
Improved p-Delta Learning Algorithm

R. MIRSU V. TIPONUT L. PETROMANJANC Z. HARASZY

Applied Electronics, “POLITEHNICA” University of Timisoara

Timisoara, Str. Vasile Parvan, Nr.2

ROMANIA

radu.mirsu@etc.upt.ro virgil.tiponut@etc.upt.ro lilijana@gmail.com

 zoltan.haraszy@etc.upt.ro

Abstract: - This paper presents a modified version of the p-Delta learning algorithm. The algorithm can be

used for training a parallel perceptron regardless of the application. There are three significant changes from

the original algorithm: an adaptive learning rate, a conscience mechanism and an adaptive margin

enhancement mechanism. The changes offer an improved speed, stability and noise margin at the expense of

complexity. The higher complexity can be a drawback if the algorithm is intended to be implemented in

hardware.

Key-Words: - perceptrons, parallel perceptrons, perceptron delta learning rule, liquid state machines, noise

margin, adaptive learning

1 Introduction
The p-Delta Learning Algorithm was introduced by

Peter Auer in [1] as a direct solution to designing

the readout units of a Liquid State Machine [2]. In

general, the learning rule can be used for training

any parallel perceptron regardless of the application.

The original algorithm was developed assuming that

it will be applied to a system implemented

exclusively in hardware. Inside such a system

communication between individual neurons and the

control unit can be a major difficulty. Therefore,

the algorithm had one important constraint:

simplicity. In this paper a new version of the

algorithm is presented. It introduces a few

modifications that make the algorithm faster, more

stable and with a higher noise margin. However, the

changes complicate the algorithm making it less

suitable for a hardware implementation. Currently,

our team is using a software model for the spiking

neural network and is not aiming towards a software

independent implementation. This allows a more

complicated algorithm to be easily implemented.

2 Parallel Perceptron
A single perceptron, as introduced by McCulloch-

Pitts, is a gate that computes an averaged sum of all

inputs. If the sum is greater than the threshold TH

the perceptron outputs “1” otherwise “0”.

Mathematically, this is written as in formula (1).

 ()




<

>
=

THwp

THwp
py

,0

,1
 (1)

where w is the synaptic weight vector and p is the

input. The perceptron model can be easily

implemented by a spiking neuron [3] if p is

considered to be the rate of the spike train. The

output is “1” when the neuron fires and “0”

otherwise.

A parallel perceptron is a group of N single

perceptrons that are fed with the same input p. The

output of the parallel perceptron Y is produced by a

squashing function S that counts the number of

active neurons and maps this number onto a

continuous value, as in formula (2).

 ()∑ =
=

N

i i pySpY
1

)()((2)

The squashing function S can be any monotonous

continuous function. However, for this paper the

linear function from formula (3) was used.

 () minminmax)(YYY
N

n
nS +−∗= (3)

where minmax ,YY are the boundaries of the output

range and n is number of active neurons.

The next chapter will present the original learning

rule for the parallel perceptron.

3 “p-Delta” Training Algorithm
The algorithm can be efficiently used for training a

parallel perceptron to map a set of given input data p

to a desired target output t.

LATEST TRENDS on SYSTEMS (Volume I)

ISSN: 1792-4235 282 ISBN: 978-960-474-199-1

3.1 The Single Perceptron Delta Rule
This is the simplest learning rule that can be applied

to a single perceptron. Let p, y and t be the input,

output and target data respectively. If the output y is

‘0’ and the target t is ‘1’ it means that the dot

product wp is too small in comparison to the desired

threshold TH. In order for the dot product to

increase, the weight vector w needs to move toward

the data vector p, hence the angle between the two

vectors will decrease. If the output y is ‘1’ and the

target t is ‘0’ it means that the dot product wp is too

large and so the weight vector needs to move away

from the data vector. If the output y matches the

target t no change is done. The rule can be

mathematically presented as by formula (4).









=




<−

>+
∗+∗−

⇐

ytw

ytp

ytp
w

w

,

,

,
)1(λλ

 (4)

where λ is the learning rate.

3.2 The Parallel Perceptron p-Delta Rule

In theory the approximation error of the parallel

perceptron can be as small as half the size of the

quantization step. Therefore, the algorithm could

theoretically set the desired accuracy ε to the value

presented in formula (5), where minY and
maxY are the

same as in formula (3).

N

YY

∗

−
=

2

minmaxε (5)

However, reaching this error level is not guaranteed.

This is because the algorithm can get stuck in a local

error minimum and so it will not find the global

minimum that satisfies formula (5). Therefore, from

now on it is considered that the accuracy ε is set by

the application and that the number of neurons N is

sufficient for the accuracy constraint to be met.

