
 

 

  

Abstract—We here establish the local existence and uniqueness 

of a continuous solution under certain conditions of a degenerate 

semilinear parabolic problem with a localized nonlinear term: let 

T be any positive real number and
0x be a fixed number in the 

interval (0,1) , 

( ) 0

0

1
( ) ( ( , )) for ( , ) (0,1) (0, ),

( )

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for [0,1],

t x x
u p x u f u x t x t T

k x

u t u t t T

u x u x x

− = ∈ ×

= = ∈

= ∈

 

where 
0,  ,   and k p f u are given functions. Moreover, the 

sufficient condition to blow-up in finite time and the blow-up 

set of a such solution u  are shown.  

Keywords—Blow-up in finite time, Blow-up set, Complete blow-

up, Localized nonlinear terms, Semilinear parabolic problems 

I. INTRODUCTION 

ithout loss of generality and for simplicity, we take 

the interval of x  to [0,1].  Let (0,1),  (0, )TI Q I T= = × ,  

 and QTI  be the closure of  and TI Q , respectively. We here 

study the following degenerate semilinear parabolic problem 

with a localized nonlinear term: 

( ) 0

0

1
( ) ( ( , )) for ( , ) ,

( )

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for ,

t x Tx
u p x u f u x t x t Q

k x

u t u t t T

u x u x x I

− = ∈ 


= = ∈ 


= ∈ 


         (1.1) 
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 where 
tu  denotes partial differentiation of u  with respect to 

t and 
0,  ,   and k p f u are given functions. The purpose of this 

paper is to prove that before blow-up occurs, there exists a 

1( 0)T >  such that problem (1.1) has a unique nonnegative 

continuous solution u  on the time interval 
1[0, ]T for any .x I∈  

In addition to prove the existence and uniqueness of solution, 

the sufficient condition to blow up in finite and the blow-up set 

of such a solution u  are given. A solution u of problem (1.1) 

is said to blows up at x  = b in finite time 
bt  if there exists a 

sequence ( , )n nx t  with n bt t<  such that ( , ) ( , )n n bx t b t→  as 

n → ∞  and lim ( , )n n
n

u x t
→∞

= ∞ . The set of all blow-up points of 

solution u is called the blow-up set. In order to obtain our 

results, throughout this paper, we need following assumptions. 

(A) 1( ),  (0) 0,  p C I p p∈ = is positive on (0,1].  

(B) ( ),  (0) 0,  k C I k k∈ = is positive on (0,1].  

(C) 2[0, )f C∈ ∞ is convex with (0) 0f = and ( ) 0f s > for   

0.s >  

(D) 2

0 0 0 0( ),  (0) 0 (1),  u C I u u u∈ = = is nonnegative on ,I   

0 0( ) 0,u x > and
0u satisfies

0

0 0 0

( )1
( ) ( ( )) ( ) in 

( )

du xd
p x f u x u x I

k x dx dx
ς 

+ ≥ 
 

            (1.2) 

for some positive constant .ς By separation of variables, we 

obtain the corresponding singular eigenvalue problem to (1.1) 

defined by 

( )
( ) ( ) ( ) 0 on ,

(0) 0 (1).

d d x
p x k x x I

dx dx

ϕ
λ ϕ

ϕ ϕ

  + =  
  

= = 

                         (1.3) 

We note that conditions (A) and (B) implies that the point 

0x = is a singular point of problem (1.3). By proposition 2.1 

[7], condition (C) yields that f  is increasing and locally 

Lipschitz on [0, ).∞  

We rewrite equation (1.3) in a new form: 

2 2( ) ( )
( ) ( ) ( ) 0 on ,

( ) ( )

(0) 0 (1).

p x k x
x x x x x x x I

p x p x
ϕ ϕ λ ϕ

ϕ ϕ

′   
′′ ′+ + =    

   
= = 

 (1.4) 
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We have to add some conditions on functions  and p k  to make 

the point 0x =  to be regular singular point, that is, 

(E) The limit of 
2( ) ( )

 and 
( ) ( )

xp x x k x

p x p x

′
are finite as 0x →  and 

2( ) ( )
 and 

( ) ( )

xp x x k x

p x p x

′
 are analytic at 0.x =  

We note that theorem 5.7.1 [1] yields that eigenfunctions 
nϕ  

and eigenvalues 
nλ  of a corresponding singular eigenvalue 

problem (1.4) exist. Completeness of eigenfunctions 
nϕ  of 

problem (1.4) follows from next assumption. 

