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Abstract: The Allee effect is related to those aspects of dynamical of populations connected with a decreasing in
individual fitness when the population size diminishes to very low levels. In this work we propose a fuzzy approach
to Allee effect that permits to deal with uncertainty. This fuzzy proposal is based on the extension principle and
shows a different behaviour of the equilibrium points with regard to the crisp model.
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1 Introduction
In single population dynamics the rate of change of
the number of individuals x(t) is often expressed as a
function of the per capita rate of change ϕ(x) such as

dx

dt
= xϕ(x) (1)

The Malthus equation considers a constant per capita
growth and is the simplest way to model the growth
of a specie. This equation has only one equilibrium
point at x = 0 and the population tends to infinity if
k > 0 (0 is unstable) or vanishes if k < 0 (0 is stable).
This point of view implies an exponential growth of
the population.

The logistic equation

dx

dt
= g(x) = rx(1 − x

k
) (2)

solves the question of the existence of a positive equi-
librium point because x = k is an asymptotically sta-
ble point and the size of the population tends to k.
Figure 1 describes this very well known equation.

One feature of Equation (2) often criticized in
ecological dynamics is that for small values the rate
growth is always positive. Several equations have
been proposed to deal with this problem. We will
focus our attention to the strong Allee effect what
implies that bellow a positive number the population
goes to extinction. A differential equation that gov-
erns the population growth taking into account these
aspects is

dx

dt
= f(x) = rx(1 − x

k
)(x− a) (3)

Equation 3 has three equilibrium points, two are stable
(0 and k) and one is unstable (a). Figure 1 shows the
behaviour of function f and its differences with the
logistic equation.

g

f

dx/dt

xM
m

ka0

Figure 1: Logistic (g) and Allee (f ) functions

The per capita growth of the logistics equation is
a linear decreasing function instead of the Allee ef-
fect is increasing for small values although negative.
This remark is reflected in Figure 2 where v and u are
the per capita growth of the logistic and Allee effect
respectively.

The Allee effect has strong evidence in ecological
systems ([7]) and is associated to a wide range of sys-
tems focusing in conspecific interactions, rarity and
animal sociality ([2, 3, 19, 20]). Conspecific inter-
action can help to understand aggregative behaviour
([18]), Allee effect can explain some proprieties about
the distribution of individuals between patches ([11]),
it is obviously related to extinction ([16]) and influ-
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dx/xdt
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Figure 2: Percapita growth for logistic (v) and Allee
(u) equations

ence any system of maximum sustainable yields as
some fisheries ([13]). Bidimensional models also ben-
efit with the introduction of the Allee effect ([1]).

2 Fuzzy analysis based on the exten-
sion principle

Environmental and economical systems are usually
subject to uncertainty which affects the mathematical
structure of them. References dealing with theoreti-
cal or applied ([17]) fuzzy differential equations show
a great number of subjects of interest and points of
view. J.J. Buckley et al, P Diamond and J.J. Nieto deal
with first order differential equations ([5, 9, 10, 15]),
Buckley et al and D.N. Georgiou et al with high order
differential equations ([6, 12]) and for a more applied
focus related to this work we cite ([4, 8, 14]).

In our context we must consider that the popula-
tion is given by a fuzzy real number x̃(t) for every
t identifying the symbol of its membership function
with itself in order to simplify the notation, so satisfy-
ing

• Normality: ∃s0 ∈ R such that x̃(t)(s0) = 1

• x̃(t) is convex

• x̃(t) is upper-continuous

• The support of x̃(t), [x̃(t)] = {s : x̃(t)(s) > 0}
is a compact set

Let f : R −→ R be a real function. Given a fuzzy
number x̃ ⊆ R then the fuzzy extension f̃ of f follow-
ing the Zadeh’s extension principle ([21]) is defined as

f̃(x̃)(s′) =

=

{
sup

s∈f−1(s′)
{x̃(s)|} if f−1(s′) �= ∅

0 if f−1(s′) = ∅
(4)

and the level sets (or α-levels with α ∈ [0, 1]) of the
fuzzy number f̃(x̃(t)) = ỹ(t) take the known form
ỹ(α, t) = [y(α, t), y(α, t)] with

y(α, t) = min{f(s)|s ∈ [x(α, t), x(α, t)]}
y(α, t) = max{f(s)|s ∈ [x(α, t), x(α, t)]} (5)

In order to simplify the notation we note x(α, t) = x1
and x(α, t) = x2.

