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Abstract: - The contribution deals with design of continuous-time robustly stabilizing PI controllers for interval 
systems using the combination of Kronecker summation method, sixteen plant theorem and an algebraic approach to 
controller tuning. The effectiveness and practical applicability of the proposed method is demonstrated in control of a 
3rd order nonlinear electronic plant. 
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1   Introduction 
Despite the development of many advanced control 
technologies, the engineers from practice still clearly 
prefer the application of controllers with simple PI or 
PID structure. This kind of controllers is very popular 
because of their easy implementation and sufficient 
performance at the same time, even under conditions of 
uncertainty, and thus the investigation of an effective 
tuning method remains very topical. 
     A possible approach to robust control design for 
systems with interval uncertainty [1], [2] consists of 
computation of all robustly stabilizing controllers and 
consequently the selection of the final one on the basis 
of user demands. The calculation of robustly stabilizing 
controllers can be done using the stability boundary 
locus as published in [3], [4] or alternatively with the 
assistance of Kronecker summation method [5]. The 
approach from [3], [4] has been analyzed in [6], [7], 
while this paper studies alternative method [5] and 
verifies it on the same laboratory apparatus as in [6], [7]. 
Furthermore, a technique for controller choice itself can 
be adopted from algebraic approach [8], [9], [10]. This 
method is based mainly on general solutions of 
Diophantine equations in the ring of proper and Hurwitz 
stable rational functions (RPS). An advantage is that the 

controller can be further tuned through the only positive 
scalar tuning parameter m. 
     The contribution is focused on computation of 
continuous-time robustly stabilizing PI controllers for 
interval plants using Kronecker summation method, 
sixteen plant theorem and several algebraic tools. 
Originality of the proposed approach lies in 
combination of Kronecker summation method for 
obtaining the stability boundary and the choice of the 
final controller via an algebraic methodology. 
However, the work deals not only with theoretical 
background but also with the practical application in 
laboratory conditions. A nonlinear electronic plant, 
considered as the 3rd order interval system, has been 
controlled in various operational points with the 
assistance of the designed PI algorithms which have 
been realized using the Simatic automation system by 
Siemens Company. 
 
 
2 Computation of Stabilizing PI 
Controllers Using Kronecker Summation 
Consider the traditional closed-loop control system as 
depicted in fig. 1. 
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Fig. 1: Feedback control loop 

 
The controlled plant is described by: 

 ( )( )
( )

B sG s
A s

=  (1) 

and controller is supposed to be in a PI form: 

 ( ) I P I
P

k k s kC s k
s s

+= + =  (2) 

The initial task is to determine the parameters of PI 
controllers which guarantee stability of the feedback 
system. 
     An approach to computation of stabilizing PI 
controllers which is based on interesting features of 
Kronecker summation has been published in [5]. 
     First, remind that Kronecker summation of two 
square matrices Y (of size k-by-k) and Z (l-by-l) is 
generally defined as  

 l kY Z Y I I Z⊕ = ⊗ + ⊗  (3) 

where ,k lI I  are identity matrices of size k-by-k and l-by-
l, respectively, and where ⊗  denotes the Kronecker 
product [11], e.g. concisely: 
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The momentous property of the obtained square matrix 
Y Z⊕  (kl-by-kl) is that it has kl eigenvalues which are 
pair-wise combinatoric summations of the k 
eigenvalues of Y and l eigenvalues of Z. It means the 
Kronecker summation operation induces the 
“eigenvalue addition” feature to the matrices. One can 
exploit this attribute to obtain the equation for which all 
pairs ( ),P Ik k  leading to purely imaginary roots 
comply. 
     The characteristic equation of the closed-loop system 
from fig. 1 is: 

 ( )
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( , ) ( , ) ( , ) 0
CL P I

n
n P I P I P I

P A s s B s k s k

f k k s f k k s f k k

= + + =

= + + + ="
 (5) 

Define: 
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and transform (5) into matrix differential equation: 

 X MX′ =  (7) 

where M is n-by-n matrix: 
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and [ ]T
1 2, , , nX x x x′ ′ ′ ′= … , [ ]T

1 2, , , nX x x x= … . The 
equations (5) and (7) are linked via: 

 ( )( , )det 0CL n P IP f k k sI M= − =  (9) 

     Obviously, the same complex variable s is both the 
root of (5) and the eigenvalue of M. Owing to the fact 
that M is a constant matrix, the complex conjugates of s 
must also satisfy (9). 