(E) 

1 1

2

0 0

( , ) ( ) ( )H x k x k d dxξ ξ ξ∫ ∫ is finite where H is the 

corresponding Green’s function to problem (1.4). 

 Previously there are mathematicians who studied blow-up 

problems of parabolic type with a localized nonlinear term. In 

1992, J. M. Chadam, A. Peirce and H. M. Yin [2] investigated 

the blow-up behaviour of solutions to heat equation with a 

localized reaction term: let Ω  be a bounded domain in n
R  

and 
0x  a fixed point in ,Ω  

2

0

0

( ( , )) for ( , ) (0, ),

( , ) 0 for ( , ) (0, ),

( ,0) ( ) for ,

tu u f u x t x t T

u x t x t T

u x u x x

− ∇ = ∈ Ω×


= ∈ ∂Ω× 
= ∈ Ω 

                      

(1.5) where 
0 and f u are given functions and ∂Ω  and Ω  

denote boundary and closure of ,Ω  respectively. They showed 

that under some conditions the solution u of problem (1.5) 

exhibits global blow-up and the blow-up set is .Ω  In 2000, 

C.Y. Chan and J. Yang [5] studied the degenerate semilinear 

parabolic problem with a localized nonlinear term: let q  be a 

nonnegative constant: 

0

0

( ( , )) for ( , ) ,

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for ,

q

t xx Tx u u f u x t x t Q

u t u t t T

u x u x x I

− = ∈


= = ∈ 


= ∈ 

                             (1.6) 

where f and 
0u are given functions. They proved that under 

certain hypotheses a nonnegative classical solution u  of 

problem (1.6) blows up at all points x I∈  in finite time. 

Moreover they gave a sufficient condition for solution a  u  of 

problem (1.6) to blow-up in finite time. 

II. LOCAL EXISTENEC AND UNIQUENESS 

This section deal with the local existence and uniqueness of 

a nonnegative continuous solution u  of problem (1.1). 

Referred to [8], we have well-know properties  of eigenvalues 

nλ  and eigenfunctions 
nϕ  of problem (1.4) as the following 

lemma. 

Lemma 2.1. 

2.1.1.

1

0

1 for ,
( ) ( ) ( )

0 for .
n m

m m
k x x x dx

m n
ϕ ϕ

=
= 

≠
∫  

2.1.2. All eigenvalues are real and positive. 

2.1.3. Eigenfunctions are complete with the weight function .k  

2.1.4.
1 2 3  and lim .n

n
λ λ λ λ

→∞
< < < = ∞…  

2.1.5.

1

0

for ,
( ) ( ) ( )

0 for n m.

n

n m

n m
p x x x dx

λ
ϕ ϕ

=
′ ′ = 

≠
∫  

2.1.6. For any ,  ( ).nn C Iϕ ∞∈ ∈ℕ  

Let us construct Green’s function ( , , , )G x t ξ τ  corresponding 

to problem (1.1). It is determined by the following system: for 

,  and , (0, ),x I t Tξ τ∈ ∈  

( )1
( ) ( ) ( ),

( )

(0, , , ) 0 (1, , , ),

( , , , ) 0 for ,

t x x
G p x G x t

k x

G t G t

G x t t

δ ξ δ τ

ξ τ ξ τ
ξ τ τ

− = − − 


= = 
= > 


                       (2.1) 

where δ  is the Dirac delta function. By the eigenfunction 

expansion, the corresponding Green’s function G  to problem 

(1.1) is defined by 

( )

1

( , , , ) ( ) ( )  for ,  and .n t

n n

n

G x t x e x I t
λ τξ τ ϕ ξ ϕ ξ τ

∞
− −

=

= ∈ >∑  

By using Green’s second identity, we get the integral equation 

equivalent to problem (1.1) given by 
1

0

0

( , ) ( ) ( , , ,0) ( )u x t k G x t u dξ ξ ξ ξ= ∫  

             

1

0

0 0

( ) ( , , , ) ( ( , )) .

t

k G x t f u x d dξ ξ τ τ ξ τ+∫ ∫                    (2.2) 

