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Abstract: - A characteristic equation of a time-delay system contains a quasipolynomial rather then a polynomial. 
Solutions of the equation, system poles, have as the same meaning as for delay-free systems, thus they decide about 
system stability. This contribution studies the influence of a non-delay real parameter in a selected characteristic 
quasipolynomial to time-delay system stability. The analysis is based on the argument principle which also holds for 
the selected quasipolynomial. Upper and lower stability bounds for the parameter are found through proven lemmas, 
propositions and theorems.    
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1   Introduction 
It is well known fact that a large number of real-life 
processes, e.g. in a wide spectrum of natural sciences 
[1]-[4] or in pure informatics [5], is affected by delays 
which can have various forms. Linear dynamic systems 
with distributed, lumped, input-output or even internal 
delays can be represented by Laplace transfer function as 
a ratio of so-called quasipolynomials [6] in one complex 
variable [7]-[9], instead of polynomials which are usual 
in system and control theory. Delay can significantly 
deteriorate the quality of feedback control performance, 
namely stability and periodicity. 
     Control theory has been dealing with problem of 
delay effect on the feedback system since its nascence – 
indeed, the well known Smith predictor has been known 
for longer than five decades [10].  Linear time delay 
systems in technological and other processes have been 
usually assumed to contain delay elements in input-
output relations only, which results in shifted arguments 
on the right-hand side of differential equations. 
However, this conception is somewhat restrictive in 
effort to fit the real plant dynamics since in many cases 
inner feedbacks are of distributed or delayed nature, 
which yield delay elements on the left-hand side of a 
differential equation. Internal delays also appear in the 
feedback system when control plants with input-output 
transport delays, the dynamics of which is characterized 
using the Laplace transform by the characteristic 
quasipolynomial. This quasipolynomial decides about 
the control system asymptotic stability because of the 
fact that its zeros are system poles with the same 
meaning as for polynomials; however, the number of 
poles is infinite. 

     A large number of conference and journal papers 
were dedicated to stability analysis of systems with 
delay elements on the left-hand side of a differential 
equation, e.g. in [7]-[8], [11]-[13]. In this paper, we 
address the stability analysis of a selected 
quasipolynomial. In contrast to some other papers, the 
presented contribution investigates the stability with 
respect to the single non-delay coefficient and not with 
respect to the delay. Presented derivations and 
calculations are based on the fact that the argument 
principle (i.e. the Mikhaylov criterion) holds for a class 
of quasipolynomials represented by the studied one as 
well [7]-[9]. The information about lower and upper 
bounds on the selectable real parameter can serve 
engineers to decide quickly about system stability or to 
set a selectable controller parameter which appears in the 
characteristic quasipolynomial of a closed loop. Notice 
that the investigated quasipolynomial was analyzed 
already e.g. in [13]-[14]; however, these authors utilized 
different approaches. 
 
 

2   Argument Principle and Studied 

Quasipolynomial 
For a general retarded quasipolynomial 
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it holds that the number NU of unstable roots (i.e. those 
with non-negative real parts) is given by 

( )
],0[j,

arg
1

2 ∞∈=
∆−=

ωωπ s
U sm

n
N  (2) 

LATEST TRENDS on SYSTEMS (Volume I)

ISSN: 1792-4235 271 ISBN: 978-960-474-199-1



see [7]. It means that the well known argument principle, 
or the Mikhaylov stability criterion, holds for stable 
quasipolynomials (NU = 0) 
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see also [15]. 
     This observation is a powerful tool for retarded 
quasipolynomials stability analysis and thus for delayed 
feedback systems. Note that statement (3) does not say 
anything about the Mikhaylov curve for unstable 
quasipolynomials. Although formula (2) gives the 
answer about the overall argument change, calculation of 
NU by analytic means, in a general case, is almost 
impossible. However, one can draw the Mikhaylov curve 
using software tools and thus to observe its behavior, or 
to estimate the curve analytically if it is possible. 
Information about the overall argument shift in unstable 
case is extremely important e.g. when using the Nyquist 
criterion for stabilization of internally delayed systems. 
For example, a first order (n = 1) unstable retarded 
quasipolynomial can behave in the frequency domain 
e.g. like an unstable polynomial of the first 
( ( ) 2/arg π−=∆ sm ) or that of the third order with one 

( ( ) 2/arg π=∆ sm ) or three unstable roots 

( ( ) 2/3arg π−=∆ sm ). 
     The aim of this paper is to analyze the following 
quasipolynomial with respect to the setting of a free 

parameter ∈≠0q � 

( ) ( ) kqsassm +−+= ϑexp  (4) 

where ∈≠ 0a �; ∈> 0, ϑk �. The goal is to find the 

interval for q so that quasipolynomial (4) is 
asymptotically stable, whereas all the other parameters 
are fixed, using the criterion (3). The approach is based 
on the requirement that the appropriate Mikhaylov curve 
for [ ]∞∈ ,0ω  must have the overall argument change 

equal to 2/π , see Fig. 1. 
 

