
 

 

  
Abstract — The paper summarizes the FMT modulation 

prototype filter design and its efficient implementation on DSP. The 
optimum design of algorithms for digital signal processors with 
VLIW architecture is described. Using this new approach it was, for 
example, possible to optimize compilation from the C language into 
the assembler of TMS320C6414 digital signal processor for 
implementation of FMT modulation with prototype FIR filter. The 
method consists in a closer linkage between the theory of digital 
signal processing, software tools and hardware. 
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I. INTRODUCTION 
HE filtered multitone modulation (FMT) is a multitone 
modulation technique, proposed by Giovanni Cherubini 

in 1999 [9]. Another type of this modulation is the half-
overlapped FMT [11]. It is an interesting alternative to 
standard modulations in xDSL systems, particularly to digital 
multitone (DMT) modulation, as well as to wireless systems 
using orthogonal frequency division multiplexing (ODFM) 
modulations. This modulation is using the fast fourier 
transform (FFT) algorithm in combination with bank of filters 
for frequency spectrum separation. These filters are polyphase 
components of prototype filter, low-pass finite impulse 
response (FIR) filter. The first step of implementation of this 
modulation on digital signal processor is an implementation of 
these filters. 

The advantages of the modern architecture of type very 
long instruction word (VLIW) digital signal processors cannot 
be made full use of as long as the algorithms to be 
implemented require sequential data processing. This is to say 
that individual operations are linked up directly and prior to 
any next step in the algorithm the results of all the previous 
operations must be known. Fortunately, this type of 
algorithms appears in the area of digital signal processing only 
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rarely. Much more frequent are the algorithms of processing 
data flows (FFT, digital filter banks, wavelet and 
homomorphous analyses, etc.). In this type of processing the 
algorithm can be realized for several input signal values 
simultaneously, and making use of parallel processing will 
considerably increase the algorithm processing speed and the 
computation performance [2]-[3]. 

II. PROTOTYPE FILTER DESIGN 
The fundamental element of the FMT system is the prototype 
filter. We typically attempt to design it to reach the best 
frequency characteristic. It mainly concerns the suppression of 
side lobes, the orthogonality of derived filters, and the 
frequency separation of particular subchannels. In this way we 
can obtain an ideal suppression of inter-channel interference 
(ICI). Inter-symbol interference (ISI), on the other hand, will 
not be limited by these actions; it will appear even in the ideal 
channel without interference. Its source is the implementation 
of filters [10]. But such a distortion is easy to remove via 
equalization. 
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Fig. 1 Block diagram of FMT modulator and transmitting filters. 

 
The prototype filter can be designed using any FIR filter 

design method with the limitation that the filters derived must 
be orthogonal to each other. The following methods meeting 
the orthogonality condition appear the most convenient for the 
design. 

The first method is approximation of IIR filters [9], where ρ 
is the main parameter. Parameter ρ controls the shape of filter 
transition bandwidth and it is within the range from 0 to 1. For 
greater ρ the final filter is of a greater steepness but it 
decreases the stop-band attenuation. If we increase ρ above 

Optimization of FIR filter implementation 
for FMT on VLIW DSP 

Petr Sysel, Ondřej Krajsa 

T

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 169 ISBN: 978-960-474-208-0



 

 

0.6, the ripple in the pass-band will increase significantly. For 
ρ = 0.9 it can be up to 12 dB. Side lobes are suppressed to  
–63 dB for ρ = 0.1. 

The other option is to shape the filter transition bandwidth 
using the square-root raised cosine filter [9]. In this filter, the 
lobes are suppressed to –38 dB for α = 0.5. 

The third method is the windows method. The final 
characteristic is then formed by the properties of the window 
used. The Blackman, Hamming or Hanning windows appear 
to be sufficient, possibly also some other window retaining the 
orthogonality with sufficient side lobe fall-off and broadness 
of the main lobe. Another method uses the modified Parks-
McClellan algorithm. 