 ( )*det 0s I M− =  (10) 

On that account, as it has been presented in [5], if 
s jω=  is the root of (5) it must be the eigenvalue of M. 
Moreover, *s jω= −  is also the root of (5) and the 
eigenvalue of M. As the sum of two eigenvalues s jω=  
and *s jω= −  equals to zero, the Kronecker summation 
of two matrices must be singular when such 
correspondence of  Pk , Ik  and ω  occurs. Thus: 

 ( )det 0M M⊕ =  (11) 

defines the stability boundary in ( ),P Ik k  plane, because 
every couple of ( ),P Ik k  satisfying (11) means that the 
same couple inserted into (5) will lead to the pair of 
conjugate purely imaginary roots or zero roots. Those 
are the only positions where the system stability can 
shift. Generally, the stability boundary splits the ( ),P Ik k  
plane into the stable and unstable regions. The 
determination of the stabilizing area (or areas) can be 
done via a test point, leading to a polynomial to verify, 
within each region. 
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3   Robust Stabilization of Interval Plants 
The previous section has outlined calculation of region 
of stabilizing compensator parameters only for a system 
with fixed coefficients. Nevertheless, the works [3], [4], 
[5] have embellished an arbitrary stabilization technique 
also for interval plants simply by using its combination 
with the sixteen plant theorem [1], [12], [13]. According 
to this rule, a first order controller robustly stabilizes an 
interval plant: 

 0

0
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i

i i
i
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i
i i

i
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where , , ,i i i ib b a a− + − +  represent respectively lower and 
upper bounds for parameters of numerator and 
denominator if and only if it stabilizes its 16 Kharitonov 
plants, which are defined as: 

 ,
( )( )
( )

i
i j

j

B sG s
A s

=  (13) 

where { }, 1,2,3,4i j ∈ ; and 1( )B s  to 4 ( )B s  and 1( )A s  to 

4 ( )A s  are the Kharitonov polynomials for the numerator 
and denominator of the interval system (12). 
     Remind that the construction of Kharitonov 
polynomials e.g. for the numerator interval polynomial: 

 
0
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is based on use of the lower and upper bounds of interval 
parameters in compliance with the principle [14]: 
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     As can be seen, the stabilization of an interval plant 
directly follows from the simultaneous stabilization of 
all 16 fixed Kharitonov plants. Thus the final area of 
stability for original interval plant is given by 
intersection of all 16 related partial areas obtained 
individually using the Kronecker summation method 
from the previous section. 
 
 
4   Algebraic Design of PI Controller 
So far, the methodologies from sections 2 and 3 allow 
calculating all robustly stabilizing combinations of 
proportional and integral gains in PI controller. 
Nonetheless, the final selection of a controller is another 

problem. An effective solution is represented by 
algebraic approach to control design [8], [9], [10], which 
is based on general solutions of Diophantine equations in 
RPS, Youla-Kučera parameterization and conditions of 
divisibility in the specific ring. A merit of the technique 
is that the controllers can be tuned by the only positive 
scalar parameter m. 
     Due to the limited space the paper can not provide 
full details on this method [7], [10]. It exploits only one 
specific result, i.e. the coefficients of feedback PI 
controller (2) can be computed according to: 

 
2

0

0 0

2 ;P I
m a mk k

b b
−= =  (16) 

where the parameters 0a  and 0b  of the first order 
nominal controlled plant: 

 0

0

( ) bG s
s a

=
+

 (17) 

are supposed to be known and where the tuning 
parameter m can be chosen on the basis of several 
approaches such as trivial “trial-and-error”, user 
knowledge and experience, or using recommendation 
[15]: 

 0m ka=  (18) 

Appropriate coefficient k depends on the size of first 
overshoot of the output (controlled) variable. Some of its 
values can be found in table 1. 
 

Table 1: Relation between k and overshoot 

Overshoot [%] K 
0 1.00 
1 1.62 
2 1.87 
3 2.14 
5 2.80 

10 7.38 
 
 
5   Real Control Experiments 
The presented theoretical tools have been tested in 
laboratory conditions during robust control of a 
nonlinear electronic model while the control loop has 
been realized using Simatic S7-300 automation system. 
     The utilized plant, constructed at Slovak University 
of Technology in Bratislava, has included a 3rd order 
system with a variable time constant, adjustable from 5s 
to 20s, and a model of nonlinear valve. The real visual 
appearance of this model is shown in fig. 2 and the block 
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scheme of the process is in fig. 3, where signals are 
denoted as follows: 
V – control signal for valve opening (0 – 10V) 
F – signal representing the valve opening (0 – 10V) 
P – output of the process (0 – 10V) 
U – disturbance (0 – 10V) 
 

 
Fig. 2: Electronic laboratory model 

 
 

VALVE T1 T2 T3 
V 

F 

U 

P

 
Fig. 3: Block scheme of laboratory model 

 
     The plant has been identified as the third order 
interval system which has led to the approximate 
mathematical model [6], [7], [16]: 

 [ ]
[ ] [ ] [ ]3 2

0.35, 5.5
( , , )

83, 268 104,171 19, 25 1IG s b a
s s s

=
+ + +

 (19) 