The following lemma is due to properties of .G  

Lemma 2.2. Let ( ) for some 1 as .
s

n O n s nλ = > → ∞  

2.2.1.G is continuous for ,  and 0 < .x I t Tξ τ∈ ≤ <  

2.2.2.G is positive for ,  and 0 < .x I t Tξ τ∈ ≤ <  

2.2.3. lim ( ) ( , , , ) ( )
t

k x G x t x
τ

ξ τ δ ξ
+→

= −  

2.2.4.For any ( , , ) (0, ) (0, ),x t I T Tτ ∈ × ×  

1

0

0

( ) ( , , , )k G x t d Cξ ξ τ ξ ≤∫ for some
0 0.C >  

Proof. By modifying proof of lemma 4.a and 4.c [5], we 

obtain the proof of 2.2.1 and 2.2.2, respectively. For proof of 

2.2.3, let us consider the following problem: 

( )1
( ) 0 for ,  and 0 ,

( )

(0, , , ) 0 (1, , , ) for 0 ,  

lim ( ) ( , , , ) ( ).

t x x

t

w p x w x I t T
k x

w t w t t T

k x w x t x
τ

ξ τ

ξ τ ξ τ τ
ξ τ δ ξ

+→

− = ∈ < < <

= = < < <

= −

 

By equation (2.2), we have that for any ,t τ>  
1

0

1
( , , , ) ( ) ( , , , ) ( ) ( , , , ).

( )
w x t k G x t d G x t

k
ξ τ ζ ζ τ δ ζ ξ ζ ξ ζ

ζ
= − =∫

Hence, we obtain the proof of 2.2.3. We next prove 2.2.4.  

Case 1. For any .t τ<   

Latest Trends on Theoretical and Applied Mechanics, Fluid Mechanics and Heat & Mass Transfer

ISSN: 1792-4359 95 ISBN: 978-960-474-211-0



 

 

Definition for G yields that  

1

0

( ) ( , , , ) 0.k G x t dξ ξ τ ξ =∫  

Case 2. .t τ=   

It follows lemma 2.2.3 and a property of Dirac delta function 

δ  that  

1 1

0 0

( ) ( , , , ) ( ) 1.k G x t d x dξ ξ τ ξ δ ξ ξ= − =∫ ∫  

Case 3. For any .t τ>  

Let us consider the series 
1

( )

1 0

( ) ( ) ( ) .n t

n n

n

k x e d
λ τξ ϕ ξ ϕ ξ

∞
− −

=
∑∫  

Since  

( )
1 2

( ) ( )

0

( ) ( ) ( ) max ( )n nt t

n n n
x I

k x e d x e
λ τ λ τξ ϕ ξ ϕ ξ ϕ− − − −

∈
≤∫  

and the series  
( )

1

n t

n

e
λ τ

∞
− −

=
∑  converges, 

1

( )

1 0

( ) ( ) ( ) n t

n n

n

k x e d
λ τξ ϕ ξ ϕ ξ

∞
− −

=
∑∫   converges uniformly for any 

( , , ) (0, ) (0, ).x t I T Tτ ∈ × ×  Hence we get the proof of 2.2.4. 

Therefore, the proof of lemma 2.2 is complete. 

Next theorem says to local existence of a solution u  of the 

equivalent integral equation (2.2). 

Theorem 2.1. There exists a 
1 1 with 0T T T< < such that the 

equivalent integral equation (2.2) has a unique continuous 

solution u  for any 
1

( , ) .
T

x t Q∈  

Proof. We will use the fixed point theorem to prove existence 

of a solution u  of the equivalent integral equation (2.2). Let   

0max ( ) 1.
x I

M u x
∈

= +  Locally Lipschitz property of f  implies 

that there exists a positive constant ( )L M  depending 

onM such that ( ) ( ) ( )f x f y L M x y− ≤ −   for any   ,x y∈ℝ     

with x M≤  and .y M≤  We then choose 

1

0 0

1 1
min , .

( ) ( )
T

C f M L M C

 
<  

 
                                         (2.3) 

Define a set E by 

1

1
( , )

( ) such that max ( , ) .
T

T
x t Q

E u C Q u x t M
∈

 
= ∈ ≤ 

 
 

Then, E is a Banach space equipped with the norm 

( , )
max ( , ) .

