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Abstract: - This paper presents a modified version of the p-Delta learning algorithm. The algorithm can be 

used for training a parallel perceptron regardless of the application. There are three significant changes from 

the original algorithm: an adaptive learning rate, a conscience mechanism and an adaptive margin 

enhancement mechanism. The changes offer an improved speed, stability and noise margin at the expense of 

complexity. The higher complexity can be a drawback if the algorithm is intended to be implemented in 

hardware.  
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1   Introduction 
The p-Delta Learning Algorithm was introduced by 

Peter Auer in [1] as a direct solution to designing 

the readout units of a Liquid State Machine [2]. In 

general, the learning rule can be used for training 

any parallel perceptron regardless of the application. 

The original algorithm was developed assuming that 

it will be applied to a system implemented 

exclusively in hardware. Inside such a system 

communication between individual neurons and the 

control unit can be a major difficulty.  Therefore, 

the algorithm had one important constraint: 

simplicity. In this paper a new version of the 

algorithm is presented. It introduces a few 

modifications that make the algorithm faster, more 

stable and with a higher noise margin. However, the 

changes complicate the algorithm making it less 

suitable for a hardware implementation. Currently, 

our team is using a software model for the spiking 

neural network and is not aiming towards a software 

independent implementation. This allows a more 

complicated algorithm to be easily implemented.  

 

2   Parallel Perceptron 
A single perceptron, as introduced by McCulloch-

Pitts, is a gate that computes an averaged sum of all 

inputs. If the sum is greater than the threshold TH 

the perceptron outputs “1” otherwise “0”. 

Mathematically, this is written as in formula (1). 
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where w is the synaptic weight vector and p is the 

input. The perceptron model can be easily 

implemented by a spiking neuron [3] if p is 

considered to be the rate of the spike train. The 

output is “1” when the neuron fires and “0” 

otherwise.  

 

A parallel perceptron is a group of N single 

perceptrons that are fed with the same input p. The 

output of the parallel perceptron Y is produced by a 

squashing function S that counts the number of 

active neurons and maps this number onto a 

continuous value, as in formula (2).  
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The squashing function S can be any monotonous 

continuous function. However, for this paper the 

linear function from formula (3) was used. 
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where minmax ,YY  are the boundaries of the output 

range and n is number of active neurons. 

 

The next chapter will present the original learning 

rule for the parallel perceptron. 

 

3   “p-Delta” Training Algorithm 
The algorithm can be efficiently used for training a 

parallel perceptron to map a set of given input data p 

to a desired target output t.  
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3.1 The Single Perceptron Delta Rule 
This is the simplest learning rule that can be applied 

to a single perceptron. Let p, y and t be the input, 

output and target data respectively. If the output y is 

‘0’ and the target t is ‘1’ it means that the dot 

product wp is too small in comparison to the desired 

threshold TH. In order for the dot product to 

increase, the weight vector w needs to move toward 

the data vector p, hence the angle between the two 

vectors will decrease. If the output y is ‘1’ and the 

target t is ‘0’ it means that the dot product wp is too 

large and so the weight vector needs to move away 

from the data vector. If the output y matches the 

target t no change is done. The rule can be 

mathematically presented as by formula (4). 
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where λ is the learning rate.  

 

3.2 The Parallel Perceptron p-Delta Rule 

In theory the approximation error of the parallel 

perceptron can be as small as half the size of the 

quantization step. Therefore, the algorithm could 

theoretically set the desired accuracy ε  to the value 

presented in formula (5), where minY and 
maxY are the 

same as in formula (3). 
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However, reaching this error level is not guaranteed. 

This is because the algorithm can get stuck in a local 

error minimum and so it will not find the global 

minimum that satisfies formula (5). Therefore, from 

now on it is considered that the accuracy ε  is set by 

the application and that the number of neurons N is 

sufficient for the accuracy constraint to be met. 

 

Given the input data p, the output of the parallel 

perceptron Y(p) is computed with formula (3). If the 

weights of the parallel perceptron are correct the 

output should be as close to the target t as 

constrained by ε . This is expressed in formula (6). 