The first of its 16 Kharitonov plants (13) can be simply 
constructed: 

 1,1 3 2

0.35( )
268 171 19 1

G s
s s s

=
+ + +

 (20) 

The closed-loop characteristic equation (5) is: 

 ( )4 3 2268 171 19 1 0.35 0.35 0P Is s s k s k+ + + + + =  (21) 

From here, the matrix (8) follows: 

 
0 1 0 0
0 0 1 0
0 0 0 1

0.001306 0.003731 0.001306 0.0709 0.6381I P

M

k k

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− − − − −⎣ ⎦

 (22) 

The stability boundary is given by (11). The position of 
such pairs ( ),P Ik k  which fulfil (11) are shown in fig. 4. 

As can be verified, the stabilizing PI controllers for the 
plant (20) are in the inner space. 
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Fig. 4: Stability boundary for the plant (20) 

 
     Generally, one must repeat an analogical procedure 
for all 16 Kharitonov plants (13). Nonetheless, in such 
specific case, only 8 plants are enough to test. It is 
thanks to the fact that the numerator of (19) represents 
just zero order polynomial with two extreme values 
and thus it is not necessary to deal with all 4 
Kharitonov polynomials for this numerator. The 
regions of stability regions for all 8 Kharitonov plants 
are plotted in fig. 5. 
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Fig. 5: Stability areas for 8 Kharitonov plants 

 
     The intersection of all these stability areas is zoomed 
and depicted in fig. 6. It determines the final region of 
robustly stabilizing PI controllers for the original interval 
model (19). 
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Fig. 6: Stability region for the interval system (19) 

 
     Quite naturally, the following step brings the question 
of how to find the practically convenient PI controller 
from the obtained robust stability region. Among 
possible methods, the algebraic approach from the Part 4 
has been utilized for this purpose. 
     However, this algebraic synthesis requires the model 
of controlled system in the form of first order transfer 
function in order to obtain the final controller of 
appropriate (first) order (PI type). So the simplest 
approximation of (19) has been applied. It results in: 

 [ ]
[ ]

0.35, 5.5
( , , )

19, 25 1AG s b a
s

=
+

 (23) 

Computing the average values of interval parameters 
then lead to the nominal plant for control design: 

 2.925 0.133( )
22 1 0.04545NG s

s s
=

+ +
�  (24) 

     First, the assumption of 0% first overshoot in output 
variable for the case of nominal system, application of 
appropriate parameter k from table 1, and furthermore 
equations (18) and (16) give the transfer function of the 
controller: 

 1
0.3417 0.015530% 0.04545 ( ) sm C s

s
+

⇒ = ⇒ �  (25) 

Then analogically, 1% first overshoot requirement 
results in: 

 2
0.7655 0.040761% 0.07363 ( ) sm C s

s
+

⇒ ⇒� �  (26) 

     The fig. 7 depicts the positions of the controllers 
(25) and (26) in the stability area from fig. 6. As can be 
seen, they lie on the curve hypothetically connecting 
the other potential controllers tuned by various 
parameters 0m > . 
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Fig. 7: Positions of controllers (25) and (26) in stability 

region 
 
     Finally, three control experiments have been executed 
under different working points using the chosen 
controllers and PLC Simatic S7-300. 
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Fig. 8: Real control results (for 15% reference point) 
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Fig. 9: Real control results (for 60% reference point) 
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Fig. 10: Real control results (for 90% reference point) 

 
     The nominally prescribed overshoots have not been 
measured in real conditions. Actually it was expected, 
because the controlled plant has had highly nonlinear 
behaviour and these recommendations strictly hold true 
only for the nominal linear system. Figs. 8-10 indicate 
that the “less aggressive” controller 1C  provides very 
good results mainly in the mean set points, but it has 
comparatively long settling time in higher operational 
areas. On the other hand, the controller 2C  is much 
“faster” here, however it is more oscillating in the 
lower levels. Altogether, both compensators have been 
able to control the nonlinear process robustly stable and 
with acceptable performance. The definitive selection 
of the controller would depend on the main operational 
area. 
 
 
6   Conclusion 
The paper has dealt with an approach to computation of 
robustly stabilizing PI controllers. The proposed method 
has been based on combination of calculating the 
stability boundary via Kronecker summation, its 
extension for interval systems using 16 plant theorem, 
and the choice of the final regulator through the single-
parameter tuning algebraic approach. The developed 
synthesis represents easy but effective way of designing 
the controllers for interval systems. On the other hand, 
coincident nominal performance and robust stability can 
not be assured in advance. They have to be verified 
during the design process which can be considered as a 
method demerit. However, the applicability has been 
shown on laboratory experiments in which a nonlinear 
3rd order electronic model has been successfully 
controlled in various operational points. 
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