It is simple to show that for the Malthus fuzzy
equation and k > 0 the trajectories tend to infinite.
On the other way, if k < 0 the trajectories tend to the
line x1 = 0.

For the fuzzy logistic equation J. J. Nieto et al
divided the study of the trajectories in three regions
showing a complex behaviour. As general rule the
trajectories leave one region and enter into another
region, but can also tend to infinite. This behaviour
depends on the initial conditions ([14]).

In the case of the Allee effect the autonomous
equation has three equilibrium points and as a conse-
quence increases the number of regions. Moreover, in
most cases it is not possible to get an explicit expres-
sion of the trajectories and only an implicit expression
is possible. All that makes more complex the study of
the fuzzy Allee effect.

The real function f(x) attaints a minimum at m
(we note f(m) = p) between 0 and a and a maximum
at M (we note f(M) = q) between a and k following
the expressions obtained from f′(x) = 0.

Applying the Zadeh’s extension principle given
by (4) six cases arises depending on x1 and x2 be-
long to the zones Z1 = [0,m], Z2 = (m,M ] or
Z3 = (M,+∞). This zones lead to the study of six
regions

R1 = {(x1, x2) ∈ R
2 : x1 ∈ Z1 ∧ x2 ∈ Z1}

R2 = {(x1, x2) ∈ R
2 : x1 ∈ Z1 ∧ x2 ∈ Z2}

R3 = {(x1, x2) ∈ R
2 : x1 ∈ Z1 ∧ x2 ∈ Z3}

R4 = {(x1, x2) ∈ R
2 : x1 ∈ Z2 ∧ x2 ∈ Z2}

R5 = {(x1, x2) ∈ R
2 : x1 ∈ Z2 ∧ x2 ∈ Z3}

R6 = {(x1, x2) ∈ R
2 : x1 ∈ Z3 ∧ x2 ∈ Z3}

The fuzzy first order differential equation is trans-
formed to a bidimensional system of differential equa-
tions which variables are x1 and x2. In the next sec-
tion we analyze the trajectories of this system.
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3 Solution of the Fuzzy Allee equa-
tion

From the definition of the system it is clear that the
solutions depend on which region the initial condi-
tions belong. When it is possible we get the solu-
tions, if not, we obtain the trajectories and explain
their behaviour. We consider as initial conditions
x1(t0) = x10 and x2(t0) = x20.

3.1 Solution of x̃′ = f̃(x̃) in region R1

In this case f(x1) ≥ f(x2) so

[x′1, x
′
2] = [f(x2), f(x1)] =⎧⎪⎪⎨

⎪⎪⎩
x′1 =

r

k
x2(k − x2)(x2 − a)

x′2 =
r

k
x1(k − x1)(x1 − a)

(6)

We get a non linear system of differential equations.
Dividing both equations and integrating we obtain the
implicit solution of the trajectories:

x4
1

4
− (k + a)

x3
1

3
+ ak

x2
1

2
=

=
x4

2

4
− (k + a)

x3
2

3
+ ak

x2
2

2
+ C

(7)

We obtain the value of C imposing the initial condi-
tions

C =
x4

10

4
− (k + a)

x3
10

3
+ ak

x2
10

2
− x4

20

4
+

+(k + a)
x3

20

3
− ak

x2
20

2
There are different possibilities for the behaviour

of the trajectories that we summarize as follows

• Behaviour starting at Region R1

– If x10 = x20 then the trajectories tend to
the point (0, 0).

– If x10 = 0 and x20 > 0 then the trajectories
leave the region R1.

– Otherwise the trajectories tend to points be-
longing to the ordinates axe.

3.2 Solution of x̃′ = f̃(x̃) in region R2

[x′1, x
′
2] = [m,max{f(x1), f(x2)}]

We need to distinguish two cases.

Case A: f(x1) ≥ f(x2)

⎧⎪⎨
⎪⎩

x′1 = p

x′2 =
r

k
x1(k − x1)(x1 − a)

(8)

Solving the trajectories we get

x4
1

4
− (k + a)

x3
1

3
+ ak

x2
1

2
=
kp

r
x2 + C

Applying the initial conditions we obtain

C =
x4

10

4
− (k + a)

x3
10

3
+ ak

x2
10

2
− kp

r
x20

• Behaviour starting at Region R2 (Case A)

– If x10 = 0 then the trajectories leave the
region.

– If x20 = a and x10 > 0 then the trajectories
tend to the point (0, a).

– Otherwise some trajectories tend to the or-
dinates axe and others enter the region R1.