T
E x t Q

u u x t
∈

=  Let 

1

0

0

( , ) ( ) ( , , , 0) ( )u x t k G x t u dξ ξ ξ ξΛ = ∫  

                

1

0

0 0

( ) ( , , , ) ( ( , )) .

t

k G x t f u x d dξ ξ τ τ ξ τ+∫ ∫                 (2.4) 

for any .u E∈ We next show that the operator Λ  defined by 

(2.4) maps E into itself and that Λ is contractive. Let , .u v E∈  

We then have that 

1

0

0

( , ) ( ) ( , , ,0) ( )u x t k G x t u dξ ξ ξ ξΛ ≤ ∫  

                 

1

0

0 0

( ) ( , , , ) ( ( , )) .

t

k G x t f u x d dξ ξ τ τ ξ τ+ ∫ ∫                

(2.5) 

Let us consider the following auxiliary problem: 

( )
1

1

0

1
( ) 0 for ( , ) ,

( )

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) for .

t x Tx
u p x u x t Q

k x

u t u t t T

u x u x x I

− = ∈ 


= = ∈ 


= ∈ 


                           (2.6) 

It follows from (2.2) that a solution u of problem (2.6) is given 

by 
1

0

0

( , ) ( ) ( , , ,0) ( )u x t k G x t u dξ ξ ξ ξ= ∫  for 
1

( , ) .
T

x t Q∈  

Moreover, maximum principle for parabolic type implies that 

00 ( , ) max ( )
x I

u x t u x
∈

≤ ≤  for any 
1

( , ) .
T

x t Q∈ Thus, we obtain 

that 

1

0

( ) ( , , ,0) 1.k G x t dξ ξ ξ ≤∫  From (2.5) and lemma 2.2.4., 

1

0

0 0

( , ) max ( ) ( ) ( ) ( , , , ) .

t

x I
u x t u x f M k G x t d dξ ξ τ ξ τ

∈
Λ ≤ + ∫ ∫  

               
0 0 1max ( ) ( ) .

x I
u x f M C T

∈
≤ +  

By definition of
1T ,  for any .u E u EΛ ∈ ∈ Since 

( , ) ( , )u x t v x tΛ − Λ  

1

0 0

0 0

( ) ( , , , ) ( ( , )) ( ( , )) .

t

k G x t f u x f v x d dξ ξ τ τ τ ξ τ≤ −∫ ∫  

1

0 0

0 0

( ) ( , , , ) ( ( , )) ( ( , ))

t

k G x t f u x f v x d dξ ξ τ τ τ ξ τ≤ −∫ ∫  

1

0 0

( ) ( ) ( , , , )

t

E
L M k G x t d d u vξ ξ τ ξ τ≤ −∫ ∫  

0 1 ( ) ,
E

C T L M u v≤ −                                                            (2.7) 

definition of 
1T and (2.7) yield that Λ  is contractive. The fixed 

point theorem then implies that there exists a unique u  in E  

satisfying the integral equation (2.2). Therefore, the proof is 

complete. 

Lemma 2.3. Let v be a classical solution of the following 

problem: 

( ) 0

0

1
( ) ( , ) ( , ) for ( , ) ,

( )

(0, ) 0 (1, ) for (0, ),

( ,0) ( ) 0 for ,

t x Tx
v p x v B x t v x t x t Q

k x

v t v t t T

v x u x x I

− ≥ ∈ 


= = ∈ 


= ≥ ∈ 


        (2.8) 

where ( , )B x t is a nonnegative and bounded function on .
T

Q  

Then ( , ) 0 for any ( , ) .
T

v x t x t Q≥ ∈  

Proof. In order to prove this lemma we have to add a 
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nonnegative continuous function ( , )z x t on 
T

Q  to right-hand 

side of equation (2.8) and then we have that 

( ) 0

0

1
( ) ( , ) ( , ) ( , ) on ,

( )

(0, ) 0 (1, ) for (0, ),

( , 0) ( ) 0 for .

t x Tx
v p x v B x t v x t z x t Q

k x

v t v t t T

v x u x x I

− = + 


= = ∈ 


= ≥ ∈ 


        (2.9) 

From equation (2.2), we obtain that for ( , ) ,
T

x t Q∈  

1

0

0

( , ) ( ) ( , , ,0) ( )v x t k G x t u dξ ξ ξ ξ= ∫  

              