 
Fig. 1 – The Mikhaylov curve of a stable 

quasipolynomial (4) 

 

3   Quasipolynomial Properties 
Let us study stability properties of quasipolynomial (4) 
in the form of proven lemmas, propositions and 
theorems with respect to q. This task is equivalent to the 
appropriate setting a proportional stabilizing feedback 
controller q when control a plant with internal delay ϑ . 
     Lemma 1. For ω = 0, the imaginary part of the 
Mikhaylov curve of quasipolynomial (4) equals zero and 
it approaches infinity for ω → ∞. 
     Proof. Decompose ( )ωjm  into real and imaginary 

parts as 
( ){ } ( ) kqam += ϑωω cosjRe  (5) 

( ){ } ( )ϑωωω sinjIm am −=  (6) 

Obviously 
( ){ } ( ){ } ∞== →∞=

ωω ωω
jImlim,0jIm

0
mm .       □ 

     Lemma 2. If (4) is stable, the following inequality 
holds 
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and thus the Mikhaylov curve starts on the positive real 
axis. 
     Proof. If (4) is stable, the overall argument shift 
equals to 2/π  according to (3). Moreover, Lemma 1 
states that the imaginary part goes to infinity. These two 
requirements imply that for stable quasipolynomial is 
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0
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By application of (8) onto (5) yields the condition (7). □ 
     Lemma 2 represents the necessary stability condition 
and the lower bound for q. The curve can either pass 
through the first or the fourth quadrant for an 
infinitesimally small 0>∆=ω , which is clarified in the 
following simple lemma. 
     Lemma 3. A point on the Mikhaylov curve of (4) lies 
in the first quadrant for an infinitesimally small 

0>∆=ω  iff  
1≤ϑa  (9) 

This point lies in the fourth quadrant iff 
1>ϑa  (10) 

     Proof. (Necessity.) If the point on the curve goes to 
the first quadrant for an infinitesimally small 0>∆=ω , 
then the change of function ( ){ }ωjIm m  in 0=ω  is 

positive or this function is increasing in ∆=ω . It is 
known fact that this is satisfied if either  
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     or there exists even n ∈² such that 

 

LATEST TRENDS on SYSTEMS (Volume I)

ISSN: 1792-4235 272 ISBN: 978-960-474-199-1



 

( ){ } ( ){ }

( ){ } 0jIm
d

d

,0jIm
d

d
...jIm

d

d

0

0

1

1-

0

>

===

=

=
−

=

ω

ωω

ω
ω

ω
ω

ω
ω

m

mm

n

n

n

n

 (12) 
(i.e. there is a local minimum of ( ){ }ωjIm m  in 0=ω ) 

     or there is odd n ≥ 3 ∈² such that 
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(i.e. there is a point of inflexion of ( ){ }ωjIm m  in 0=ω ; 

however, the function is increasing in ∆=ω ). 
     Analyze the previous three conditions. First, relation 
(11) w.r.t. (6) reads 
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which is satisfied for 1<ϑa . 
     Second, condition (12) can be taken into account if 
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where the least non-zero nth derivation is odd, and thus 
(12) can not be satisfied for 1=ϑa ; however, we can 
test (13). Indeed 
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and thus function ( ){ }ωjIm m  in ∆=ω  is increasing. 
     Similarly, one can easily verify that if the Mikhaylov 
plot pass through the fourth quadrant first, then function 

( ){ }ωjIm m  decreases in 0=ω when (10) holds . 
     (Sufficiency.) If conditions (9) or (10) are considered, 
particular derivations of ( ){ }ωjIm m  can be calculated, 
which guarantee, according to (11) – (13), whether there 
is a tendency of the Mikhaylov curve to go to the first or 
the fourth quadrant, respectively.  □ 
     Lemma 4. If the lower bound (7) holds and a, k, q are 
bounded, then ( ){ }ωjRe m  is bounded for all ω  > 0. 

     Proof. Assume that 0>a . Then 
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jRe2
 (18) 

On the other hand, if 0<a  
( ){ } kqkqamkqa 2jRe0 <+−≤≤+< ω  (19) 

where the left-hand sides of (18) and (19) and the right-
hand one of (19) employ condition (7). The case when a 
= 0 can be discarded due to definition (4) of the 
quasipolynomial.  □ 
     The requirement of bounded parameters is natural 
with regard to the their physical meaning as process 
quantities or controller gains. 
     Lemma 5. If (7) holds, there it exists an intersection 
of the Mikhaylov plot with the imaginary axis for some 
ω  > 0 iff  

0>a  and akq ≤  (20) 

