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Abstract: Within the development of motor vehicles, crash safety is one of the most important attributes. To
comply with the ever increasing requirements of shorter cycle times and costs reduction, car manufacturers keep
intensifying the use of virtual development tools, such as, for crash simulations, the explicit finite element method
(FEM). The accuracy of the simulation process is highly dependent on the accuracy of the model, including the
midplane mesh. One of the roughest approximations typically made is the actual part thickness which, although
most frequently modelled as a constant value, can, in reality, vary locally. Availability of per element thickness
information, which does not exist explicitly in the FEM model, is one key enabler and can significantly contribute
to an improved crash simulation quality, especially regarding fracture prediction.
Although not explicitly available, thickness can be inferred from the original CAD geometric model through geo-
metric calculations. This paper proposes and compares two thickness estimation algorithms based on ray tracing
and nearest neighbour 3D range searches. A systematic quantitative analysis of the accuracy of both algorithms
is presented, as well as a thorough identification of particular geometric arrangements under which their accuracy
can be compared. These results enable the identification of each technique’s weaknesses and hint towards a new,
integrated, approach to the problem that linearly combines the estimates produced by each algorithm.
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1 Introduction

Today, the automotive industry is challenged with a
continuous rising number of demands taking a strong
influence on the development process. The need for
CO2 and vehicle weight reduction as well as the need
to constantly improve crashworthiness makes it nec-
essary to fully utilize the deployed materials as effi-
ciently as possible. For crash simulations the explicit
Finite Element Method (FEM) has been applied for a
long time. However, this process can only be success-
ful if the numerical methods are capable and have a
high confidence level.

The properties of plastic parts are particularly dif-
ficult to predict due to the intrinsic complex behaviour
of those materials. However, as plastics are pervasive
in many different automotive applications, it becomes
vital to model and simulate those parts under service

conditions. Within the area of crash simulation of
thermoplastic parts, the actual local thicknesses play
a significant role for accurate deformation and frac-
ture behaviour prediction. Since most thermoplastic
parts are injection moulded, the actual thickness can
vary significantly throughout a part. That thickness
distribution is not explicitly available within 2D crash
meshes (often used in full car crash simulations), but
it exists implicitly in the full part geometry in CAD
files (like IGES). However, currently there are no au-
tomated and precise ways to extract that local thick-
ness distribution from the CAD files, seriously limit-
ing the precision – and thus, the potential benefit – of
crash simulations.

Finite Element Analysis (FEA) is a numerical ap-
proach for calculating approximate solutions of partial
differential equations and integral equations, enabling
the numerical solution of many complex problems in
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Figure 1: Different views of a car door geometry (grey) and the respective midplane mesh (green). Ideally the
midplane mesh runs inside the part’s surface, but in reality it might extend outside (dark green regions). The figure
at the right presents, for each element of the midplane mesh, the estimated thickness as a pseudo color map.

structural mechanics; FEA is the standard approach
for complex systems, particularly in the industry set-
ting [6] and the main method for vehicle crash simu-
lation of thermoplastic parts.

The entire geometric domain of the part/system
under study is discretized and modelled by a mesh
comprised of a large set of finite elements that inter-
sect at points termed nodes [7]. Elements are then
assigned properties, such as thickness, density, ten-
sile strength, etc. This method was initially proposed
in the 1950s for airframe and structural analysis [2].
In 1973 a rigorous mathematical foundation was pro-
vided, enabling its expansion to many new applica-
tions [3]. Besides structural mechanics, FEA has been
used in a large variety of fields such as acoustics, fluid
dynamics, medicine and many others [4, 5].