 

    ( ) ε<− tpY    (6) 

 

If the output is greater than the target it means that 

too many neurons are active and so the weights of 

“some” of the active neurons should move away 

from the data. If the output is too small compared to 

the target, too few neurons are active and so “some” 

of the inactive neurons should move their weights 

towards the data.  

 

The term “some” is flexible and represents the 

answer to the question: “how many and which 

neurons should be chosen for weight modification?” 

The authors of [1] suggest that all active neurons 

should be updated if the output is greater than the 

target and also that all inactive neurons should be 

updated if the output is smaller than the target. This 

approach does not offer a great convergence speed 

or stability. However, it minimizes communication 

between neuron units if a hardware implementation 

is preferred. In [1] it is also suggested that the 

stability and convergence speed could be improved 

if only a few neurons (or one [5]) are chosen for 

weight modification. Those neurons should be the 

ones that have a dot product wp that is closest to the 

threshold. This approach on the other hand increases 

communication as the neuron units would need to 

broadcast their dot product to the central unit.  

 

Because this paper uses a software implementation 

of the neural circuitry, communication bandwidth is 

not a constraint. Therefore, it was chosen that each 

training iteration updates the weights of only one 

neuron which is declared winner. A neuron is 

declared winner if it has a dot product that is closest 

to the threshold and also if is on right side of the 

threshold. Therefore, the learning rule can be 

mathematically expressed as in formula (7). 
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where: 

• λ  learning rate  

• η  normalization rate 

• k  winning neuron 

• i =1….N   

 

The middle term that contains the norm of the 

weight vector is a correction that is performed for 

each neuron on all iterations. This correction 

preserves the angle of the weight but brings the 

length of the vector to unit length. The correction is 

important because the dot product wp signifies the 

angle between the two vectors only if the lengths of 

the vectors remain bounded.  

 

LATEST TRENDS on SYSTEMS (Volume I)

ISSN: 1792-4235 283 ISBN: 978-960-474-199-1



4. Adaptive learning rate 
The first modification to the original algorithm is the 

introduction of an adaptive learning rate. The 

learning rate is recomputed at each iteration as in 

formula (8). 
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The learning rate starts from a maximum value 

maxλ and then decreases as the parallel perceptron 

starts to approximate the data well.  

 

5. Greedy vs. NotGreedy 
The second modification to the algorithm is the 

implementation of a conscience mechanism. A 

statistical study was done to see how fast the 

algorithm converges.  

 

The algorithm is considered to have converged when 

the parallel perceptron approximates the target with 

an error smaller than ε  for every data point in the 

training set. 10000 simulations were performed for 

every data point p and target t. The target t is the 

result of a randomly chosen linear function that 

takes p as input variable. Each simulation starts with 

different initial weights for the neurons, records the 

number of epochs that the algorithm needs to 

converge and places it in a convergence histogram. 

Such a histogram is illustrated in figure 1.  

 

 
Fig. 1. PDelta Convergence histogram  

 

It is seen that most trials converge in less than 400 

epochs (aprox. 56.7%).  Some trials converge in 

more than 400 epochs but it is most likely that their 

convergence is caused by chaotic effects and 

therefore is unreliable. Because the convergence 

percentage is not very high it was interesting to see 

what prevents the other trials from converging.  

 

An activity monitor variable was attached to each 

neuron forming the parallel perceptron. The activity 

variable counts the number of times the weight of a 

neuron is updated during the current epoch. Then, it 

divides the count to the total number of updates 

performed during the epoch for all of the neurons. 

After the epoch is finalized the activity variable 

reflects a percentage of how often was a neuron 

declared winner. Figure 2 plots the activity traces for 

all the neurons during a trial that did not converge 

(each neuron is plotted in a different color).  

 

 
Fig. 2. Distribution of weight activity (“greedy” 

approach) 

 

It is seen that initially several neurons have their 

weights updated. However, at some point, only one 

neuron is chosen exclusively for weight 

modification. This “greedy” behavior occurs when a 

neuron reaches a region that is densely populated 

with data and no other neuron is in the same region. 