1

0

0 0

( ) ( , , , ) ( , ) ( , )

t

k G x t B v x d dξ ξ τ ξ τ τ ξ τ+∫ ∫  

              

1

0 0

( ) ( , , , ) ( , ) .

t

k G x t z d dξ ξ τ ξ τ ξ τ+∫ ∫                        (2.10) 

From (2.10), we have 
1

0 0 0

0

( , ) ( ) ( , , ,0) ( )v x t k G x t u dξ ξ ξ ξ= ∫  

              

1

0 0

0 0

( ) ( , , , ) ( , ) ( , )

t

k G x t B v x d dξ ξ τ ξ τ τ ξ τ+∫ ∫  

              

1

0

0 0

( ) ( , , , ) ( , ) .

t

k G x t z d dξ ξ τ ξ τ ξ τ+∫ ∫  

Let 

1

0 0 0

0

( ) ( ) ( , , ,0) ( )h t k G x t u dξ ξ ξ ξ= ∫  

                 

1

0

0 0

( ) ( , , , ) ( , ) .

t

k G x t z d dξ ξ τ ξ τ ξ τ+∫ ∫  

Since functions , ,k z G and 0u are nonnegative, 0h  is 

nonnegative. Let 
0( , ) ( ) for [0, ].u x t h t t T= ∈ Define an 

operator Φ  mapping from [0, ]C T  to [0, ]C T  by 

1

0

0 0

( ) ( ) ( , , , ) ( , ) ( ) .

t

h t k G x t B h d dξ ξ τ ξ τ τ ξ τΦ = ∫ ∫  

By corollary 5.2.1. [6], there exists a 
2 ( )T T< such that 

( )

0 0

0

( , ) ( ) ( )
m

m

v x t h t h t
∞

=

= = Φ∑                                            (2.11) 

where (0)

0 0( ) ( )h t h tΦ =  and ( 1) ( )

0 0( ) ( )m mh t h t+  Φ = Φ Φ   for 

.m∈ℕ  Mathematical induction yields that ( )

0 ( ) 0
m
h tΦ ≥  for 

.m∈ℕ  Thus, from equation (2.11), we obtain that 
0( , ) 0v x t ≥  

for any 
2[0, ].t T∈  It follows from equation (2.10) that  

( , ) 0v x t ≥  on 
2
.

T
Q Finally, we can repeat the previous 

procedure to obtain the desired result for ( , ) .
T

x t Q∈  

Next lemma gives additional properties of a solution u  of 

problem (1.1). 

Lemma 2.4. Let u be a continuous solution of problem (1.1). 

Then 
0( , ) ( ) and ( , ) 0tu x t u x u x t≥ ≥ for any

1
( , ) .

T
x t Q∈  

Proof. Let 
10( , ) ( , ) ( ) on Q .Tz x t u x t u x= −  Let us consider that 

for any 
1

( , ) ,Tx t Q∈  

( ) 0

0

( )1 1
( ) ( ( , )) ( ) .

( ) ( )
t x x

du x
z p x z f u x t p x

k x k x dx

 
− = +  

 
 

Equation (1.2) yields  0

0 0

( )1
( ) ( ( )) on 

( )

du x
p x f u x I

k x dx

 
≥ − 

 
 

and then we obtain that for any
1

( , ) ,Tx t Q∈  

( ) 0 0 0 1 0

1
( ) ( ( , )) ( ( )) ( ) ( , )

( )
t x x
z p x z f u x t f u x f z x t

k x
η′− = − ≥  

where
1η is between

0 0 0( , ) and ( ).u x t u x  Moreover, for any 

{ }( , ) 0,1 (0, ) {0},  ( , ) 0.x t T I z x t∈ × ∪ × =  Lemma 2.3 implies 

that
1

0 on 
T

z Q≥ or 
10  on .
T

u u Q≥  Let h  be any positive 

constant less thatT and 
1

( , ) ( , ) ( , ) on .
T

w x t u x t h u x t Q= + −  

Then we have that on
1
,TQ  

( ) 0 0

1
( ) ( ( , )) ( ( , ))