This paper proposes and compares two tech-
niques to estimate local thicknesses from geometric
models of automotive thermoplastic parts and make
these estimates available to vehicle crash FEA simu-
lations. The geometry of the parts is described as a
closed surface on a CAD file. FEA simulators use
discrete approximate representations of this geome-
try, which are meshes of polygons that, ideally, run
in the middle of the closed surface, being referred
to as midplane meshes (figure 1). Midplane meshes
do not contain any information about the part’s lo-
cal thickness. However, this information is crucial
to allow accurate behaviour prediction in automotive
crash simulations. This paper addresses automatic es-
timation of thickness on a per-element basis, using
as inputs the CAD geometry model and the midplane
mesh. The proposed thickness estimation techniques,
based on ray tracing and nearest neighbour 3D range
searches, allow tagging each mesh element with its
associated local thickness, thus empowering accurate
vehicle crash simulations. The paper contribution is
a systematic quantitative analysis of the accuracy of
both techniques, as well as a thorough identification
of particular geometric arrangements under which the
methods’ accuracy can be compromised. These re-

sults enable identifying weaknesses and suggesting
new approaches to the problem.

The next section presents the two thickness es-
timation algorithms, the methodology used to assess
their respective accuracies and an analysis of the ob-
tained results. Section 3 proposes improvements that
significantly increase accuracy and the paper closes
with some concluding remarks.

Note that all numerical information about parts’
thicknesses, including final estimates, is normalized
so that real values are 1; thus listed values do not rep-
resent the parts’ real thicknesses.

2 Thickness estimation algorithms
Ideally, the midplane mesh runs inside the closed sur-
face and parallel to it; intuitively, in such cases the
thickness at the centroid of each midplane mesh ele-
ment is the sum of the distances between this centroid
and some surface point on each side of the element.
With this definition in mind two thickness estimation
algorithms are proposed.

Ray Tracing (RT) - a ray is shot for each side
of the midplane mesh element, with origin on the el-
ement’s centroid and direction equal to the element’s
normal [10]. Ideally each of these rays intersects the
part’s geometry; the sum of both intersections’ dis-
tance is taken as an estimate of the part’s local thick-
ness.

Nearest Neighbor (NN) - this algorithm per-
forms a search on the surface geometry to locate
which point is nearer to the mid-plane mesh element
centroid [9]. Actually, two such searches are per-
formed to locate two points, each on a different side of
the mid plane mesh element. The sum of the distances
from the element’s centroid and these two points is
taken as an estimate of the part’s local thickness.

Since the geometry models are themselves rep-
resented as a mesh of polygons a kd-tree is used to
accelerate each of these algorithms [9].

In the ideal case both algorithms return exactly
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the same thickness estimate. Real parts, however,
include complex geometric configurations and/or in-
correct midplane mesh approximations. Correctly
handling such cases requires a systematic quantita-
tive analysis of the proposed algorithms behaviour
and accuracy. Using real automotive parts is dif-
ficult because the exact local thicknesses are un-
known. Instead seven simple synthetic parts, whose
exact thicknesses are known (normalized to 1 mm
for all parts), were modelled and used throughout the
whole validation process. For each part three differ-
ent midplane meshes were supplied, corresponding
to different meshing granularities, termed “coarse”,
“medium” and “fine”. The “medium”, respectively
”coarse”, mesh edge length is 2.5, respectively 4.0,
times the edge length of the “fine” mesh. This allows
studying the thickness estimate accuracy for different
representations. Parts 1 to 4 (figure 2) have the mid-

(a) Part 1 (b) Part 2 (“medium”)

(c) Part 2 (”coarse”) (d) Part 3

(e) Part 4 (f) Part 5

(g) Part 6 (h) Part 7

Figure 2: Synthetic parts used for quantitative analysis
of the thickness estimate accuracy.

plane mesh either total or partially outside the part’s

surface, whereas parts 5 to 7 include ribs – thickness
is not exactly defined at the regions where the rib in-
tersects the main surface.

2.1 Metrics for quantitative analysis
Knowledge of the exact thickness of the synthetic
parts allows for a quantitative analysis of the thick-
ness estimation process using two metrics: arithmetic
mean and the root mean square error (RMSE). The ob-
jective function is RMSE, which must be minimized.