0 2000 4000 6000 8000 10000

-100

-80

-60

-40

-20

0

frequency [Hz]

H
(f

) 
[d

B
]

IIR aprox, ro=0.3
SRRC, alfa=0.5
Windowing, Blackman
Modified Parks-McClellan

 
Fig. 2 Prototype filters frequency responses using different design 
methods. 

III. DIGITAL SIGNAL PROCESSORS TMS320C6414 
The digital signal processor TMS320C6414 by Texas 

Instruments belongs to digital signal processors with VelociTI 
core based on VLIW architecture. The core of VelociTI digital 
signal processors is made up of two data paths (A and B), each 
of which contains four functional units (L, S, M and D) and a 
data register file (Fig 3). The registers are of 32 bits and there 
32 of them in the TMS320C64xx processor. The registers are 
always designated by a data path letter and the respective 
serial number 0-31 (for example, A0-A31). 

 

 
 

Fig. 3 Block diagram of the VelociTI core of DSP of 
TMS320C64xx series. 

The instruction notation in the assembly is made up of the 
instruction mnemonic, the specification of the unit the 
instruction is designed for, and the definition of instruction 
operands, i.e. source and target registers or direct data. As 
many as eight instructions can be composed in parallel in one 
instruction packet. The || characters signify that an 
instruction is to execute in parallel with the previous 
instruction in one instruction packet. Example of instruction 
mnemonic is shown in Fig. 7. 

Functional units can read values from the registers or store 
the results of operations in the registers of the corresponding 
data path. In each data path in an instruction packet it is 
possible to read the contents of one register of the other data 
path. Reading is then realized along one of the two cross paths 
(1x and 2x). In each data path one address (DA) and two data 
buses (LD and ST) are available for moving the values 
between the registers and the data memory. The functional 
units of the core of digital signal processor are optimized for a 
certain type of operation. Functional unit L is designed for 
arithmetic operations, functional unit S processes the 
instructions of logic operations and program branching 
instructions, functional unit M is a hardware multiplier, and 
functional unit D is used to calculate the address and to 
transfer values between the data memory and the registers. 

IV. IMPLEMENTATION OF DISCRETE CONVOLUTION 
FIR filters will be implemented using algorithm of discrete 

convolution (1) of input signal x[n] and filter coefficients h[n] 
or samples of impulse response, respectively. 
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where N is the number of coefficients or impulse response 
length, respectively. 

A function that will realize a discrete convolution can be 
declared in the Code Composer Studio (CCS) integrated 
development environment (IDE) for TMS320C6xxx digital 
signal processor as shown in Fig. 4. This function takes over 
as parameters the array in of input samples, the array coef of 
filter coefficients, and the array out for output samples 
storage. The number of output samples is read as parameter 
N_out and the number of filter coefficients is read as parametr 
N_h, respectively. 

 
void fir_filter( 
  short in[], 
  short coef[], 
  short out[], 
  int N_out, 
  int N_h) 
 

Fig. 4 Declaring the fir_filter function in the CCS. 
 
The equation (1) of discrete convolution can be 

programmed as shown in Fig. 5. The variable sum1 is an 
auxiliary variable of the type of int for temporary storage of 
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the output sample with double precision. Expressions _sadd 
and _smpy are intrinsic compiler functions of environment 
CCS. The first function, _sadd, realize addition with 
saturation of two fractional numbers in the two’s complement 
format, the second function, _smpy, realize multiplication 
with saturation of two fraction numbers in the two’s 
complement format. The arguments of both functions are 
assumed to be of the int type (i.e. 32-bit arguments). 
However, the multiply operation performs only the product of 
two 16-bit arguments (16x16 bits). The function _smpy 
multiplies 16 least significant bits of both arguments. 
Similarly, there are further intrinsic functions, _smpylh, that 
multiplies 16 least significant bits of the first argument by 16 
most significant bits of the second argument, _smpyhl and 
_smpyh, that realize the product of the remaining parts. To 
conclude the calculation, 16 most significant bits of the output 
sample are written in the out address in the memory. 

 
int sum1; 
 
for( i = 0; i < N_out; i++) 
{ 
 sum1 = 0; 
 for( j = 0; j < N_h; j++) 
 { 
  sum1 = _sadd( sum1, 
  _smpy( coef[j], in[i+j])); 
 } 
 
 *out++ = sum1 >> 16; 
} 
 
Fig. 5 Defining the fir_filter function while making use of the 
intrinsics. 

