

Abstract — The paper summarizes the FMT modulation

prototype filter design and its efficient implementation on DSP. The
optimum design of algorithms for digital signal processors with
VLIW architecture is described. Using this new approach it was, for
example, possible to optimize compilation from the C language into
the assembler of TMS320C6414 digital signal processor for
implementation of FMT modulation with prototype FIR filter. The
method consists in a closer linkage between the theory of digital
signal processing, software tools and hardware.

Keywords—Assembler Programming, Digital Signal Processor,
Filtered MultiTone Modulation, Prototype Filter, State-Space
Representation, Very Long Instruction Word.

I. INTRODUCTION
HE filtered multitone modulation (FMT) is a multitone
modulation technique, proposed by Giovanni Cherubini

in 1999 [9]. Another type of this modulation is the half-
overlapped FMT [11]. It is an interesting alternative to
standard modulations in xDSL systems, particularly to digital
multitone (DMT) modulation, as well as to wireless systems
using orthogonal frequency division multiplexing (ODFM)
modulations. This modulation is using the fast fourier
transform (FFT) algorithm in combination with bank of filters
for frequency spectrum separation. These filters are polyphase
components of prototype filter, low-pass finite impulse
response (FIR) filter. The first step of implementation of this
modulation on digital signal processor is an implementation of
these filters.

The advantages of the modern architecture of type very
long instruction word (VLIW) digital signal processors cannot
be made full use of as long as the algorithms to be
implemented require sequential data processing. This is to say
that individual operations are linked up directly and prior to
any next step in the algorithm the results of all the previous
operations must be known. Fortunately, this type of
algorithms appears in the area of digital signal processing only

Manuscript received June 31, 2010. This work was supported in part by the

Ministry of Education, Youth, and Sports of Czech Republic under research
programme MSM 0021630513 and also by the Grant Agency of Czech
Republic under Grant 102/09/1846.

P. Sysel is with the Brno University of Technology, Faculty of Electrical
Engineering and Communication, Purkynova 118, Brno, 602 00, Czech
Republic; e-mail: sysel@feec.vutbr.cz.

O. Krajsa is with the Brno University of Technology, Faculty of Electrical
Engineering and Communication, Purkynova 118, Brno, 602 00, Czech
Republic; email: krajsao@feec.vutbr.cz.

rarely. Much more frequent are the algorithms of processing
data flows (FFT, digital filter banks, wavelet and
homomorphous analyses, etc.). In this type of processing the
algorithm can be realized for several input signal values
simultaneously, and making use of parallel processing will
considerably increase the algorithm processing speed and the
computation performance [2]-[3].

II. PROTOTYPE FILTER DESIGN
The fundamental element of the FMT system is the prototype
filter. We typically attempt to design it to reach the best
frequency characteristic. It mainly concerns the suppression of
side lobes, the orthogonality of derived filters, and the
frequency separation of particular subchannels. In this way we
can obtain an ideal suppression of inter-channel interference
(ICI). Inter-symbol interference (ISI), on the other hand, will
not be limited by these actions; it will appear even in the ideal
channel without interference. Its source is the implementation
of filters [10]. But such a distortion is easy to remove via
equalization.

X0
k

X1
k

X2N-1
k

h0(m)

h1(m)

h2N-1(m)

x(n)2N
IFFT P/S

Fig. 1 Block diagram of FMT modulator and transmitting filters.

The prototype filter can be designed using any FIR filter

design method with the limitation that the filters derived must
be orthogonal to each other. The following methods meeting
the orthogonality condition appear the most convenient for the
design.

The first method is approximation of IIR filters [9], where ρ
is the main parameter. Parameter ρ controls the shape of filter
transition bandwidth and it is within the range from 0 to 1. For
greater ρ the final filter is of a greater steepness but it
decreases the stop-band attenuation. If we increase ρ above

Optimization of FIR filter implementation
for FMT on VLIW DSP

Petr Sysel, Ondřej Krajsa

T

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 169 ISBN: 978-960-474-208-0

0.6, the ripple in the pass-band will increase significantly. For
ρ = 0.9 it can be up to 12 dB. Side lobes are suppressed to
–63 dB for ρ = 0.1.