In order for the minimum error to be reached it is 

required that several neurons are present in this 

region such that the quantization is smoother. 

Unluckily, no other neuron is close enough to the 

data and so the single isolated neuron will always 

win the competition preventing other neurons to 

approach the region.   

 

In order to avoid this greedy behavior a conscience 

mechanism is inserted in the scoring function that is 

responsible for selecting the winner neuron. The 

scoring function calculates two scores: a proximity 

score PS and an activity score AS. Both scores are 

sub-unitary and reflect the probability of a neuron to 

be declared winner. The proximity score ranks the 

neurons based on dot product comparison. PS will 

be 1 for the neuron with a dot product that is closest 
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to the threshold TH and 0 for the neuron that is 

furthest away. The activity score is computed by 

monitoring the activity trace of each neuron i inside 

a window of given size WS. The activity score AS is 

computed at any time t as given by formula (9). 
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The overall score is the product of the two scores PS 

and AS. The neuron with the highest overall score is 

declared winner. The neuron weight activity trace 

for the “not greedy” approach is illustrated in figure 

3. It is seen that in this case no neuron dominates as 

all neurons change weights throughout the epochs of 

the algorithm. 

 

 
Fig. 3. Distribution of weight activity (“not greedy” 

approach) 

 

It is seen that with this approach the algorithm 

converges a lot faster (140 epochs). In order to 

graphically compare the “greedy” and “not greedy” 

methods a similar histogram as the one in figure 1 

was computed. Figure 4 plots the cumulated sums of 

several such histograms. The blue trace represents 

the cumulated sum of the “greedy” histogram in 

figure 1. The other traces are cumulated sums of 

histograms obtained with the “not greedy” approach 

for several values of the window size WS. It is seen 

that the size of the averaging window WS does not 

significantly influence the convergence speed of the 

algorithm. However, it is also seen that the “not 

greedy” approach converges a lot faster than the 

“greedy” approach and also that the number of un-

converged trials is significantly reduced. The same 

data is numerically available in table 1. 

 

 
Fig. 4. Convergence Rate 

 

Converge under x   

epochs 

Method 

100ep 200ep 400ep 

Never  

converge 

Greedy 6.21% 26.94% 56.13% 36.89% 

Not Greedy 17.56% 63.38% 93.12% 0.53% 

Table 1. Greedy vs. Not Greedy Convergence 

Statistic 

 

6. Adaptive Noise Margin Control 
In that presented above the algorithm will stop when 

the error of the parallel perceptron is below the 

desired accuracy ε . This happens, when for any 

data point in the training set all neurons will have a 

suitable dot product wp relative to the threshold TH. 

The problem with this approach is that some of the 

neurons could have a dot product wp that is very 

close to the threshold. In this case, any noise 

affecting the data can flip one of the neurons thus 

causing an undesired change at the output of the 

squashing function. More details on the necessity of 

a high noise margin can be found in [4]. 

 

The original algorithm presents a solution to this 

problem by inserting a mechanism that produces a 

reasonable amount of margin between the thresholds 

and the wp products of all neurons for any data 

point. This is done by adding another term in the 

learning process as presented in formula (10).  
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This applies only when the output is within the 

desired accuracy but the dot product wp is closer to 
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the threshold TH than a specified margin M. In this 

case the weight vector W is moved towards or away 

from the data with the margin learning rate mlr such 

that the margin is increased.  

 

The only problem with this idea is the constant 

learning rate mlr and the constant margin M. 

Choosing a margin beforehand can be tricky because 

the maximum obtainable margin is dependent on the 

distribution of the data within the input space. Also, 

a learning rate that is too big can lead to instability 

and also to the inability to reach the maximum 

margin even though this margin might has been 

guessed or computed beforehand. As a solution to 

this problem our approach introduces an adaptable 

learning rate mlr  and an adaptable margin level M.  

