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Abstract: - The paper presents a methodology for the flight control law’s design for the trajectory pursuit using 
hierarchical dynamic inversion; this is based on separation of multi-time-scale and multi-loop closing method. It 
greatly simplifies the flight control design compared with PID conventional approaches. The used dynamic equations 
are classified into 4 groups according to the stairs of time measuring from the physical point of view [1]. The authors 
made the analysis of the lateral movement of aircrafts and obtained graphic characteristics which demonstrate the 
effectiveness of the proposed method. 
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1 Introduction 

One knows that it is difficult to stabilize and control 
an aircraft using constant gain controllers because the 
aircraft’s dynamics vary with the considerable modifica-
tion of the dynamic pressure and Mach number. That’s 
why a very good method for solve this problem is the 
determination of the gains of the control system. This is 
a simple and direct methodology for the design of flight 
control systems. The technique of the gains’ determina-
tion is the most important thing today in the area of 
flight control’s design [2], [3].  

The technique of gains’ determination depends on the 
designer’s experience and on his engineering art. 
Variables’ separation on two time scales combined with 

the theory of singular perturbation have been subject of 
research, the attitude being taken as slow variable while 
angular velocities as fast variables. The slow variables 
are controlled by the fast ones, which, in turn, are 
controlled by aerodynamic command surfaces.  
 
 
2 Formulation of the hierarchical dyna-

mic inversion 
One considers the following nonlinear system [4], 

[5], [6] 

  
  ,

,,
xhy

uxfx

  (1) 

where nRx   is the state variable, mRu   is the 
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control input and  mRy  the output which will be 
controlled by the control input .u  From equations (1), 
one gets 

    uxFuxf
x
hy ,, 



   (2) 

or 
   ,,1 vxFu    (3) 

where v  is the auxiliary input of the system. From 
equations (2) and (3) one yields 

    .,, 1 vvxFxFy    (4) 
The auxiliary input may have the classical form 
   ,yyKv c   (5) 

where K  is a gain matrix and cy  the imposed value of 
.y  

The term that compensates the nonlinear dynamics 

also provides the linearization of the dynamic system and 
the exterior loop, expressed by equation (5); the system 
becomes linear and achieves the desired value of the 
output cy  (fig. 1). 

Unfortunately, some input-output equations do not 
describe the aircraft dynamics with minimum phase 
because of the aerodynamic forces' derivatives in rapport 
with control surfaces' deflections. This fact has prevented 
the direct application of dynamic inversion to the 
automatic flight control systems. This problem can be 
avoided by system's separating on two time scales; thus, 
there are slow variables and fast variables. Fast state 
variables are used to control the slow state variables 
while the fast variables are controlled by the command 
variable. One considers the following two time scales 
nonlinear system 

 
Fig.1 The linear system with dynamic inversion 

          ,,,,,,, 121222111 xhyuxxfxuxxfx    (6) 
where nRx 1  is the slow state, nRx 2  is the fast 
state,  nRu  the control input and  nRy  the 
controlled output. The input-output equations on the 
slow scale may be derived as follows 

      ,,,,, 21211
1

uxxFuxxf
x
hy 




  (7)  

where  uxxF ,, 21  is invertible in rapport with .2x  
One obtains cx2  from the previous equation using the 

dynamic inversion 
     ,,,, 1111

1
2 yyKvuvxFx cc    (8) 

where 1v  is the auxiliary input for the slow scale 
controller and 1K  the feedback gain matrix. If 

,22 cxx   the following equation is maintained  
      .,,, 1111

1
1 vyyKuvxFxFy c    (9) 

Finally, one obtains cu  in the fast scale so that 

cxx 22    

  
 ,

,,,

2222

221
1

2

xxKv
vxxfu

c

c


 

 (10)   

where 2v  is the auxiliary input for the fast scale 
controller 2K  the feedback gain matrix. 
 