The other option is to shape the filter transition bandwidth
using the square-root raised cosine filter [9]. In this filter, the
lobes are suppressed to –38 dB for α = 0.5.

The third method is the windows method. The final
characteristic is then formed by the properties of the window
used. The Blackman, Hamming or Hanning windows appear
to be sufficient, possibly also some other window retaining the
orthogonality with sufficient side lobe fall-off and broadness
of the main lobe. Another method uses the modified Parks-
McClellan algorithm.

0 2000 4000 6000 8000 10000

-100

-80

-60

-40

-20

0

frequency [Hz]

H
(f

)
[d

B
]

IIR aprox, ro=0.3
SRRC, alfa=0.5
Windowing, Blackman
Modified Parks-McClellan

Fig. 2 Prototype filters frequency responses using different design
methods.

III. DIGITAL SIGNAL PROCESSORS TMS320C6414
The digital signal processor TMS320C6414 by Texas

Instruments belongs to digital signal processors with VelociTI
core based on VLIW architecture. The core of VelociTI digital
signal processors is made up of two data paths (A and B), each
of which contains four functional units (L, S, M and D) and a
data register file (Fig 3). The registers are of 32 bits and there
32 of them in the TMS320C64xx processor. The registers are
always designated by a data path letter and the respective
serial number 0-31 (for example, A0-A31).

Fig. 3 Block diagram of the VelociTI core of DSP of
TMS320C64xx series.

The instruction notation in the assembly is made up of the
instruction mnemonic, the specification of the unit the
instruction is designed for, and the definition of instruction
operands, i.e. source and target registers or direct data. As
many as eight instructions can be composed in parallel in one
instruction packet. The || characters signify that an
instruction is to execute in parallel with the previous
instruction in one instruction packet. Example of instruction
mnemonic is shown in Fig. 7.

Functional units can read values from the registers or store
the results of operations in the registers of the corresponding
data path. In each data path in an instruction packet it is
possible to read the contents of one register of the other data
path. Reading is then realized along one of the two cross paths
(1x and 2x). In each data path one address (DA) and two data
buses (LD and ST) are available for moving the values
between the registers and the data memory. The functional
units of the core of digital signal processor are optimized for a
certain type of operation. Functional unit L is designed for
arithmetic operations, functional unit S processes the
instructions of logic operations and program branching
instructions, functional unit M is a hardware multiplier, and
functional unit D is used to calculate the address and to
transfer values between the data memory and the registers.

IV. IMPLEMENTATION OF DISCRETE CONVOLUTION
FIR filters will be implemented using algorithm of discrete

convolution (1) of input signal x[n] and filter coefficients h[n]
or samples of impulse response, respectively.

[] [] [] [] [],
1

0
∑

−

=

−=∗=
N

m
mnxmhnxnhny (1)

where N is the number of coefficients or impulse response
length, respectively.

A function that will realize a discrete convolution can be
declared in the Code Composer Studio (CCS) integrated
development environment (IDE) for TMS320C6xxx digital
signal processor as shown in Fig. 4. This function takes over
as parameters the array in of input samples, the array coef of
filter coefficients, and the array out for output samples
storage. The number of output samples is read as parameter
N_out and the number of filter coefficients is read as parametr
N_h, respectively.

void fir_filter(
 short in[],
 short coef[],
 short out[],
 int N_out,
 int N_h)

Fig. 4 Declaring the fir_filter function in the CCS.