Arithmetic Mean (AM) - since the actual thick-
ness has been normalized to 1 across the whole sur-
face for all the synthetic parts, the arithmetic mean
T̄ , calculated as the average of the estimated thick-
ness, T̃i, across all N elements of the mid-plane mesh,
gives a fast hint of whether estimates are converging
towards the correct value. Being a global metric it
does not capture whether there are local errors on the
estimates that can be smoothed away by the averaging
process. Furthermore, it would not convey useful in-
formation if the real thickness varied from element to
element.

Root Mean Square Error (RMSE) - RMSE
takes the square of the individual differences, also
called residuals, between the estimated and the real
thickness at each element and aggregates them onto
a single metric that is perceived as a good measure
of accuracy [8] (equation 1). RMSE heavily weights
outliers (i.e., particularly bad local estimates) due to
the squaring of the residuals, whereas small residuals
are attributed very small weights; this is a desirable
property since for Finite Element Analysis of struc-
tural properties outliers can strongly affect the simu-
lation result.

RMSE =

√

∑N
i=1(T̃i −Ti)2

N
(1)

2.2 Results Analysis

Table 1 presents results for all synthetic parts, mid-
plane mesh resolutions and the two thickness estima-
tion algorithms. In those cases where the midplane
mesh runs outside the part’s surface (parts 1 to 4) both
algorithms fail to find valid points on both sides of
the mesh and, consequently, fail to estimate the thick-
ness - an estimate T̃i = 0 is generated for these cases.
Figures 3(a) and 3(b) illustrate this for Part 3 over the
hole region. For Part 1 estimates can not be generated
for any element, since all of them are outside the part,
thus resulting on T̄ = 0.0. These situations will be
handled explicitly in section 3.

Parts 5 to 7 illustrate situations where ribs are
present. RT fails when the midplane mesh element’s
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Ray tracing Nearest Neighbor
Part nbr. T̄ RMSE T̄ RMSE

fine 0.000 1.000 0.000 1.000
1 medium 0.000 1.000 0.000 1.000

coarse 0.000 1.000 0.000 1.000
fine 1.000 0.001 0.883 0.169

2 medium 0.999 0.001 0.999 0.001
coarse 0.667 0.577 1.040 0.070

fine 0.942 0.241 0.911 0.204
3 medium 0.969 0.174 1.029 0.294

coarse 1.000 0.000 0.874 0.333
fine 0.857 0.378 1.194 0.865

4 medium 0.833 0.408 1.287 0.883
coarse 0.857 0.378 1.246 0.651

fine 1.833 3.062 0.895 0.162
5 medium 1.000 0.000 0.999 0.000

coarse 1.000 0.000 0.999 0.000
fine 2.250 4.330 0.912 0.141

6 medium 1.000 0.000 1.000 0.000
coarse 1.000 0.000 1.000 0.000

fine 1.097 0.312 0.887 0.179
7 medium 1.134 0.368 1.019 0.053

coarse 1.000 0.000 1.000 0.000

Table 1: Results for thickness estimation algorithms
(normalized).

centroid is aligned with the rib: rays, which are shot
along the element’s normal, will run inside the part,
finding an intersection at distant points of the part’s
surface and overestimating thickness (figure 4(a)).
This is particularly evident for the finer granularity
meshes. The NN algorithm will still be able to find
nearest points near the rib’s junction with the part’s
surface, thus avoiding large thickness estimation er-
rors (figure 4(b)). Figures 3(c) and 3(d) clearly show
that the NN algorithm outperforms RT at these partic-
ular regions.

Surprisingly the error of the NN algorithm tends
to increase as the mesh granularity becomes thinner.
When searching for the nearest point in the part’s sur-
face, the elements that are close to the mesh bound-
aries find the part’s lateral surface as its closest neigh-
bor (see figure 5): the thickness estimate is thus
smoothed, suggesting a round edge. This divergence,
whose result can be visualized in figures 3(b) and 3(d),
is addressed in section 3.

