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Abstract: - One approach to a recursive identification of continuous – time systems was implemented in self – tuning 
control of a system of interconnected tanks. Since derivatives of input and output variables of continuous – time 
systems can not be directly measured, differential filters and filtered variables are established to substitute primary 
variables. The filtered variables are then used in a recursive identification procedure where the classical recursive least 
squares method is used to identify the system. Results of real – time experiments are compared to results obtained with 
an analogical discrete controller.    
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1   Introduction 
A significant part of technological processes in industrial 
practice has a stochastic character. Traditional 
controllers with fixed parameters are often unsuitable for 
such processes, because parameters of the process vary 
in time and control can not be optimal. A possible 
method for control of systems with variable parameters 
is adaptive control using self – tuning controllers [1]. 
Another wide range of processes belong to a class of 
nonlinear systems. A nonlinear dynamic behaviour often 
causes conventional control methods to be 
unsatisfactory. This problem can be also solved by using 
self – tuning control. Self – tuning controllers are based 
on recursive identification of an unknown process on the 
basis of input and output variables and consequent 
synthesis of a controller. This approach had beginning in 
[2], where a special – purpose computer for an 
identification of parameters of a linear model with 
subsequent computation of a control law based on 
minimization of the quadratic criterion was proposed. 
The part of the recursive identification is as important as 
the part of a synthesis of a controller. For purposes of the 
adaptive control only those methods of identification are 
interesting, which are realizable in real – time.  
In this paper, application of one approach to recursive 
identification of continuous – time system parameters is 
presented. Since input and output derivatives of a system 
can not be directly measured, the differential filters and 
filtered variables are established to substitute primary 
variables. This approach is described in detail in [3], [4], 
[5]. The filtered variables are then used in the recursive 
identification procedure, where the classical recursive 
least squares method is used to identify the parameters. 

Whilst methods of design and applications of discrete 
self tuning controllers are frequently presented in 
literature, for example [6], self – tuning control of 
continuous – time systems is not widespread and there 
still is not much experience with continuous – time 
system parameter estimation. Limitations during control 
of systems with fast dynamics when discrete models 
with small sampling periods have poor numerical 
attributes are mostly solved using delta models [7]. An 
alternative solution is using of the method applied in this 
paper when a continuous time model is recursively 
estimated and design of a controller is performed in the 
continuous – time domain. This approach enables fast 
sampling. The value of the sampling period is then 
dependant only on capabilities of used hardware and 
software. The used software must enable realization of 
filters by differential equations. 
A continuous time self – tuning controller with 2dof 
(two degree of freedom) configuration, when a controller 
contains both feedback and feedforward parts [8], was 
implemented for real – time control of a model of 
interconnected tanks. The model is a nonlinear system 
with variable parameters. The results of control were 
compared to results obtained with an analogical self – 
tuning discrete controller. Design of the controllers was 
based on polynomial methods [9]. 
 
2   Design of Controllers 
A model of the controlled system is supposed to be 
expressed by a transfer function 

( ) ( )
( )qa
qbqG =

                                     
(1)
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where q = s for a continuous - time system and q = z-1 for 
a discrete system 

A model of the second order which is widely applied in 
practice and has proved to be effective for control of a 
range of various processes was chosen for description of 
dynamic behaviour of the further described system of 
interconnected tanks in the neighbourhood of a steady 
state. The polynomials a and b have the following forms 
in case of the continuous-time model  

001
2 )(,)( bsbasassa =++=                    (2)                 

and 
2

2
1

1
12

2
1

1
1 )(,1)( −−−−−− +=++= zbzbzbzazaza          (3) 

in case of the discrete model. In both cases the 
polynomials a and b are supposed to be coprime. 
Differential equation of the continuous – time system is 
given by 

ubyayay 001 =+′+′′                          (4) 
and difference equation of the discrete system by  

( ) ( ) ( ) ( ) ( )2121 2121 −+−+−−−−= kubkubkyakyaky   (5) 
The 2dof configuration of the closed loop with both 
feedback and feedforward parts was chosen. It is 
depicted in Fig. 1.  

  
Fig. 1. The 2dof control system configuration. 
 