The equation (1) of discrete convolution can be

programmed as shown in Fig. 5. The variable sum1 is an
auxiliary variable of the type of int for temporary storage of

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 170 ISBN: 978-960-474-208-0

the output sample with double precision. Expressions _sadd
and _smpy are intrinsic compiler functions of environment
CCS. The first function, _sadd, realize addition with
saturation of two fractional numbers in the two’s complement
format, the second function, _smpy, realize multiplication
with saturation of two fraction numbers in the two’s
complement format. The arguments of both functions are
assumed to be of the int type (i.e. 32-bit arguments).
However, the multiply operation performs only the product of
two 16-bit arguments (16x16 bits). The function _smpy
multiplies 16 least significant bits of both arguments.
Similarly, there are further intrinsic functions, _smpylh, that
multiplies 16 least significant bits of the first argument by 16
most significant bits of the second argument, _smpyhl and
_smpyh, that realize the product of the remaining parts. To
conclude the calculation, 16 most significant bits of the output
sample are written in the out address in the memory.

int sum1;

for(i = 0; i < N_out; i++)
{
 sum1 = 0;
 for(j = 0; j < N_h; j++)
 {
 sum1 = _sadd(sum1,
 _smpy(coef[j], in[i+j]));
 }

 *out++ = sum1 >> 16;
}

Fig. 5 Defining the fir_filter function while making use of the
intrinsics.

V. OPTIMIZATION OF DISCRETE CONVOLUTION
Compilers designed for digital signal processors are part of
the IDE. Texas Instruments’ CCS can be quoted as examples.
These compilers differ from the ANSI-C or C++ standard in a
few details, which in the ultimate result have a considerable
effect on the speed and stability of algorithm implementation.
The basic difference lies in that the defined data types are
fully adapted to the architecture of digital signal processor.
The number of data bits and the format of storing numbers in
a given code (mostly the two’s complement) correspond to the
actual storage of numbers in digital signal processor registers.

When optimizing the source code it is convenient either to
enter the instructions of digital signal processor assembler
directly into the C-language source code or to use the intrinsic
functions, which are assembled as a single instruction. In
Fig. 5, the intrinsic function _smpy will be compiled as SMPY
instruction; function _sadd will be compiled as SADD
instruction. Most IDEs for digital signal processors support
these activities. In this way the programmer can optimize the
critical parts of source code that the assembler is not able to
analyse correctly. This is a kind of intermediate stage between

optimizing in the C language and optimizing in the assembler
of digital signal processor.

In parallel processing the given algorithm can be realized
simultaneously for several values of the input signal. Using
parallel processing will greatly increase the speed of algorithm
processing. The condition is that the algorithm should be
written by an experienced programmer directly in the
assembler of digital signal processor or that the source code
written in a higher programming language (e.g. ANSI-C or
C++, etc.) should be translated by a first-rate compiler.

The CCS defines macro instructions and compiler directives
by means of which the programmer defines in the source code
additional information. The data in question concern, for
example, mutual relations between variables, rounding of
values in memories, etc. This set-up information is used by the
compiler in the optimization process and if used properly, this
information can greatly increase the compilation effectiveness
as measured by the computation demand of the compiled
binary code. Conversely, incorrect application yields a binary
machine code, which is potentially dangerous and can cause
run-time errors. For example, two independent variables X and
Y, stored in different parts of data memory can be stored or
read in parallel. If the variables shared a common memory
space, then writing a value in variable X would entail a change
also in the value of variable Y. In that case the value read from
Y depends on whether the reading operation is executed before
or after the operation of writing into X. In the case that
variables X and Y are the arguments of a function passed on by
a reference, it is not possible at the time of compilation to find
out whether or not the two variables share the memory space.
The compiler assumes they do and provides a more secure
binary machine code, which, however, requires longer and
more intensive computation.