( )
t x x

w p x w f u x t h f u x t
k x

− = + −  

                                 
2 0( ) ( , ),f w x tη′=  

for 2η  between 0 0( , ) and ( , ).u x t h u x t+ Furthermore, 0w =  

on 1{0,1} (0, )T× and 0 on {0}.w I≥ ×  It then follows from 

lemma 2.3 that 
1

0 on .
T

w Q≥  This shows that 
1

0 on .t T
u Q≥  

We note that before blow-up occurs, there exists a positive 

constantM such that ( , )u x t M≤  for all 
1

 ( , ) .
T

x t Q∈  Locally 

Lipschitz continuity of f yields that there exists a positive 

constant ( )L M  depending on M  such that 

0 0( ( , )) ( ) ( , )f u x t L M u x t≤   for any 1[0, ].t T∈  

Lemma 2.5. If 
0 0( ( )) ( ),f u x L M′ ≥  then 

( , ) ( ) ( , )tu x t L M u x t≥  on 
1

Q .T  

Proof. Let
1

( , ) ( , ) ( ) ( , ) on .t T
z x t u x t L M u x t Q= −  We then have 

that
1

for ( , ) ,Tx t Q∈  

( ) 0 0 0

1
( ) ( ( , )) ( , ) ( ) ( ( , )).

( )
t x tx
z p x z f u x t u x t L M f u x t

k x
′− = −  

Locally Lipschitz continuity of f implies that for
1

( , ) ,Tx t Q∈  

( ) 2

0 0 0

1
( ) ( ( , )) ( , ) ( ) ( , )

( )
t x tx
z p x z f u x t u x t L M u x t

k x
′− ≥ −  

                               2

0 0 0 0( ( )) ( , ) ( ) ( , )tf u x u x t L M u x t′≥ −  

                               
0( ) ( , ).L M z x t≥  

From lemma 2.4, (0, ) (0, ) 0tz t u t= ≥ and (1, ) (1, ) 0tz t u t= ≥  for 

1(0, ).t T∈  If we set ( ),L Mς =  then equation (1.2) implies 

that for any ,x I∈  

0
0

( ,0) lim ( , ) ( ) ( )t
t

z x u x t L M u x
→

= −  
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           0

0 0

( )1
( ) ( ( )) ( ) ( ) 0.

( )

du x
p x f u x L M u x

k x dx

 
= + − ≥ 

 
 

Therefore, by lemma 2.3, the proof is complete. 

Lemma 2.6. If 0 0 0( ) ( )u x u x≥  for any ,x I∈ then  

0( , ) ( , )u x t u x t≥ on 
1
.

T
Q  

Proof. Let
10( , ) ( , ) ( , ) on .
T

z x t u x t u x t Q= −  We then have that 

on 
1
,TQ lemma 2.5 yields that 

( ) 0 0

1
( ) ( , ) ( ( , ))

( )
t x tx
z p x z u x t f u x t

k x
− = −  

                               0 0( , ) ( ) ( , ) 0.tu x t L M u x t= − ≥  

Since
0 0(0, ) ( , ) ( ) 0,z t u x t u x= ≥ ≥ 0 0(1, ) ( , ) ( ) 0z t u x t u x= ≥ ≥  

for
1(0, ),t T∈  and 

0 0 0( ,0) ( ) ( ) 0z x u x u x= − ≥ for any ,x I∈  by 

lemma 2.3,  the proof of this lemma is complete. 

Theorem 2.2. Let 
maxT  be the supremum of all 

1T  such that 

the continuous solution u of an equivalent integral equation 

(2.2) exists. If 
maxT  is finite, then 

0( , )u x t  is unbounded as t  

tends to 
max .T  

Proof. Suppose that
0 max( , )u x T is finite. Let

0 max( , ) 1.N u x T= +  

By theorem 2.1 and a fact that u is nondecreasing in ,t  there 

exists a finite time � max( )T T>   depending on N  such that the 

equivalent integral equation (2.2) has a unique continuous 

solution on the time interval �[0, ]T  for any .x I∈  By the 

definition of 
max ,T  we get a contradiction. 

A proof  similar to that of theorem 3 of Chan and Tian [3] 

gives the following result. 

Theorem 2.3 Such a continuous solution u of the equivalent 

integral equation (2.2) is a classical solution. 

III. A SUFFICIENT CONDITION TO BLOW-UP IN FINITE TIME 

Let 
1ϕ  be the first eigenfunction of a singular eigenvalue 

problem (1.3) and let 
1λ  be its corresponding eigenvalue. 