The basic general requirements on the control system 
are: 

• Internal properness and stability of the control 
system 

• Asymptotic tracking of a reference 
The controller has two parts: a feedback part and a feed-
forward part. The feedback part is defined as 

( ) ( )
( )qp
qqqQ =

                               
(6)

 
and the feed – forward part as 

( ) ( )
( )qp
qrqR =

                               
(7)

 
Where q,p and r,p are coprime polynomials. 
The reference signal can be also described as a ratio of 
two polynomials 

( ) ( )
( ) ww

w

w fh
qf
qh

qW degdeg, ≤=
                  

(8)
 

For particular signals in the control loop can be derived 
following expressions in the complex domain (operator q 
will be omitted from some expressions for the purpose of 
simplification):  
Controlled variable: 

⎥
⎦

⎤
⎢
⎣

⎡
+

=
w

w

f
h

br
bqap

Y 1

                           
(9)

 
Control error: 
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Manipulated variable: 
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Stability of the closed loop is ensured by the feedback 
controller Q by solving equation 

bqapd +=                               (12) 
where d is a stable desired polynomial. Its poles are the 
ruling factors for the behaviour of the closed loop 
system. 
Internal properness is ensured when the following 
conditions are fulfilled: deg q ≤ deg p       deg r ≤ deg p  
To fulfill the requirement on the asymptotic tracking the 
denominator of the reference signal must be eliminated 
from the expression for the permanent control error. 
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From the expression (13) it is obvious that the adequate 
condition of the asymptotic tracking is divisibility of the 
polynomial d – br by the polynomial fw. The following 
Diophantine equation must be then fulfilled 

wftbrd =−                              (14) 
where t is an unknown additional polynomial. 
The resulting controller is given by solution of two 
Diophantine equations: 

dbqpa =+   dbrft w =+                   (15) 
Further it is necessary to determine degrees of particular 
polynomials. Relations for their computation are given 
by the requirement so that number of unknown 
controller’s parameters and number of algebraic 
equations resulting from the Diophantine equations are 
equal. The requirement on the properness of the 
controller must be also fulfilled. 

1degdeg −= aq  kap +−≥ 1degdeg            (16) 
where 

afk w degdeg −=  
0=k   for 0degdeg ≤− af w  

1degdeg −= wfr   kfat w +−−= deg1deg2deg    (17) 
 kad +−≥ 1deg2deg  
 
2.1 Design of Continuous – Time Controller 
The reference was considered to be from a class of step 
and ramp signals.  

w 

yu 
Q(q) G(q)  

R(q) 
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The ramp reference signal ( ) twtw 0=  has the Laplace 

transform in the form ( )
w

w

f
h

s
w

sW ==
2
0 .  2deg =wf  and 

0022degdeg =⇒=−=−= kafk w . Degrees of the 
particular polynomials are derived according to 
expressions  (16) and (17). 

1121degdeg =−=−= aq  022degdeg =−=−= afk w  
10121degdeg =+−=+−≥ kap  

1121degdeg =−=−= wfr                                           (18) 
10214deg1deg2deg =+−−=+−−= kfat w  

30141deg2deg =+−=+−≥ kad  
The polynomials then take following forms: 

( ) sqqsq 10 +=     ( ) sppsp 10 +=   ( ) srrsr 10 +=  
( ) sttst 10 +=    ( ) 01

2
2

3 dsdsdssd +++=         (19) 
 
The Diophantine equations (15) define sets of algebraic 
equations with unknown controller’s parameters 
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The parameters are obtained by solving these equations. 
The resulting controllers then take the form 

( ) ( )
( ) 01

01

psp
qsq
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sqsQ

+
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==
     

( ) ( )
( ) 01

01

psp
rsr

sp
srsR

+
+

== (21)
 

The control law can be expressed by following equation 
yqyqwrwruppu 010101 −′−+′=+′              (22) 

 
2.2 Design of Discrete Controller 
The reference signal has Z – transform in the form 

( )
( ) w

wv

f
h

z
zTw

zW =
−

=
2

0

1
 where Tv is sampling period. 