The input sample pointer in and the pointer to the field of
FIR coefficients coef can be declared by the key word const
since in the course of calculation the input sample value and
the values of individual filter coefficients will not change. The
output sample value and the values of state-space variables
will, on the contrary, change during calculation and thus they
cannot be declared by the key word const. It is obvious from
the algorithm structure that the individual input arguments
represent mutually independent data structures, which will be
stored in separate memory locations. In that case it is of
advantage to use the key word restrict, which informs the
compiler about the memory-independence of the variables. In
case the output sample was entered into the same memory
field as the input samples (in-place processing), there would
evidently be a dependence relation between the in and out
pointers and the restrict keyword could not be used in
declaring the two arguments. Optimized declaration of
function fir_filter is in Fig. 6.

After implementation of these optimizations the calculation
of each element of sum (1) is splitted into several separate
stages, which will be executed in parallel. The loop kernel is
formed by one instruction packet given in Fig. 7. In the first
stage it is necessary to read the value of coefficient h[m] and

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 171 ISBN: 978-960-474-208-0

the value of sample x[n–m] from the memory and store it data
registers A3 and B3, respectively (instructions LDH). Address
of the input sample and address of the coefficient are stored in
the register A4 and B4, respectively. In the next stage,
instruction SMPY is used to multiply the sample and the
corresponding coefficient. In the end, instruction SADD
accumulates the value of the product in register A6. The
remaining BDEC instruction for program branching provides
for the whole instruction packet to be repeated [6].

void fir_filter(
 const short in[restrict],
 const short coef[restrict],
 short out[restrict],
 const int N_out,
 const int N_h)

Fig. 6 Optimized declaration of the fir_filter function in the
CCS.

Individual instructions of the instruction packet do not

execute different stages of the same sum element but different
stages of three elements are performed simultaneously due to
the delay slot of instruction execution. This is the result of
pipelining and parallel processing of the loop iterations. For
the element with serial number m = 7 reading from the
memory is started, for the element m = 2 the multiplication of
the coefficient and the sample is performed, and finally the
element m = 0 is accumulated. The execution of the
instruction packet of the loop kernel is illustrated in Fig. 8.

 LOOP LDH .D1T1 *A4++,A3
 || LDH .D2T2 *B4++,B3
 || SMPY .M1x B3,A3,A5
 || SADD .L1 A5,A6,A6
 || BDEC .S2 LOOP,B0

Fig. 7 Loop kernel instruction packet of discrete convolution
implementation on VelociTI digital signal processor.

For the next loop kernel iteration the value of m is increased

by one and the stages of the following sum elements are
processed. Before entering the loop kernel it is necessary to
start, sufficiently in advance, to read successively the values
of samples x[n] to x[n–6] and the values of coefficients h[0] to
h[6] in order that they be prepared before entering the loop
kernel. This must be ensured by the special section of program

called prolog. Similarly, after leaving the loop kernel it is
necessary to finish correctly the processing of the last samples
as reading them from the memory is successively finished.
This must be ensured by the special section of program called
epilog.

VI. CONCLUSION
Non-optimised and optimised versions of function
fir_filter were tested in the CCS environment. The filter
for testing was a pass-band filter of the 39th order. The
compiled binary code size and the computation demands of
both versions are shown in Table I. The computation demands
of the optimised version per one output sample is
approximately three times less than that of the non-optimised
version, but the binary code size is approximately three times
greater than the binary code size of the non-optimised version.
This is caused by the addition of special program sections, i.e.
prolog and epilog. In the course of optimization we must
compromise between the calculation demands and the binary
code size of compiled binary code.

TABLE I
AVERAGE COMPUTATION DEMANDS PER ONE SAMPLE AND BINARY CODE SIZE

OF FUNCTION FIR_FILTER FOR 39TH FILTER ORDER.

fir_filter clock cycles (-) code size (B)

non-optimised 412 448

optimised 125 1 712

Writing algorithms in the assembler of digital signal

processors of the type VLIW is very demanding. Several
instructions are being processed in every clock cycle, their
number being given by the number of active parallel units.
Executing any instruction takes a different number of clock
cycles. This is due to the high degree of pipelining. The
program thus contains several parallel computation paths,
which the programmer must follow incessantly. Under these
conditions it is very easy to make a mistake. Moreover,
grouping instructions into parallel paths is subject to many
constraints, which are given by the internal architecture of the
given digital signal processor. For example, if only two
address buses are available, then only two values can be read
from the memory in one clock cycle. All this strongly depends
on the particular type of digital signal processor. By contrast,

Fig. 8 Illustration of the calculation of discrete convolution in VelociTI digital signal processor.