 

3 The use of hierarchical dynamic inver-
sion to the aircrafts’ dynamics  
For the conventional aircrafts with fixed wing the 

command surfaces’ deflections has the slowest time 
scale [4], [5]. These deflections generate aerodynamic 
moments around aircrafts’ axes. The aerodynamic mo-
ments generate angular velocities and the angular 
velocities are integrated in order to obtain the aircraft’s 
attitude. The forces have the same time scale with the 
accelerations. The attitude is integrated to obtain the 
velocities and the velocities give the position of the 
flying object. The variables may be grouped in four 
layers (time scales): very slow scale (the position of the 
aircraft ZYX ,, ), slow scale (none of the variables), fast 
scale (velocities WVU ,,  and angles ,  and  ) and 
very fast scale (the angular velocities RQP ,, ) [3]. The 
aircraft position is defined by the longitudinal error ,he  
the lateral error ye  and the trajectory arc length .s  The 
velocities  are defined by the real velocity of the air 
currents ,TASV  the direction angle in rapport with the air 
currents a  and the trajectory’s angle in rapport with the 
air currents .a  TASV  is directly controlled by the thrust 
force or by the aerodynamic braking. The attitude is 
defined by three angles: roll angle ,  pitch angle   and 
sideslip angle ;  all these angles are controlled by angu-
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lar velocities [1]. For the coordinated flight ,0c  the 
incidence angle   is not considered a state variable as it 
appears in [3]. This will improve the precision of control 
because the inertial attitude can be measured with less 
error than the aerodynamic angles like .  The three 
angular velocities RQP ,,  are controlled by the three 
command surfaces: rudder, aileron and direction [7].  

It is not enough to choose the state variables. This 
choice may be not optimal for some applications; that’s 
why state transformations will be made.  

The state variables are transformed from the initial 
ones 12Rx   in the new state variables .12R  One 
notes with  xT  the nonlinear transformation which 
verifies equation ,)(xT  where   is selected so that 

T  invertible .)(1  Tx       

     
  .

,
T

aaTAShy

T

RQPVees

RQPWVUZYXx



  (11) 

The control vector u  contains four variables repre-
senting the deflections of control surfaces 
   ,Tdepu   (12) 
where dep  ,,  and T  are the deflections of the ru-
dder, aileron, direction, respectively the gas lever’s displa-
cement. Taking into account the multi time scale separa-
tion from the previous section,   is separated as follows 

  
   
    .,

,,

43

21

TT

T
aaTAShy

RQP

Vee




 (13) 

In layer  3,2,1ii  the equations of dynamic models 
of the subsystems can be defined as 
    ,3,1,~,,, 1   iuF iiiii

  (14) 

where i
~  is a set of state variables other than i  and 

.1 i  On the other hand the dynamic equations of the 
inner layer  4i  and those for TASV  are given as 

    ,~,,,~,, 2144 uFVuF TTAST    (15) 
where u~  is the set of control variables. This case 

  cci u~,1  and Tc  are determined from equations [1] 

      
   

    .,,

,,~,,,
1

1
)1(

nncnnnnc

iiciiiiici

xxKvvxfu

xxKvxuvxFx







  (16) 

One obtains 

       
     

 
  .)(,~,,

,)(,,,

,,,~,,

212121
1

21

44444
1

4

1
1

TASTAScTc

cTc

iiciiiiici

VVKvuvF
KvvFu

KvvuF














 (17) 

Using Taylor series expansions of iF  

            
u
FF

uFuuF ii
iii 







 ,,  (18) 

and the first equation (17), one gets 

 

      

     

  .)()(~,,

,~
~

~,,

,~,,,

21
21

21

444
4

4

11
1

1

TASTAScTTc
T

T

ccT

iiciici
i

i
iiii

VVK
F

uF

Kuu
u
F

uF

K
F

uF

















 




 (19) 

In the above equation the superior order terms have 
been neglected and that is why the inversion is inexact.  

