figure 4. This means 

that the translation velocities for the liner model are the 

same with those from the uniform model and for these 

we can use theoretical relation (14) or the experimental 

relations (16) and (17). 

Relations (23) for the angular velocities may be used 

only in the case of the theoretical model defined by the 

characteristic functions (14). In the case of axis-

symmetric rockets, the only supplementary term 

specific to relations (23) is produced by the angular 

pitch/yaw velocities. If the aerodynamic length is 

comparable with respect to the characteristic length, the 

influence of this term is small and can be neglected. In 

the case of short rockets, like fire-extinguishing rocket, 

the term is important as we will see from the numerical 

comparison.  

 

 

5   Simulation of Atmospheric 

Turbulence 
The simulation of an atmospheric turbulence is based 

on the method of sinusoidal sum, using the spectral 

function modulus of the turbulence velocity to obtain 

the oscillation amplitude specific to a frequency 

bandwidth. So, for the spectral functions values 

presented in Figure 4, we determine by integration the 

value of amplitude corresponding to a frequency 

bandwidth, which can be approximated with the 

frequency corresponding to the centre of the integrated 

domain. To complete the model, to each frequency we 

associated an initial arbitrary phase.  

Using the notation φS  for the portion of the area 

obtained by integrating the modulus of a spectral 

function from Figure 4 and considering that the 

function has been represented only for the positive 

values of the variable 1Ω , the amplitude has the value: 

φσ= SA 2     (27),  

Two of the translation velocities generated by 

turbulence in a point ξ  are given by: 

∑ φ+ξΩ=ξ
i

ii
g Au )sin()( 111 ; 

  ∑ φ+ξΩ=ξ
i

ii
g Aw )sin()( 222 ,        (28) 

where the index “1” was given to amplitude, pulsation 

and initial phase obtained from the modulus of the 

longitudinal spectral function, and the index “2” – given 

to the elements obtained from the modulus of the lateral 

spectral function. The third component of the velocity is 

the same as the second, excepting the initial phase: 

∑ φ+ξΩ=ξ
i

ii
g Av )sin()( 322       (29) 

Making the assumption that the rocket flies on a linear 

trajectory with a constant velocity V: 
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τ=ξ V ,    (30) 

Consequently, the velocities originated by turbulence 

may be expressed as functions of time (Figure 9)  
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Fig. 9 The axial gu and normal gw  velocities produced 

by turbulence 

 

The modulus of the spectral functions presented in 

Figure 8 was used to find the angular velocities. By 

applying similar relations to (27) and (28) we obtained 

a form of the angular velocities originated by 

turbulence with respect to time. Because the spectral 

functions are equal (Fig.8), the yaw and pitch velocities 

will be approximately equal gg qr ≈ , differing only by 

initial phases. In this case, in Figure 10, we presented 

only the pitch velocity function gq .  
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Fig. 10 The pitch velocity produced by turbulence 

 

 

6   Fire-extinguishing Rocket Trajectory 
Starting from papers [3] and [4], some details regarding 

the procedure of building the simulation model for the 

fire-extinguishing rocket are presented in this section.  

For the turbulent atmosphere we used in order to make 

a comparison, the uniform and the linear turbulence 

model. The initial values of the sinusoidal sums phases 

were obtained by generating random numbers, and the 

amplitude and frequency were determined starting from 

the spectral density functions using the procedure 

described in the previous section. Because of the 

sequential initial random input of the phases, a fascicle 

of trajectories was obtained. The results are presented in 

the next tables. 

In order to analyse trajectory parameters, we define four 

check points: 1-Start point, 2-End of rocket motor burn, 

3-Trajectory apex, 4-Impact point 

 

Table 1. Nominal trajectory parameter, 0=σ  

Stage of flight 1 2 3 4 

T [s] 0 9.5 26.1 58. 

V [m/s] 40 625.4 209 206 

γ  [deg] 45 29.2 0.20 -68.1 

X [m] 0 2654 7882 12210 

Y [m] 1 1788 3677 0 

 

Table 2.  Average and standard deviation trajectory 

parameters, low turbulence 53.1=σ  

Stage of 

 flight 
1 

Uniform model Linear model 

2 3 4 2 3 4 

T [s] 
0 9.5 26.9 57.9 9.5 26.6 58.06

0 0.0 0.1 0.59 0.0 0.1 0.97

V [m/s] 
40 628.6 201.8 206.0 625.6 201.2 200.3

0 0.3 0.9 0.73 0.3 1.9 1.6

γ  
[deg] 

45 28.4 0.28 -68.03 29.5 -1. -68.7

0 0.24 0.19 0.47 0.54 0.39 1.24

X [m] 
0 2672.2 7907.9 12207.7 2644.3 7846.0 12018.0

0 7.9 2.5 17.4 14.6 19.5 64.7

Y [m] 
1 1755.5 3980.1 0 1801.0 3862.1 0

0 11.17 30.8 0 17.7 41.2 0

 

In table 2 for each parameter are two rows:  first for 

average and the second for standard deviation values.   

For a better analyse the main results are presented in a 

comparative form. 
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Fig. 11 Velocity diagram average values, low 

turbulence 
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Fig. 12 Velocity diagram standard deviation values, low 

turbulence 
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Fig. 13 Climb angle diagram, average values, low 

turbulence 
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Fig. 14 Climb angle diagram, standard deviation values, 

low turbulence 
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Fig. 15 Trajectory diagram, average values, low 

turbulence 

The average parameters from nominal trajectory, 

uniform model and linear model are relatively closed. 

Different from these, the parameters dispersion 

obtained with uniform model and linear model are 

different, therefore the use of the linear model are 

rightful.  
 

 

7 Conclusions 
Two turbulence models were presented in the paper. In 

the uniform turbulence model, only the translation 

velocities of the mass centre are considered. In the 

linear turbulence model, besides the linear velocities, 

the angular velocities of pitch and yaw with respect to 

mass centre are added.  

In the case of axis-symmetric rockets, the term 

depending on angular velocities is the only which 

couples the equations. A further simplification could be 

made in the case of short rockets to which the 

aerodynamic length is much smaller than the 

characteristic length. In this situation, the coupling term 

due to rotations is small and may be neglected, so that 

the uniform turbulence model is an acceptable 

approximation.  

Considering the linear turbulence model developed in 

our study, we have analysed in a simulation example 

the flight dynamics of a rocket, in which the influence 

of turbulence was evaluated in four characteristic stages 

of the flight.  

The work novelty consists in technique used in 

modelling the turbulent atmosphere influence on 

unguided rocket flight: 

• two point model used for the linear turbulence 

• the technique used to obtain the turbulence 

velocity 

• the comparison between linear and uniform 

turbulence model 
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