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 172 ISBN: 978-960-474-208-0

the development of programs for processors with superscalar
architecture (Pentium from Intel, etc.) is simpler from this
viewpoint since parallel instruction grouping is performed by
the hardware unit in the processor structure (Schedule Unit).
In spite of the above difficulties we often cannot avoid writing
the algorithm directly in the assembler of digital signal
processor since this is the only way how to achieve the
maximum speed of calculating the critical parts of the source
code.

REFERENCES
[1] J. Eyre, The Digital Signal Processing Derby, in IEEE Spectrum, June

2001, pp. 62-68.
[2] Z. Smékal and P. Sysel, Architecture-Dependent Algorithm

Optimization for VLIW Digital Signal Processor, in Proc. of the 48th
International Scientific Colloquium IWK’2003, Ilmenau, 2003, pp. 143-
144. ISBN 1619-4098.

[3] Z. Smékal and P. Sysel, Influence of Signal Processor Architecture on
Generating Optimum Algorithm of Digital Signal Processing Methods,
in Proc. of the 5th WSEW/IEEE Multiconference CSCC. Rethymno,
2001, pp. 4291-4294. ISBN 960-8052-33-5

[4] Z. Smékal and R. Vích, Optimised Models of IIR Digital Filters for
Fixed-Point Digital Signal Processor, in Proc. of the 6th IEEE
International Conference on Electronics, Circuits and Systems
(ICECS’99), September 5-8, 1999, Cyprus, pp. 145-148. ISBN 0-7803-
5682-9

[5] Z. Smékal and R. Vích, Cepstral Speech Synthesis Optimised for Dual
Harvard Architecture of DSP, in Proc. of the International Conference
on Telecommunications (ICT 2000), May 2000, Acapulco, Mexico, pp.
244-248. ISBN 968-36-7762-2

[6] P. Sysel, Optimization of FIR Filter on VLIW Digital Signal Processors,
in Proc. of Research in Telecommunication Technology, Prague, 2004,
pp. 1-5. ISBN 80-01-03063-6

[7] R. Vích, J. Přibil, and Z. Smékal, New Cepstral Zero Pole Vocal Tract
Models for TTS, in Proceedings of the International Conference
EUROCON’2001, July 7-9, 2001, Bratislava, Slovakia, pp. 459-462.
ISBN 0-7803-6490-2

[8] M. Vlček, R. Zahradník, and R. Undehauen, Analytical Design of FIR
Filters, in IEEE Transactions on Signal Processing, September, 2000,
pp. 2705-2709.

[9] G. Cherubini, E. Eleftheriou, and S. Olcer, 1999, Filtered multitone
modulation for VDSL. Proc. IEEE Globecom’99, Rio de Janeiro,Brazil,
pp.1139-1144

[10] N. Benvenuto, S. Tomasin, L. Tomba, Equalization methods in DMT
and FMT Systems for Broadband Wireless Communications. In IEEE
Transactions on Communications, vol. 50, no. 9. [s.l.] : [s.n.], 2002. s.
1413-1418

[11] P. Šilhavý, Half-overlap subchannel Filtered MultiTone Modulation
with the small delay. In The Seventh International Conference of
Networking. 1. Cancun, Mexico: IARIA, LCN 2007941923, 2008. s. 1-
5. ISBN: 978-0-7695-3106-9.

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 173 ISBN: 978-960-474-208-0