 

V. OPTIMIZATION OF DISCRETE CONVOLUTION 
Compilers designed for digital signal processors are part of 
the IDE. Texas Instruments’ CCS can be quoted as examples. 
These compilers differ from the ANSI-C or C++ standard in a 
few details, which in the ultimate result have a considerable 
effect on the speed and stability of algorithm implementation. 
The basic difference lies in that the defined data types are 
fully adapted to the architecture of digital signal processor. 
The number of data bits and the format of storing numbers in 
a given code (mostly the two’s complement) correspond to the 
actual storage of numbers in digital signal processor registers. 

When optimizing the source code it is convenient either to 
enter the instructions of digital signal processor assembler 
directly into the C-language source code or to use the intrinsic 
functions, which are assembled as a single instruction. In 
Fig. 5, the intrinsic function _smpy will be compiled as SMPY 
instruction; function _sadd will be compiled as SADD 
instruction. Most IDEs for digital signal processors support 
these activities. In this way the programmer can optimize the 
critical parts of source code that the assembler is not able to 
analyse correctly. This is a kind of intermediate stage between 

optimizing in the C language and optimizing in the assembler 
of digital signal processor.  

In parallel processing the given algorithm can be realized 
simultaneously for several values of the input signal. Using 
parallel processing will greatly increase the speed of algorithm 
processing. The condition is that the algorithm should be 
written by an experienced programmer directly in the 
assembler of digital signal processor or that the source code 
written in a higher programming language (e.g. ANSI-C or 
C++, etc.) should be translated by a first-rate compiler. 

The CCS defines macro instructions and compiler directives 
by means of which the programmer defines in the source code 
additional information. The data in question concern, for 
example, mutual relations between variables, rounding of 
values in memories, etc. This set-up information is used by the 
compiler in the optimization process and if used properly, this 
information can greatly increase the compilation effectiveness 
as measured by the computation demand of the compiled 
binary code. Conversely, incorrect application yields a binary 
machine code, which is potentially dangerous and can cause 
run-time errors. For example, two independent variables X and 
Y, stored in different parts of data memory can be stored or 
read in parallel. If the variables shared a common memory 
space, then writing a value in variable X would entail a change 
also in the value of variable Y. In that case the value read from 
Y depends on whether the reading operation is executed before 
or after the operation of writing into X. In the case that 
variables X and Y are the arguments of a function passed on by 
a reference, it is not possible at the time of compilation to find 
out whether or not the two variables share the memory space. 
The compiler assumes they do and provides a more secure 
binary machine code, which, however, requires longer and 
more intensive computation. 

The input sample pointer in and the pointer to the field of 
FIR coefficients coef can be declared by the key word const 
since in the course of calculation the input sample value and 
the values of individual filter coefficients will not change. The 
output sample value and the values of state-space variables 
will, on the contrary, change during calculation and thus they 
cannot be declared by the key word const. It is obvious from 
the algorithm structure that the individual input arguments 
represent mutually independent data structures, which will be 
stored in separate memory locations. In that case it is of 
advantage to use the key word restrict, which informs the 
compiler about the memory-independence of the variables. In 
case the output sample was entered into the same memory 
field as the input samples (in-place processing), there would 
evidently be a dependence relation between the in and out 
pointers and the restrict keyword could not be used in 
declaring the two arguments. Optimized declaration of 
function fir_filter is in Fig. 6. 