 
The margin level M is recomputed at each iteration 

as being the P% percentile of all margin levels for 

all neurons. Values for P between 5% and 20% have 

proven to work very well. This approach guarantees 

that the margin constraint M is not higher than what 

the p-perceptron can obtain considering the given 

data. It also assures that the algorithm adapts and 

increases the constraint M once the average margin 

increases. This leads the algorithm towards 

obtaining the highest possible margin even though 

the margin is not known beforehand.   

 

Several attempts were made until an appropriate 

control rule for adapting the learning rate mlr was 

found. The first attempt was to increase the learning 

rate whenever the derivative of the average margin 

is high. This meant that the current average margin 

is still significantly small compared to the maximum 

margin so faster changes can be done. Whenever the 

derivative of the average margin is small or negative 

the learning rate mlr is decreased because the 

maximum margin is close or already reached. The 

problem with this method is that predicting the 

approach to the maximum margin by monitoring 

changes in the average margin can lead to a late 

prediction. If the learning rate is very high at this 

point the algorithm can become temporally unstable 

and loose whatever progress accumulated.  

 

The second attempt tried to fix this problem by 

setting positive and negative boundaries for the 

learning rate. This assured that the algorithm will 

not get out of control. Unfortunately the boundaries 

were also data dependent and could only be set 

experimentally. 

 

The third approach was more successful. At each 

step of the algorithm the learning rate mlr is 

modified with formula (11). K is a percentage with 

range -1 to 1 given by formula (12), where m∆ is 

the changes of the average margin during the last 

training epoch. 

 

            mlrKmlr ∗+⇐ )1(              (11) 
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A normal learning regime is one where the margin 

increase m∆ is equal to an estimated increase 

estm∆ . In this case mlr should be constant hence K 

should be zero. estm∆  is computed with formula 

(13). In practice, m∆ will not equal estm∆  but will 

randomly move inside a small interval around it. 

This will create small opposite changes in mlr that 

will average down to zero. 

 

                  
A

B
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Whenever m∆ is constantly larger than estm∆  it is 

considered that the learning process allows a faster 

increase of the margin. Because in this case K is 

constantly positive the learning rate mlr will 

increase. In order to avoid an excessive increase of 

the learning rate the algorithm enters an adaptive 

regime where the estimated value 
estm∆  is 

reevaluated with formula (14).   
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This moves 
estm∆  towards the new average value of 

m∆ . This is graphically illustrated in figure 5. 

 

 
Fig. 5. K Control Rule 
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Whenever m∆ is constantly smaller than estm∆  the 

algorithm adapts in the opposite direction. Figures 6 

and 7 illustrate the values of the average margin and 

of mlr respectively over the epochs. Please note that 

the margin enhancement mechanism is inhibited 

until the mean square error of the parallel perceptron 

reaches the desired accuracy level. This can be seen 

in the fact that until epoch 70 the average margin 

changes randomly as a result of the error minimizing 

learning.  

 

 
Fig. 6. Average margin during training 

 

It is seen that as the margin approaches its maximum 

value the learning rate mlr decreases. The margin 

reaches its maximum value some time before epoch 

150. It is seen that until this point the learning rate 

mlr is sufficiently small such that any additional 

changes do not make the learning process unstable 

or loose any of the gained progress. 

 

Fig. 7. Margin learning rate mlr during training 

 

The value for A was experimentally set to 2 and it 

reflects the sensitivity of K over m∆ . The initial 

value for the learning rate mlr was also set 

experimentally. Anyway, it is preferred to have a 

very small value for mlr in the beginning in order to 

avoid instability. The algorithm will quickly adapt 

mlr to a proper level.  

 

7. Conclusion and Future Work 

The new version of the algorithm offers higher 

speed, stability and noise margin at the expense of 

complexity.  

 

The future of the project is towards designing a 

liquid state machine that is able to analyze and 

characterize the movement of a person. The input to 

the liquid state machine is a set of trajectories 

collected from markers displaced on the human 

body. The algorithm will be used at training the 

readout units of the liquid state machine. Further on, 

if the application proves to be successful, an attempt 

will be done to export the model on a platform that 

is PC independent. One possible option is a GPU.  
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