Given the input data p, the output of the parallel

perceptron Y(p) is computed with formula (3). If the

weights of the parallel perceptron are correct the

output should be as close to the target t as

constrained by ε . This is expressed in formula (6).

 () ε<− tpY (6)

If the output is greater than the target it means that

too many neurons are active and so the weights of

“some” of the active neurons should move away

from the data. If the output is too small compared to

the target, too few neurons are active and so “some”

of the inactive neurons should move their weights

towards the data.

The term “some” is flexible and represents the

answer to the question: “how many and which

neurons should be chosen for weight modification?”

The authors of [1] suggest that all active neurons

should be updated if the output is greater than the

target and also that all inactive neurons should be

updated if the output is smaller than the target. This

approach does not offer a great convergence speed

or stability. However, it minimizes communication

between neuron units if a hardware implementation

is preferred. In [1] it is also suggested that the

stability and convergence speed could be improved

if only a few neurons (or one [5]) are chosen for

weight modification. Those neurons should be the

ones that have a dot product wp that is closest to the

threshold. This approach on the other hand increases

communication as the neuron units would need to

broadcast their dot product to the central unit.

Because this paper uses a software implementation

of the neural circuitry, communication bandwidth is

not a constraint. Therefore, it was chosen that each

training iteration updates the weights of only one

neuron which is declared winner. A neuron is

declared winner if it has a dot product that is closest

to the threshold and also if is on right side of the

threshold. Therefore, the learning rule can be

mathematically expressed as in formula (7).

() () +∗−∗−∗−⇐ iikk wwww 11
2

ηλ

()

()



>−+

>−−
∗+

ε

ε
λ

pYtp

tpYp

,

,
 (7)

where:

• λ learning rate

• η normalization rate

• k winning neuron

• i =1….N

The middle term that contains the norm of the

weight vector is a correction that is performed for

each neuron on all iterations. This correction

preserves the angle of the weight but brings the

length of the vector to unit length. The correction is

important because the dot product wp signifies the

angle between the two vectors only if the lengths of

the vectors remain bounded.

LATEST TRENDS on SYSTEMS (Volume I)

ISSN: 1792-4235 283 ISBN: 978-960-474-199-1

4. Adaptive learning rate
The first modification to the original algorithm is the

introduction of an adaptive learning rate. The

learning rate is recomputed at each iteration as in

formula (8).

errormsqmean

errormsq

__

_
max ∗⇐ λλ (8)

The learning rate starts from a maximum value

maxλ and then decreases as the parallel perceptron

starts to approximate the data well.

5. Greedy vs. NotGreedy
The second modification to the algorithm is the

implementation of a conscience mechanism. A

statistical study was done to see how fast the

algorithm converges.

The algorithm is considered to have converged when

the parallel perceptron approximates the target with

an error smaller than ε for every data point in the

training set. 10000 simulations were performed for

every data point p and target t. The target t is the

result of a randomly chosen linear function that

takes p as input variable. Each simulation starts with

different initial weights for the neurons, records the

number of epochs that the algorithm needs to

converge and places it in a convergence histogram.

Such a histogram is illustrated in figure 1.

Fig. 1. PDelta Convergence histogram

It is seen that most trials converge in less than 400

epochs (aprox. 56.7%). Some trials converge in

more than 400 epochs but it is most likely that their

convergence is caused by chaotic effects and

therefore is unreliable. Because the convergence

percentage is not very high it was interesting to see

what prevents the other trials from converging.

An activity monitor variable was attached to each

neuron forming the parallel perceptron. The activity

variable counts the number of times the weight of a

neuron is updated during the current epoch. Then, it

divides the count to the total number of updates

performed during the epoch for all of the neurons.

After the epoch is finalized the activity variable

reflects a percentage of how often was a neuron

declared winner. Figure 2 plots the activity traces for

all the neurons during a trial that did not converge

(each neuron is plotted in a different color).

Fig. 2. Distribution of weight activity (“greedy”

approach)

It is seen that initially several neurons have their

weights updated. However, at some point, only one

neuron is chosen exclusively for weight

modification. This “greedy” behavior occurs when a

neuron reaches a region that is densely populated

with data and no other neuron is in the same region.

In order for the minimum error to be reached it is

required that several neurons are present in this

region such that the quantization is smoother.

Unluckily, no other neuron is close enough to the

data and so the single isolated neuron will always

win the competition preventing other neurons to

approach the region.