Without loss of generality we assume 
1

1

0

( ) ( ) 1.k x x dxϕ =∫                                                               (3.1) 

 We then define a function H  by 

1

1

0

( ) ( ) ( ) ( , ) .H t k x x u x t dxϕ= ∫  

Theorem 3.1. Assume that 

3.1.1.
0u attains its maximum at point 

0 .x  

3.1.2. ( )  with 0 and 1.
p

f b b pξ ξ≥ > >  

3.1.3.

1

1
1(0) .

p

H
b

λ − 
>  

 
 

Then a solution u of problem (1.1) blows up in finite time. 

Proof. Multiplying equation (1.1) by 
1( ) ( )k x xϕ  and 

integrating equation (1.1) with respect to x  over its domain 

yield 

1

1 0 1

0

( )
( ) ( ) ( ( , )) ( )

dH t
H t k x f u x t x dx

dt
λ ϕ= − + ∫ .                     

By lemma 2.6 and assumption 3.1.2, we have 
1

1 1

0

( )
( ) ( ) ( ( , )) ( )

dH t
H t k x f u x t x dx

dt
λ ϕ≥ − + ∫  

           

1

1 1

0

( ) ( ) ( , ) ( ) .
p

H t b k x u x t x dxλ ϕ≥ − + ∫                           

(3.2) 

Holder inequality implies that 
1

1

0

1 1
1 1

1 1

0 0

( ) ( ) ( , )

( ) ( ) ( ) ( ) ( , ) .

p

p p
p

k x x u x t dx

k x x dx k x x u x t dx

ϕ

ϕ ϕ

−

   
≤    

   

∫

∫ ∫

 

From (3.1), we get 

1 1

1 1

0 0

( ) ( ) ( , ) ( ) ( ) ( , ) ( ).

p

p pk x x u x t dx k x x u x t dx H tϕ ϕ
 

≥ = 
 

∫ ∫   (3.3) 

Form equation (3.2) and (3.3), we obtain 

1( ) ( ) ( )
p

H t H t bH tλ′ ≥ − +  

or 

1

1

(1 )1

1 1

1
( ) .

(0)

p

p tp

H t
b b

H e
λ

λ λ

−

− −−

≥
 

+ − 
 

 

It then follows from assumption 3.1.3 that there exists a 

�( 0)T >  such that H tends to infinity as t converges to �.T By 

the definition of H , we find that 
1

1 0 0

0

( ) ( ) ( ) ( , ) ( , ).H t k x x dx u x t u x tϕ
 

≤ = 
 
∫  

Therefore, a solution u of problem (1.1) blows up at point
0x  

as t  tends to �.T   

IV. THE BLOW-UP SET 

Theorem 4.1. The blow-up set of a solution u of problem 

(1.1) is .I  

Proof. From (2.2), we have that for 
max(0, ),t T∈  

1

0 0 0

0

( , ) ( ) ( , , , 0) ( )u x t k G x t u dξ ξ ξ ξ= ∫  

              

1

0 0

0 0

( ) ( , , , ) ( ( , ))

t

k G x t f u x d dξ ξ τ τ ξ τ+∫ ∫  

           
0 0 0

0

max ( ) ( ( , )) .

t

x I
u x C f u x dτ τ

∈
≤ + ∫                            (4.1) 

By theorem 2.2, we obtain that as t  tends to 
max ,T  

max

0

0

( ( , )) .

T

f u x dτ τ = ∞∫                                                          (4.2) 

On the other hand, by positivity of 
0,  ,  and k G u , we get that 
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for any 
max

( , ) ,Tx t Q∈   

1

0

0 0

( , ) ( ) ( , , , ) ( ( , )) .

t

u x t k G x t f u x d dξ ξ τ τ ξ τ≥ ∫ ∫  

Since there exists a positive constant
1C such that 

1

1

0

( ) ( , , , ) ,k G x t d Cξ ξ τ ξ ≥∫  

we obtain that 

1 0

0

( , ) ( ( , ))

t

u x t C f u x dτ τ≥ ∫   for all 
max

( , ) .Tx t Q∈  

Hence, the solution u tends to infinity for all x I∈  as t  

approaches to max .T  Therefore the proof of this theorem is 

complete. 
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