Summarizing, both algorithms produce wrong
thickness estimates when the mid-plane mesh is a
very inaccurate approximation of the part’s geome-
try and runs outside it. Additionally, the ray tracing
algorithm overestimates thickness in the presence of
ribs, whereas the nearest neighbor algorithm underes-
timates it near the midplane mesh boundaries.

(a) Part 3 - Ray tracing. (b) Part 3 - Nearest neighbor.

(c) Part 5 - Ray tracing. (d) Part 5 - Nearest neighbor.

Figure 3: Thickness estimation within holes and near
ribs - pseudo color maps (normalized).

(a) Ray tracing. (b) Nearest neighbor.

Figure 4: Thickness estimation near ribs. Black lines
represent the part’s geometry, whereas the red dashed
line represents the midplane mesh.

3 Estimation improvement

3.1 Inaccurate midplane meshes

Using midplane meshes which are poor approxima-
tions of the parts’ geometries leads to thickness esti-
mation errors, as shown in the previous section. Two
different cases may occur: either the mesh is outside
the surface but it still encompasses the part’s geome-
try (parts 1 and 2, figures 2(a) and 2(c)), or the mesh
runs outside the surface but this does not correspond
to any region of the part’s geometry (parts 3 and 4,
figures 2(d) and 2(e)).

Figure 5: Divergence of the NN algorithm close to the
midplane mesh boundaries.
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Detecting whether an element’s centroid is con-
tained within the part’s volume is a generalization of
the point in polygon problem and can be solved by re-
sorting to RT: if a ray is shot from the element’s cen-
troid along the normal direction and if it intersects the
closed surface an odd number of times then the cen-
troid is inside the surface, else it is outside [1]. For
each centroid, one ray is shot along the element’s nor-
mal direction for each side of the element. If both rays
intersect the surface an even number of times, then the
centroid is outside the surface, but if at least one of the
rays intersects the surface more than zero times, the
side of the centroid whose ray reported the closest in-
tersection is selected as the one closest to the surface
and thickness is estimated as the difference between
the two closest intersections of that ray (figure 6).

Figure 6: Detection of whether the midplane mesh
is outside the part’s surface. The brackets represent
the estimated thicknesses by subtracting the distances
found by the two closest intersections along the same
ray.

Parts 1 and 2 illustrate two cases where the mid-
plane mesh is outside the part’s surface but still en-
compasses it. By detecting whether each element’s
centroid is outside the part the exact thickness is found
and a RMSE equal to zero is obtained. The effective-
ness of the RT corrected thickness estimation is also
shown with a real part representing a B-pillar trim
where a significant number of elements of the mid-
plane elements are outside the part’s surface. Figure 7
shows thickness estimations obtained with RT and NN
(left and center) and with the detection of elements
outside the part’s surface (right).

(a) Ray Tracing. (b) Nearest Neigh-
bor.

(c) RT corrected.

Figure 7: Thickness estimation for the B-pillar -
pseudo color (normalized).

For some elements of the mid-plane mesh no in-
tersections are found on either side, e.g., within the
hole of part 3 and on the right of part 4 (see also the
bottom of figure 6). Such elements are tagged as ”In-
correct” and can later be post-processed either manu-
ally or automatically.

3.2 Nearest neighbor divergence

In order to limit the divergence occurring near the
midplane mesh boundaries with the NN algorithm, a
limitation has been imposed on the maximum accept-
able angle between the element’s normal and the di-
rection defined by the element’s centroid and the sur-
face nearest point. By limiting this angle it is ex-
pected that the part’s lateral surface is rejected as a
nearest neighbor, thus forcing the algorithm to expand
its search onto regions of the surface that are farther
away from the mid-plane element (Figure 8).