     Proof. (Necessity.) Show a contradiction, hence if 
0<a  and (7) holds, then ( ){ }ωjRe0 mkqa ≤+<  

according to Lemma 4 and thus there is no intersection 
with the imaginary axis. 
     (Sufficiency.) Consider 0>a . If akq ≤ , there must 

exists ω  > 0 such that ( ) kqa =ϑωcos , hence, 

( ){ } 0jRe =ωm .  □ 
     Searching of the stability upper bound will be made 
in two branches, so that conditions (9) and (10) are 
solved separately. The following theorem presents the 
necessary and sufficient stability condition for the 
former case.  
     Theorem 1. If (9) holds, then asymptoticaly 
quasipolynomial (4) is stable iff condition (7) is 
satisfied. 
     Proof. (Necessity.) See Lemma 2. 
     (Sufficiency.) Lemma 2 indicates that if (7) is 
satisfied, the Mikhailov curve starts for 0=ω  on the 
positive real axis. According to Lemma 1 the imaginary 
part of the curve goes to infinity and Lemma 4 states that 
for bounded parameters, the curve is bounded in the real 
axis. Now for the stability it is sufficient to certify that 
for 1≤ϑa  the Mikhailov plot does not leave either the 
first and the fourth quadrant, or the first and the second 
quadrant, since then the overall phase shift is π/2. 
     Indeed, Lemma 4 and Lemma 5 state that if 0<a , 
there is no intersection with the imaginary axis and thus 
the plot lies in the first and the fourth quadrant. 
Otherwise, if ϑ/10 ≤< a , an intersection with the 
imaginary axis can exist because of Lemma 5. Thus, it 
ought to be verified that there is no intersection with the 
real axis. Consider two cases: 
     1) If ( ) 0,0sin >≥ ωϑω , then 
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     2) If ( ) 0,0sin >< ωϑω , we induce a contradiction. 

Hence, assume that there exists 0>ω  such that 
( ) 0sin <ϑω  and ( ){ } 0jIm =ωm . Then 

( )ϑω
ω

sin
=a  (22) 

which yields ( ) 0sin >ϑω  and thus we have a 
contradiction.  □ 
     Now consider the second case, i.e. 1>ϑa . The 
following result reinforces condition (7). 
     Definition 1. Let (7) holds. The crossover  frequency 

Cω  is defined as 

( ){ }{ }0jIm,0:min: =>= ωωωω mC  (23) 

for some 0,0 >≠ ϑa . In other words, it represents the 
least solution of (22). 
     Theorem 2. If (10) holds, then quasipolynomial (4) is 
asymptotically stable iff 

( )
k

a
q Cϑωcos−
>  (24) 

     Proof. (Necessity.) Lemma 1 and Lemma 2 state that 
the Mikhaylov curve for stable quasipolynomial (4) 
starts on the positive real axis. Condition (10) guaranties 
that the initial change of the curve in the imaginary axis 
is negative, see Lemma 3. Thus, the curve has to pass 
through the fourth followed by the first quadrant. In 
other words, the first crossing with the real axis on the 
frequency 0>Cω  has to satisfy 
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which gives (24) directly. 
     (Sufficiency.) If (10) holds, then 0>a and 
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and thus the Mikhaylov curve for quasipolynomial (4) 
starts on the positive real axis according to Lemma 2 and 
the initial change of the curve in the imaginary axis is 
negative, see Lemma 3. Condition (24) then agrees with 
the fact that the curve crosses positive real axis first, as it 
is obvious from (6). Since the curve is bounded in the 
real part and the imaginary part goes to infinity (see 
Lemma 1 and Lemma 4), the overall phase shift is π/2 
and thus the quasipolynomial is stable. □ 
 
 

4   Example 
Let us demonstrate the utilization of the presented 
quasipolynomial stability properties in a control 

problem. Consider a simple feedback loop with an 
unstable delayed plant giving rise to the transfer function 

( )
( )ss

sG
8.0exp2

1

−+
=  (27) 

     The plant is controller by a proportional controller 
(gain) q. The characteristic equation of the feedback loop 
is 

( ) ( ) qsssm +−+= 8.0exp2  (28) 

hence, in the comparison with (4), 8.0,2 == ϑa . Since 
(10) holds, the necessary and sufficient asymptotic 
stability condition is given by (24). The corresponding 
crossover frequency can be found as 2=&Cω [rad·s-1] and 

thus the closed loop is stable iff 21071.5 −⋅>q . Choose 

e.g. 1=q , then the corresponding Mikhaylov plot of the 
characteristic quasipolynomial is displayed in Fig. 1. The 
stabilized closed loop step response can be seen in Fig. 2. 
 

 
Fig. 2 – The closed loop step response for 

plant (27) and controller q = 1 

 
 

4   Conclusion 
In this contribution, we have addressed the stability 
analysis of a selected first order quasipolynomial. The 
aim has been to find acceptable upper and lower limits 
for a non-delay parameter. The analysis has been based 
on the argument principle, i.e. the Mikhaylov stability 
criterion, in order to keep the desired shape of the 
Mikhaylov curve. The task can be also comprehend as a 
suitable setting of a proportional stabilizing controller 
when controlling a delayed (anisochronic) system, 
because of the fact that the characteristic closed loop 
quasipolynomial has the form of the studied one. A 
simulation example figures the Mikhaylov plot of a 
stable characteristic quasipolynomial together with 
control stabilized responses. The analytic tools utilized 
in this contribution can be employed when studying 
other quasipolynomials as well. 
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