Case B: f(x1) < f(x2)⎧⎪⎨
⎪⎩

x′1 = p

x′2 =
r

k
x2(k − x2)(x2 − a)

(9)

which is an uncoupled system of differential equa-
tions. Solving it⎧⎪⎪⎨

⎪⎪⎩
x1 = pt+ C1

(x2 − a)k

xk−a
2 (k − x2)a

= C2e
ar(k − a)t

(10)

Imposing the initial conditions we obtain

C1 = x10 − pt0

C2 =
(x20 − a

x20

)k( x20

k − x20

)a
e−ar(k−a)t0

Finally, the trajectory is

x1 = ln
((x2 − a)kxk−a

20 (k − x20)a

xk−a
2 (x20 − a)k(k − x2)a

)
+ x10

• Behaviour starting at Region R2 (Case B)

– If x10 = 0 then the trajectories leave the
region R2.

– If x20 = M then the trajectories leave the
region R2 and enter into the region R3.

– Otherwise the trajectories keep on the re-
gion and some of them tend head for the
ordinates axe or to the line x2 = M .
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3.3 Solution of x̃′ = f̃(x̃) in region R3

[x′1, x
′
2] = [min{f(x1), f(x2)}, q]

We need also to distinguish two cases.

Case A: f(x1) < f(x2)

[x′1, x
′
2] = [p, q]⎧⎨

⎩
x1 = pt+ C1

x2 = qt+C1

(11)

and imposing the initial conditions we obtain

C1 = x10 − pt0 and C2 = x20 − qt0

The trajectory is a line with negative slope

x2 =
q

p
x1 +

px20 − (1 + q)pt0 − x10

p

Case B: f(x1) ≥ f(x2)

[x′1, x
′
2] = [f(x2), q]⎧⎪⎨

⎪⎩
x′1 =

r

k
x2(k − x2)(x2 − a)

x′2 = q

(12)

Calculating the trajectories we get

x4
2

4
− (k + a)

x3
2

3
+ ak

x2
2

2
=
kq

r
x1 + C

Applying the initial conditions we obtain

C =
x4

20

4
− (k + a)

x3
20

3
+ ak

x2
20

2
− kq

r
x10

• Behaviour starting at Region R3

– If x10 = 0 then the trajectories leave the
region R3.

– Otherwise the trajectories tend to the line
x1 = 0.

3.4 Solution of x̃′ = f̃(x̃) in region R4

[x′1, x
′
2] = [f(x1), f(x2)]⎧⎪⎪⎨

⎪⎪⎩
x′1 =

r

k
x1(k − x1)(x1 − a)

x′2 =
r

k
x2(k − x2)(x2 − a)

(13)

which is a uncoupled system of differential equations.
Solving it

(xi − a)k

xk−a
i (k − xi)a

= Cie
ar(k−a)t i = 1, 2

Imposing the initial conditions for i = 1, 2

Ci =
(xi0 − a

xi0

)k( xi0

k − xi0

)a
e−ar(k−a)t0

• Behaviour starting at Region R4

– If x10 = x20 < a then the trajectories tend
to the point (m,m).

– If x10 = x20 > a then the trajectories tend
to the point (M,M).

– If x10 = a and x20 > a then the trajectories
tend to the point (a,M).

– If x10 < a and x20 ≤ a then the trajectories
keep on the region. Some of them head on
to the line x1 = m and the others to the line
x1 = x2.

– If x10 < a and x20 ≥ a then the trajectories
keep on the region. Some of them head on
to the line x1 = m and the others to the line
x2 = M .

– If x10 > a and x20 > a then the trajectories
keep on the region. Some of them head on
to the line x1 = x2 and the others to the
line x2 = M .

3.5 Solution of x̃′ = f̃(x̃) in region R5

[x′1, x
′
2] = [min{f(x1), f(x2)}, q]

We need to distinguish two cases.

Case A: f(x1) < f(x2)⎧⎪⎨
⎪⎩

x′1 =
r

k
x1(k − x1)(x1 − a)

x′2 = q

(14)

Calculating the trajectories we get

(x1 − a)k

xk−a
1 (k − x1)a

= Ceqkr−1x2

Applying the initial conditions we obtain

C =
(x10 − a

x10

)k( x10

k − x10

)a
e−qkr−1x20

• Behaviour starting at Region R5 (Case A)

– If x10 < a then the trajectories tend to the
line x1 = m.