In order to avoid this greedy behavior a conscience

mechanism is inserted in the scoring function that is

responsible for selecting the winner neuron. The

scoring function calculates two scores: a proximity

score PS and an activity score AS. Both scores are

sub-unitary and reflect the probability of a neuron to

be declared winner. The proximity score ranks the

neurons based on dot product comparison. PS will

be 1 for the neuron with a dot product that is closest

LATEST TRENDS on SYSTEMS (Volume I)

ISSN: 1792-4235 284 ISBN: 978-960-474-199-1

to the threshold TH and 0 for the neuron that is

furthest away. The activity score is computed by

monitoring the activity trace of each neuron i inside

a window of given size WS. The activity score AS is

computed at any time t as given by formula (9).

() ()∑
=

−∗−=
WS

k

ii kttraceactivity
WS

tAS
1

_
1

1

 (9)

The overall score is the product of the two scores PS

and AS. The neuron with the highest overall score is

declared winner. The neuron weight activity trace

for the “not greedy” approach is illustrated in figure

3. It is seen that in this case no neuron dominates as

all neurons change weights throughout the epochs of

the algorithm.

Fig. 3. Distribution of weight activity (“not greedy”

approach)

It is seen that with this approach the algorithm

converges a lot faster (140 epochs). In order to

graphically compare the “greedy” and “not greedy”

methods a similar histogram as the one in figure 1

was computed. Figure 4 plots the cumulated sums of

several such histograms. The blue trace represents

the cumulated sum of the “greedy” histogram in

figure 1. The other traces are cumulated sums of

histograms obtained with the “not greedy” approach

for several values of the window size WS. It is seen

that the size of the averaging window WS does not

significantly influence the convergence speed of the

algorithm. However, it is also seen that the “not

greedy” approach converges a lot faster than the

“greedy” approach and also that the number of un-

converged trials is significantly reduced. The same

data is numerically available in table 1.

Fig. 4. Convergence Rate

Converge under x

epochs

Method

100ep 200ep 400ep

Never

converge

Greedy 6.21% 26.94% 56.13% 36.89%

Not Greedy 17.56% 63.38% 93.12% 0.53%

Table 1. Greedy vs. Not Greedy Convergence

Statistic

6. Adaptive Noise Margin Control
In that presented above the algorithm will stop when

the error of the parallel perceptron is below the

desired accuracy ε . This happens, when for any

data point in the training set all neurons will have a

suitable dot product wp relative to the threshold TH.

The problem with this approach is that some of the

neurons could have a dot product wp that is very

close to the threshold. In this case, any noise

affecting the data can flip one of the neurons thus

causing an undesired change at the output of the

squashing function. More details on the necessity of

a high noise margin can be found in [4].

The original algorithm presents a solution to this

problem by inserting a mechanism that produces a

reasonable amount of margin between the thresholds

and the wp products of all neurons for any data

point. This is done by adding another term in the

learning process as presented in formula (10).

() ∗+∗−⇐ mlrwmlrw kk 1





<−<+

<−<−−
∗

MTHWpp

THWpMp

0,

0,
and ε<− tpY)(

 (10)

This applies only when the output is within the

desired accuracy but the dot product wp is closer to

LATEST TRENDS on SYSTEMS (Volume I)

ISSN: 1792-4235 285 ISBN: 978-960-474-199-1

the threshold TH than a specified margin M. In this

case the weight vector W is moved towards or away

from the data with the margin learning rate mlr such

that the margin is increased.

The only problem with this idea is the constant

learning rate mlr and the constant margin M.

Choosing a margin beforehand can be tricky because

the maximum obtainable margin is dependent on the

distribution of the data within the input space. Also,

a learning rate that is too big can lead to instability

and also to the inability to reach the maximum

margin even though this margin might has been

guessed or computed beforehand. As a solution to

this problem our approach introduces an adaptable

learning rate mlr and an adaptable margin level M.

The margin level M is recomputed at each iteration

as being the P% percentile of all margin levels for

all neurons. Values for P between 5% and 20% have

proven to work very well. This approach guarantees

that the margin constraint M is not higher than what

the p-perceptron can obtain considering the given

data. It also assures that the algorithm adapts and

increases the constraint M once the average margin

increases. This leads the algorithm towards

obtaining the highest possible margin even though

the margin is not known beforehand.

Several attempts were made until an appropriate

control rule for adapting the learning rate mlr was

found. The first attempt was to increase the learning

rate whenever the derivative of the average margin

is high. This meant that the current average margin

is still significantly small compared to the maximum

margin so faster changes can be done. Whenever the

derivative of the average margin is small or negative

the learning rate mlr is decreased because the

maximum margin is close or already reached. The

problem with this method is that predicting the

approach to the maximum margin by monitoring

changes in the average margin can lead to a late

prediction. If the learning rate is very high at this

point the algorithm can become temporally unstable

and loose whatever progress accumulated.