Degrees of the polynomials are computed according to 
expressions given in the previous section and the 
polynomials can be expressed as  
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The sets of algebraic equations with unknown 
controller’s parameters are as follows 
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The controllers are defined as 
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The control law takes the form 
( ) ( ) ( ) ( ) ( ) ( )111 11010 −−−++−+= kupkyqkyqkwrkwrku (26)  

 
 

3 System Identification 
3.1 Identification of Discrete Model 
 
Let The recursive least squares method was used as the 
basis of our algorithm. We can consider a stochastic 
process described by an ARX model in the form 

( ) ( ) ( ) ( ) ( )kekuzbkyza s+= −− 11
                  (27) 

which can be expressed in a vector form  
( ) ( ) ( ) ( )kekkky s

T +−= 1φΘ                    (28) 
where es is an un-measurable random component. 
Vector of parameters is defined as  

( ) [ ],b,b,a,akT
2121=Θ                         (29) 

and the regression vector is 
( ) ( ) ( ) ( ) ( )[ ]2,1,2,11 −−−−−−=− kukukykykTφ      (30) 

The aim of the identification is a recursive estimation of 
unknown model parameters Θ   on the basis of the inputs 
and the outputs considering the time moment k, {y(i), 
u(i), i = k, k - 1, k - 2, ..., k0} (where k0  is an initial time 
of the identification). We are looking for a vector Θ̂  
minimizing the criterion 

( ) ( )∑
=

=
k

ki
sk ieJ

0

2Θ
                         

(31)
 

where 

( ) ( ) ( ) [ ] ( )
( )⎥⎦
⎤

⎢
⎣

⎡
−=−=

i
iy

iiyie TT
s φ

φ ΘΘ 1
             

(32) 

Tracking of slow changes of the parameters, which is 
relevant owing to the control of the system of 
interconnected tanks (nonlinear system with variable 
parameters), can be achieved by application of 
exponential forgetting. This technique ensues from the 
assumption that new data describes the dynamics of an 
object better than older data, which are multiplied by 
smaller weighting coefficients. Then we minimize a 
modified criterion 

( ) ( ) ( )∑
=

−=
k

ki
s

ik
k ieJ

0

22ϕΘ
                      

(33)
 

where 10 2 ≤〈ϕ  is the exponential forgetting factor. 
In case that the identified plant is insufficiently activated 
– it means that the input and output signals are steady 
(this situation is typical for closed control systems), the 
exponential forgetting factor can cause numerical 
instability of the identification algorithm. A possible 
solution of this problem is application of the adaptive 
directional forgetting [10]. This technique changes the 
forgetting factor according to the level of information in 
the data.  In the examples described bellow, the recursive 
least squares method supported by directional forgetting 
was applied. 
In this case, the vector of parameters is actualised 
according to the following recursive expression 
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( ) ( ) ( ) ( )
( ) ( )1ˆ

11
111ˆˆ −

−+
−−

+−= ke
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kkkk
ξ
φCΘΘ

      
(34)

 
where 

( ) ( ) ( ) ( )111 −−−= kkkk T φCφξ                (35) 
is an auxiliary scalar and 

( ) ( ) ( ) ( )1ˆˆ −−= kkkyke T φΘ                   (36) 
is a prediction error. If ξ(tk) > 0, then the square 
covariance matrix C is actualised according to following 
expression 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )1

11111 1 −+
−−−−

−−= − kk
kkkkkk

T

ξε
CφφCCC

   
(37)

 
where 

( ) ( ) ( )
( )1

1
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−
−=

k
kkk

ξ
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(38)

 
If 0)( =ktξ , then 

( ) ( )1−= kk CC                             (39) 
The directional forgetting factor is computed in each 
sampling period according to the expression 
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are auxiliary variables. 
 