– If x10 > a then the trajectories tend to the
line x1 = M .
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Case B: f(x1) ≥ f(x2)⎧⎪⎨
⎪⎩

x′1 =
r

k
x2(k − x2)(x2 − a)

x′2 = q

(15)

which is an uncoupled system of differential equa-
tions. Solving it

x4
2

4
− (k + a)

x3
2

3
+ ak

x2
2

2
=
kq

r
x1 + C

Imposing the initial conditions we obtain

C =
x4

20

4
− (k + a)

x3
20

3
+ ak

x2
20

2
− kq

r
x10

• Behaviour starting at Region R5 (Case B)

– If x20 < k then the trajectories tend to the
line x1 = m.

– If x20 > k then the trajectories tend to the
line x1 = M .

3.6 Solution of x̃′ = f̃(x̃) in region R6

This case is analytically identical to the case 3.1 but
the behaviour of the trajectories is different.

• Behaviour starting at Region R6

– If x10 = x20 < k then the trajectories tend
to the point (k, k).

– If x10 = x20 > k then the trajectories tend
to the point (k, k).

– If x10 �= x20, x10 < k and x20 < k then
the trajectories tend to the line x1 = x2 or
to the line x2 = k.

– If x10 ≤ k and x20 > k then the trajectories
tend to the line x1 = M .

– If x10 > k and x20 > k then the trajectories
tend to the line x1 = k or to the line x1 =
x2.

4 Qualitative study of the Fuzzy
Allee equation

The qualitative study of the fuzzy Malthus equation
for k > 0 shows the same behaviour that the crisp
because there is an unstable equilibrium point. On the
other way, if k < 0 there is an unstable point unlike
the crisp approach in which case the equilibrium point
x = 0 is stable.

The qualitative study of the fuzzy logistic equa-
tion made by J. J. Nieto shows that there are two equi-
librium points that, surprising, are unstable ([14]). We

will follow a similar procedure for the study of the
fuzzy Alle effect.

The crisp differential equation has three equilib-
rium points: e1 = 0, e2 = a and e3 = k. Looking
at the Figure 1 it is obvious that e1 and e3 are stable
(asymptotically) and e2 is unstable.

In the fuzzy context the differential equation is
converted to a system of two crisp differential equa-
tions depending on where belong x1 and x2. Solv-
ing the homogenous system we find three equilibrium
points E1 = (0, 0), E2 = (a, a) and E3 = (k, k)
which belong to the region R1, R4 and R6 respec-
tively. We note F (x1, x2) = (x′1, x′2).

4.1 Study of the point E1

As this point belongs to the zone R1 we get
F (x1, x2) = (f(x2), f(x1)) and

[x′1, x
′
2] = [f(x2), f(x1)] =

= [
r

k
x2(k − x2)(x2 − a),

r

k
x1(k − x1)(x1 − a)]

Linearizing the system around the equilibrium point
we obtain

J(F (0, 0)) =
(

0 −ar
−ar 0

)

Solving the secular equation we find its eigenval-
ues λ1 = −ar and λ2 = ar, hence (0, 0) is a saddle
point.

4.2 Study of the point E2

As this point belongs to the zone R4 we get
F (x1, x2) = (f(x1), f(x2)) and

[x′1, x
′
2] = [f(x1), f(x2)] =

= [
r

k
x1(k − x1)(x1 − a),

r

k
x2(k − x2)(x2 − a)]

Linearizing the system around the equilibrium point
we obtain

J(F (a, a)) =
(
ar(k − a)k−1 0

0 ar(k − a)k−1

)

Solving the secular equation we get its eigenval-
ues λ1 = λ2 = ar(k − a)k−1 > 0 hence (a, a) is an
unstable node.
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4.3 Study of the point E3

As this point belongs to the zone R6 we get
F (x1, x2) = (f(x2), f(x1)) and

[x′1, x
′
2] = [f(x2), f(x1)] =

= [
r

k
x2(k − x2)(x2 − a),

r

k
x1(k − x1)(x1 − a)]

Linearizing the system around E3 we obtain

J(F (k, k)) =
(

0 −r(a− k)
−r(a− k) 0

)

Similarly at the previous cases we find the eigenvalues
λ1 = −r(a− k) > 0 and λ2 = r(a− k) < 0, hence
(k, k) is a saddle point.

5 Conclusion
The study of the strong fuzzy Allee effect under un-
certainty from the point of view of fuzzy extension
principle shows that fuzziness changes the behaviour
of the set of solutions because all equilibrium points
are unstable unlike the crisp case.
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