The second attempt tried to fix this problem by

setting positive and negative boundaries for the

learning rate. This assured that the algorithm will

not get out of control. Unfortunately the boundaries

were also data dependent and could only be set

experimentally.

The third approach was more successful. At each

step of the algorithm the learning rate mlr is

modified with formula (11). K is a percentage with

range -1 to 1 given by formula (12), where m∆ is

the changes of the average margin during the last

training epoch.

 mlrKmlr ∗+⇐)1((11)

BmAK +∆∗= (12)

A normal learning regime is one where the margin

increase m∆ is equal to an estimated increase

estm∆ . In this case mlr should be constant hence K

should be zero. estm∆ is computed with formula

(13). In practice, m∆ will not equal estm∆ but will

randomly move inside a small interval around it.

This will create small opposite changes in mlr that

will average down to zero.

A

B
mest −=∆ (13)

Whenever m∆ is constantly larger than estm∆ it is

considered that the learning process allows a faster

increase of the margin. Because in this case K is

constantly positive the learning rate mlr will

increase. In order to avoid an excessive increase of

the learning rate the algorithm enters an adaptive

regime where the estimated value
estm∆ is

reevaluated with formula (14).









+∆−∆∗+=

dt

dB
mmBB estξ (14)

This moves
estm∆ towards the new average value of

m∆ . This is graphically illustrated in figure 5.

Fig. 5. K Control Rule

LATEST TRENDS on SYSTEMS (Volume I)

ISSN: 1792-4235 286 ISBN: 978-960-474-199-1

Whenever m∆ is constantly smaller than estm∆ the

algorithm adapts in the opposite direction. Figures 6

and 7 illustrate the values of the average margin and

of mlr respectively over the epochs. Please note that

the margin enhancement mechanism is inhibited

until the mean square error of the parallel perceptron

reaches the desired accuracy level. This can be seen

in the fact that until epoch 70 the average margin

changes randomly as a result of the error minimizing

learning.

Fig. 6. Average margin during training

It is seen that as the margin approaches its maximum

value the learning rate mlr decreases. The margin

reaches its maximum value some time before epoch

150. It is seen that until this point the learning rate

mlr is sufficiently small such that any additional

changes do not make the learning process unstable

or loose any of the gained progress.

Fig. 7. Margin learning rate mlr during training

The value for A was experimentally set to 2 and it

reflects the sensitivity of K over m∆ . The initial

value for the learning rate mlr was also set

experimentally. Anyway, it is preferred to have a

very small value for mlr in the beginning in order to

avoid instability. The algorithm will quickly adapt

mlr to a proper level.

7. Conclusion and Future Work

The new version of the algorithm offers higher

speed, stability and noise margin at the expense of

complexity.

The future of the project is towards designing a

liquid state machine that is able to analyze and

characterize the movement of a person. The input to

the liquid state machine is a set of trajectories

collected from markers displaced on the human

body. The algorithm will be used at training the

readout units of the liquid state machine. Further on,

if the application proves to be successful, an attempt

will be done to export the model on a platform that

is PC independent. One possible option is a GPU.

8. Acknowledgement

This work was partially supported by the strategic

grant POSDRU 6/1.5/S/13, (2008) of the Ministry of

Labour, Family and Social Protection, Romania, co-

financed by the European Social Fund – Investing in

People.

This work was supported in part by the following

grants: UEFISCSU 599/19.01.2009 and ANCS

222/15.04.2009.

References:

[1] Peter Auer, Harald M. Burgsteiner, Wolfgang

Maass. The p-Delta Learning Rule for Parallel

Perceptron, 2002.

[2] Wolgang Maass, Thomas Natschlager, Henry

Markram. Real-Time Computing without stable

states: A new Framework for Neural

Computation based on Perturbation, 2001.

[3] Wulfram Gerstner, Coding Properties of Spiking

Neurons: reverse and cross-correlations. Neural

Networks, Vol.14, Lausanne, 2001, pp. 599-610.

[4] Freund Y., Schapire R. E. Large margin

classification using the Perceptron algorithm.

Machine Learning, 37(3), 1999, pp. 277-296.

[5] Wolfgang Maass. Neural Computation with

Winner-Take-All as the only Nonlinear

Operation, Advances in Neural Information

Processing Systems, vol. 12, MIT Press,

Cambridge, 2000, pp. 293-299.

LATEST TRENDS on SYSTEMS (Volume I)

ISSN: 1792-4235 287 ISBN: 978-960-474-199-1