Solving equation (19) in rapport with   cci u~,1  and 

,Tc  one gets 

  

      

  

  .)(~,,

,)(~,,~
~~

,~,,,

2121

1
21

4444

1
4

1

1

1
11

TASTAScT
T

TTc

cTc

iiciiiii
i

i
ici

VVKuF
F

KuF
u
F

uu

KuF
F



















































 (20) 

 
 
4 Aircraft numerical application of the 

hierarchical dynamic inversion  
One considers the lateral movement of an aircraft 

described by equations [1] 
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 (21) 

One customizes the relations (20) for variables 
 4,1 ii  defined by equation (13). Thus, for the lateral 

movement of the aircrafts, ci 2,1   has components 

acac  ,  and TAScV   

    ,~,,, 11211

1
1

2
lonlon

a

lon

aac
lon vuF

F
















 (22) 

Similar equations are obtained for the lateral movements 
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   
   .)(11211

1
12

1615141311
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yyc
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d
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



 (24) 

For 2i  one yields [1] 

     ,~,,,,0 22322

1
2 latlat
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cc vuF
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














  (25) 

where latF2  is expressed wit equation (21) as follows 
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and for 3i  one gets 
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where x  is the state vector and matrix C  has the form 
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To calculate cu~  the authors use second equation 
(20) and take into account that   .~ T

dpeu   Thus, 
for the lateral movement of the aircrafts, one obtains 
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Fig.2 Block diagram of the system 
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with   
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In general, feedback gains of exterior loop should be 
smaller than those in the inner loop. As the gains ratio 
between inner and outer loop is smaller, interference 
have less effect and stability is increased in expense of 
performance.  

Therefore the most efficient gain ratio between 

inner and outer loop is approximately 0.3 to 0.4 [1]. The 
authors of this paper have increased this ratio to 0.5. 
This way they increased the stability of the aircraft and 
its dynamic characteristics. Thus, the loop’s gains are 
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In order to apply the liniarised system obtained in 
the previous section, one uses an ALFLEX aircraft mo-
del presented in [1]. In fig.2 one presents the block dia-
gram that models equations (21), (24), (25), (30) and 
(34), associated to the lateral movement of aircrafts. 

Based on this block diagram one obtains the Matlab/ 
Simulink model of lateral motion (fig.3) and will obtain 
conclusions about the reliability and performance 
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of the control method presented in this paper. The 
Matlab/Simulink model from fig.3 has three subsystems: 

Eq. (25), Eq. (30) and Eq. (34). In figures 4 - 6 one 
presents their Matlab/Simulink models.  

 
Fig.3 Matlab/Simulink model of the block diagram from fig. 2 

 
Fig.4 Matlab/Simulink model of the subsystem  Eq.(25) 

 
Fig.5 Matlab/Simulink model of the subsystem  Eq.(30) 

 
Fig.6 Matlab/Simulink model of the subsystem  Eq.(34) 

 
Fig.7 Time variation of the lateral error 

 
Fig.8 Time variation of the yaw angle 
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Next, using data for the lateral motion, one obtains 
graphic characteristics representing time variations of the 
lateral error (fig.7), yaw angle (fig.8), roll angle (fig.9), 
aileron deflection (fig.10) and direction deflection 
(fig.11). In figures 8 and 9 the command variable is re-
presented with red dashed line while the variable is re-
presented with blue continuous line. 

 
Fig.9 Time variation of the roll angle 

 
Fig.10 Time variation of the aileron deflection 

 
Fig.11 Time variation of the direction deflection 
 
 

4   Conclusion 
The paper presents a methodology for the flight 

control law’s design for the trajectory pursuit using hie-
rarchical dynamic inversion; this is based on separation 
of multi-time-scale and multi-loop closing method. The 
authors made the analysis of the lateral movement of 
aircrafts and obtained graphic characteristics which de-
monstrate the effectiveness of the proposed method.  

The most efficient gain ratio between inner and 
outer loop is approximately 0.3 to 0.4 [1]. The authors of 
this paper have increased this ratio to 0.5, increasing the 
stability of the aircraft and its dynamic characteristics. 
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