Figure 8: Limiting acceptable angle for NN: the gray
triangle represents the unacceptable angle domain.

This technique requires some precaution. Some
real part’s geometries are modeled with polygons that
have an area orders of magnitude larger than the re-
spective midplane elements area. If the limitation of
the angle is too strict, then some midplane elements
could reject the surface polygon and overestimate lo-
cal thickness. In the presence of ribs the angle re-
jection technique might also reject the correct near-
est neighbor, resulting in overestimating thickness.
The angle rejection threshold must thus be carefully
selected. Table 2 presents the RMSE obtained for

Part 2 Part 5 Part 6 Part 7
RT 0.0008 3.0619 4.3301 0.3118
NN (no limit) 0.1688 0.1618 0.1414 0.1792
NN (80o) 0.0860 0.0741 0.0704 0.0848
NN (65o) 0.0273 0.0461 0.0447 0.0577
NN (45o) 0.0065 0.0118 0.0163 0.0493

Table 2: RMSE results for NN angle limitation with
fine midplane meshes.

4 different parts, fine grained midplane meshes and
three angle thresholds: 80o, 65o and 45o. Although
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a threshold of 45o produces the smaller RMSE, for
complex real parts such a large threshold results in
many rejections and, consequently, in many local er-
rors. A threshold of 80o does not induce such errors
and still its impact on the RMSE more than halves it.

4 Conclusion
This paper presents and analyzes two techniques,
based on ray tracing (RT) and 3D nearest neighbor
range search (NN), to estimate local thicknesses from
geometric models of automotive parts. Experimental
results identified three cases that lead to poor thick-
ness estimation: the midplane mesh runs outside the
part’s surface preventing both algorithms to find valid
points on the part’s surface, NN diverges on the mid-
plane boundaries and RT fails on ribs.

The first problem was addressed by using RT to
detect whether an element’s centroid is outside the
surface. In such cases the difference between the two
closest intersections detected on the same side of the
element is used as thickness estimation. There are still
some elements where no intersections are found on ei-
ther side: these are tagged as as ”Incorrect” for man-
ual post-processing. NN’s divergence near boundaries
was minimized by limiting the maximum angle al-
lowed between the element’s normal and the direction
defined by the element’s centroid and the nearest point
on the part’s surface: RMSE was significantly reduced
while avoiding other geometric errors. The ribs inac-
curacies associated with RT were not addressed ex-
plicitly since these are completely avoided by the NN
approach.

The above results suggest that: (i) NN fails on
the midplane mesh boundaries but RT provides good
estimates at these locations; limiting the angle does
not make NN as accurate as RT (see part 2 in table 2);
(ii) RT fails on ribs, but NN provides good estimates
at these locations.

Both algorithms complement each other: if each
algorithm’s best estimate can be selected for each el-
ement of the midplane mesh then RMSE is reduced.
Per-element manual selection of either the RT or NN
estimate that minimizes the difference to the correct
thickness for Part 5 resulted in a very good overall es-
timate, with an average mean of 1.0091 and RMSE
equal to 0.0325.

4.1 Future work

The above conclusion suggests that if a criterion can
be found that allows automatic selection of either the
RT or the NN estimate for each element, then RMSE
can be significantly reduced and the whole results

would be much more reliable. Such a criterion is not
evident however, due to the complexity of real world
parts, having lots of details and particular configura-
tions that make it very difficult to establish which is
the best estimate - particularly, the real local thick-
nesses are not known, since this is exactly the quantity
that is being measured. Analysis of the local geome-
tries in order to identify ribs and/or midplane mesh
boundaries may also reveal too complex to be per-
formed accurately. A promising approach is to esti-
mate thicknesses using both algorithms and then as-
sign each estimate a confidence weight given their
relative variations within some neighborhood. Fu-
ture work will entail studying such alternative crite-
ria, which will allow integrating the two algorithms
presented throughout this paper.
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