3.2 Identification of Continuous -Time Model 
It is not possible to measure directly input and output 
derivatives of a system in case of continuous – time 
control loop. One of the possible approaches to this 
problem is establishing of filters and filtered variables to 
substitute the primary variables. This approach is 
described in detail in [3], [4], [5]. The filtered variables 
are then used in the recursive identification procedure.  
Let us consider a linear continuous – time ARX model in 
a form of differential equation  

( ) ( ) ( ) ( ) ( )tntubtya += σσ                      (42) 
where n(t) is a random continuous – time variable and σ  
is the derivative operator. After the Laplace transform 
we obtain 

( ) ( ) ( ) ( ) ( ) ( )sosnsUsbsYsa 1++=                (43) 
where the polynomial o1 represents the Laplace 
transform of initial conditions. The output of the system 
is than given as 

( ) ( )
( ) ( ) ( )

( )
( )
( )sa

so
sa
snsU

sa
sbsY 1++=

                  
(44)

 
In order to obtain approximations of derivatives of the 
continuous – time variables it is necessary to establish 
filters using differential equations  

( ) ( ) u(t)tuσc f =    ( ) ( ) ( )tytyσc f =              (45) 

where )(σc  is a stable polynomial and uf is a filtered 
input and yf is a filtered output. After the Laplace 
transform we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )sosYsYscsosUsUsc ff 32 ; +=+=    (46) 
where o2(s) is a polynomial of initial conditions for the 
filtered input and o3(s) is a polynomial of initial 
conditions for the filtered output. The degree of the 
polynomial c must be greater or equal to the degree of 
the polynomial a (deg c(s)> deg a(s)). It is profitable to 
choose deg c(s) = deg a(s) (the lower is the degree of the 
polynomial c, the faster is the dynamics of the filter). 
Time constants of the filters must be lower than time 
constants of the plant. A right choice of the filter’s 
constants makes convergence of the parameters faster. 
After substitution of the filtered variables to the equation 
(43) we obtain 

( )[ ] [ ] ( ) 123 osNocUboscYa ff ++−=−         (47) 
After modification and substitution 

( ) ( ) ( )
c

sNaoboo
sbUsaY ff

++−
+= 321

c
aoboo

o 321 +−
=

  
(48)

 
we obtain 

( ) ( ) ( ) ( ) ( )sG
a
bsGsN

aa
osU

a
bsY fff ==⇒++=

1

   
(49)

 
Expression (50) proves that the transfer behaviour 
between the filtered and between the non – filtered 
variables is equivalent. Different are only initial 
conditions for the filtered and original variables. This 
fact enables to employ the filtered variables for the 
model parameter estimation. 
After transformation to the time domain we obtain the 
following equation 

( ) ( ) ( ) ( ) ( )tnt uσbtyσa ff +=               (50) 
The filtered variables are taken in discrete time intervals 
tk = kTs,  k = 0,1,2, …, where Ts is the sampling period. 
The equation (51) can be modified to the form suitable 
for the model parameters estimation 

( ) ( ) ( ) ( ) ( ) ( ) ( )∑ ∑
−

= =

++−=
1

0 0

n

i

m

j
kk

j
fjk

i
fikf

n tntubtyaty
  

(51)
 

The parameters of the model are estimated by the 
recursive method described in the previous section 
according to expressions (34) - (41). For the considered 
continuous – time model given by expressions (2) and 
(4) the equation (51) takes following form 

( ) ( ) ( ) ( ) ( )kkfkfkfkf tntubtyatyaty ++−′−=″
001   (52) 

The regression vector and the vector of parameters are 
( ) ( ) ( ) ( )⎥⎦

⎤
⎢⎣
⎡ −′−= kfkfkfk

T tutytyt ,,φ
                

(53)
 

( ) [ ]001 b,a,akT =Θ                          (54) 
Considering the order of the system, the filters for both 
variables were chosen to have second order. 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )tutuctuctu

tytyctycty

fff

fff

=+′+″

=+′+″

01

01

               
(55)

 
A right choice of the coefficients of the filter’s 
polynomials and choice of the sampling period are the 
ruling factors for the speed of the parameter’s 
convergence. Time constants of the filters must be lower 
than time constants of the plant. 
 
4   Experimental Examples 
4.1 Model of Interconnected Tanks 
The controllers were verified and compared by real – 
time control of the model of interconnected tanks. Its 
principal scheme is on the following figure. 

 
Fig. 2. Scheme of two interconnected tanks. 
 