After implementation of these optimizations the calculation 
of each element of sum (1) is splitted into several separate 
stages, which will be executed in parallel. The loop kernel is 
formed by one instruction packet given in Fig. 7. In the first 
stage it is necessary to read the value of coefficient h[m] and 

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 171 ISBN: 978-960-474-208-0



 

 

the value of sample x[n–m] from the memory and store it data 
registers A3 and B3, respectively (instructions LDH). Address 
of the input sample and address of the coefficient are stored in 
the register A4 and B4, respectively. In the next stage, 
instruction SMPY is used to multiply the sample and the 
corresponding coefficient. In the end, instruction SADD 
accumulates the value of the product in register A6. The 
remaining BDEC instruction for program branching provides 
for the whole instruction packet to be repeated [6]. 

 
void fir_filter( 
  const short in[restrict], 
  const short coef[restrict], 
  short out[restrict], 
  const int N_out, 
  const int N_h) 
 

Fig. 6 Optimized declaration of the fir_filter function in the 
CCS. 

 
Individual instructions of the instruction packet do not 

execute different stages of the same sum element but different 
stages of three elements are performed simultaneously due to 
the delay slot of instruction execution. This is the result of 
pipelining and parallel processing of the loop iterations. For 
the element with serial number m = 7 reading from the 
memory is started, for the element m = 2 the multiplication of 
the coefficient and the sample is performed, and finally the 
element m = 0 is accumulated. The execution of the 
instruction packet of the loop kernel is illustrated in Fig. 8. 

 
 LOOP LDH .D1T1 *A4++,A3 
 || LDH .D2T2 *B4++,B3 
 || SMPY .M1x B3,A3,A5 
 || SADD .L1 A5,A6,A6 
 || BDEC .S2 LOOP,B0 
 

Fig. 7 Loop kernel instruction packet of discrete convolution 
implementation on VelociTI digital signal processor. 

 
For the next loop kernel iteration the value of m is increased 

by one and the stages of the following sum elements are 
processed. Before entering the loop kernel it is necessary to 
start, sufficiently in advance, to read successively the values 
of samples x[n] to x[n–6] and the values of coefficients h[0] to 
h[6] in order that they be prepared before entering the loop 
kernel. This must be ensured by the special section of program 

called prolog. Similarly, after leaving the loop kernel it is 
necessary to finish correctly the processing of the last samples 
as reading them from the memory is successively finished. 
This must be ensured by the special section of program called 
epilog. 

VI. CONCLUSION 
Non-optimised and optimised versions of function 
fir_filter were tested in the CCS environment. The filter 
for testing was a pass-band filter of the 39th order. The 
compiled binary code size and the computation demands of 
both versions are shown in Table I. The computation demands 
of the optimised version per one output sample is 
approximately three times less than that of the non-optimised 
version, but the binary code size is approximately three times 
greater than the binary code size of the non-optimised version. 
This is caused by the addition of special program sections, i.e. 
prolog and epilog. In the course of optimization we must 
compromise between the calculation demands and the binary 
code size of compiled binary code. 
 

TABLE I 
AVERAGE COMPUTATION DEMANDS PER ONE SAMPLE AND BINARY CODE SIZE 

OF FUNCTION FIR_FILTER FOR 39TH FILTER ORDER. 

fir_filter clock cycles (-) code size (B) 

non-optimised 412 448

optimised 125 1 712

 
Writing algorithms in the assembler of digital signal 

processors of the type VLIW is very demanding. Several 
instructions are being processed in every clock cycle, their 
number being given by the number of active parallel units. 
Executing any instruction takes a different number of clock 
cycles. This is due to the high degree of pipelining. The 
program thus contains several parallel computation paths, 
which the programmer must follow incessantly. Under these 
conditions it is very easy to make a mistake. Moreover, 
grouping instructions into parallel paths is subject to many 
constraints, which are given by the internal architecture of the 
given digital signal processor. For example, if only two 
address buses are available, then only two values can be read 
from the memory in one clock cycle. All this strongly depends 
on the particular type of digital signal processor. By contrast, 

 
Fig. 8 Illustration of the calculation of discrete convolution in VelociTI digital signal processor. 
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the development of programs for processors with superscalar 
architecture (Pentium from Intel, etc.) is simpler from this 
viewpoint since parallel instruction grouping is performed by 
the hardware unit in the processor structure (Schedule Unit). 
In spite of the above difficulties we often cannot avoid writing 
the algorithm directly in the assembler of digital signal 
processor since this is the only way how to achieve the 
maximum speed of calculating the critical parts of the source 
code. 
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