The system consists of two interconnected cylindrical 
tanks T1 and T2 and a pump P which induces inflow to 
the tank T1. The liquid level heights in the tanks T1 and 
T2 are h1 and h2 respectively. The inflow produced by the 
pump is qin, flow between tanks is q1 and the outflow is 
q2. The system can be considered as a single input single 
output system (SISO) where the input is inflow qin and 
output is liquid level h2.  
The apparatus is a nonlinear system with variable 
parameters. The nonlinear behaviour is caused by 
characteristics of the valves, pipes and pumps. 
Additional nonlinearities are due to air bubbles which 
are present in the pipes and valves. The bubbles deflate 
from the pipe system in certain moments. Its description 
by a linear model is then valid only in a neighbourhood 
of a steady state. As it was stated in the section 1, self-
tuning controllers are a possible approach to the control 
of this kind of system. The nonlinear dynamics are 
described by a linear model in the neighbourhood of a 
steady state. 
 
4.2 Experimental Results 
In case of the continuous-time controller the sampling 
period for system identification (actualization of the 
parameters and transposition of the controller) was 
experimentally assigned as Ta=2s. The sampling period 
for actualization of the manipulated variable was 
assigned Tv1=0,02s. The polynomial d resulted from 
experiments in the form 

( ) 343,047,11,2 23 −+−= ssssd                 (56) 

Constants of the filters were chosen to be c0=0,04 c1=0,4. 
Best sampling period for discrete system was found as 
Tv=2s. The polynomial d was chosen as 

3211 8195,06390,01805,11)( −−−− +−−= zzzzd         (57) 
Time responses of the control and identified parameters 
for step and ramp reference signals are in Fig.3 - Fig. 6. 

 
Fig. 3. Control with discrete controller. 

 
Fig. 4. Control with discrete controller – identified 
parameters. 

 
Fig. 5. Control with continuous - time controller. 
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Fig. 6. Control with continuous - time controller – 
identified parameters. 
 
4.3 Comparison of Control Performance Using 
Summing Criteria 
 
The performances of both controllers were compared by 
means of control quality criteria, which are the sum of 
powers of tracking errors and the sum of increments of 
manipulated variables (both sums are related to the 
number of samples). In case of the continuous – time 
control the values were taken in discrete time intervals 
corresponding to sampling of the discrete control 
(Tv=2s). The Table 1 contains values of the criteria for 
the entire period of the experiments including the initial 
part of the parameters estimation. The Table 2 contains 
values obtained after the parameters fixation 

Table 1.  Control quality criteria 

Controller ∑ 2e  ∑Δ 2u  

Continuous - time 0,1396 0,2002 
Discrete 0,7928 0,4254 

Table 2.  Control quality criteria – after 
parameters fixation 

Controller ∑ 2e  ∑Δ 2u  

Continuous - time 0,0032 0,0410 
Discrete 0,0078 0,0444 

 
5   Conclusion 
Continuous – time adaptive controller was implemented 
for control of liquid level of interconnected tanks. The 
continuous - time model of the controlled system was 
recursively estimated and design of the controller was 
performed in the continuous – time domain. This 
approach enables fast sampling. The value of the 
sampling period is then dependant only on capabilities of 
the used hardware and software. The used software must 
enable realization of filters by differential equations. The 

applied controller was compared to an analogical 
discrete controller.  
Performances of the discrete and continuous – time 
controllers were comparable. According to the chosen 
control quality criteria (Tables 1 and 2) slightly better 
performed the continuous - time controller. On the other 
hand, experimental tuning of the continuous – time 
controller was more complicated. It was rather difficult 
to find experimentally a suitable conjunction of the 
tuning parameters. Adjustable parameters are poles of 
the characteristic polynomial, constants of the filters and 
the sampling periods Ta and Tv1. There is a lack of clear 
theory relating to the closed loop behavior to design 
parameters. Control courses were rather sensitive to 
changes of the parameters.  
The described method of continuous – time models 
parameters estimation proved to be effective. A right 
choice of the filter’s constants and the sampling period 
improves convergence of the parameters. The method is 
suitable for the identification part of continuous – time 
self – tuning controllers. 
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