

Abstract— The embedded SoC (System on Chip) solution aims to

realise portable systems, while reducing power dissipation, chip

interconnects and device size. However the increasing complexity of

embedded systems and the staggering costs associated with designing

systems-on-chip imposes system designer and companies to seek

collaboration on a variety of intellectual property issues.

Consequently the cost of building SoC is increasing significantly

when the system integrates several parts. This paper aims to exploit

the advantage of a new approach and design method based on

Opencores and Opensources design concepts in order to build in an

embedded system on chip for network applications at free cost. This

approach is based in the IP (Intellectual Property) reuse strategy

facilitates the rapid creation and verification design process. In this

paper we define the methodology adopted to construct the open SoC.

The designed platform aims to provide a rapid prototype design for

system on chip. The system includes a hardware part and a software

part which are linked to each other through a µClinux operating

system. For the hardware part, an HDL file describing all the cores of

the library is created. The cores are configured as masters or slaves

that communicate through the wishbone bus interface. Thus new SoC

project can be created by adding, dripping or modifying a new core.

The SoC architecture is mapped into the virtex5 XC5VLX50-1FF676

FPGA development board. Results show that the SoC architecture

occupies 27% of logic resources and 35% of IOBs (In/Out Blocs).

The software part includes several packages, like the GCC Compiler,

a debugger and an architectural simulator Or1ksim which is an

instruction set simulator. The benefit of using the Opencores

methodology is flexibility; reuse and the cores are available at free

cost thus reducing the whole SoC cost.

Keywords—Embedded system, MAC/Ethernet, System on Chip

(SoC), OpenCores, OpenRISC, Opensource.

I. INTRODUCTION

HE embedded systems are generally defined as special

purpose computer-systems designed to perform one or

more dedicated functions, usually with real-time

constraints, and have computer hardware and software

embedded as parts of a complete device or system, thus all

essentials part of computing a system are integrated in a single

chip and where the application is executed by a program,

which is loaded into an on chip memory or an off shelf

component. The SoC solution aims to reduce power

dissipation, chip interconnects and device size.

With the advance of the microelectronic technology, it is

possible to integrate a whole system into a single FPGA

circuit. Thus, a new field which integrates a network

application into system on chip based FPGA circuit is

emerging. This paper describes the embedded system on chip

for network application which is part of the SoC platform

based on Opencores and Opensources design concepts for

Voice over Internet Protocol (VoIP) application [1], [2]. A

Hardware/Software development of a system on chip (SoC)

platform is described in [2].

One of the main components in a network application

hardware solution is the MAC/Ethernet circuit (Media Access

Controller) [3] which is used to guarantee an internet

connection. In traditional solutions a PCI network card is

inserted inside a computer which is based on a general purpose

microprocessor. In this situation, the network application

competes equally in processing time with other applications

causing an overload in the processing. In order to overcome

this problem, solutions implemented in dedicated hardware,

ASICs or FPGA are available [4], [5] and [6]. These solutions

allow that part of the processing, instead of being realised by

the microprocessor of general purpose, now can be executed

separately by a dedicated hardware.

In this paper, we propose a solution which not only

integrates the MAC/Ethernet hardware component into FPGA

but also the software of the network application is embedded

into the system. Section 2 exposes the FPGA embedded design

methodology. Section3 deals with the SoC hardware palatform

and show synthesis, hardware simulation and implementation

results of the embedded SoC. The Software design is presented

in section4. Finally a conclusion in section 5.

II. FPGA EMBEDDED DESIGN METHODOLOGY

Figure 1 shows the general architecture of an embedded

system. This one is composed of two parts. A hardware part

which represents the system architecture which is mainly based

on a processor and some peripherals components that

communicate with each other through a suitable interconnect

bus and a software part which is related to the application. The

hardware part and software parts are linked to each other

through the OS (operating system).A lot of approaches have

emerged from industrial and academic research to design

embedded systems into FPGA. Among there approaches, the

Towards an Open Embedded System on Chip

for Network Applications

 F. Abid, N. Izeboudjen, L.Sahli, D. Lazib, S.Titri, F. Louiz, M.Bakiri

Centre de Développement des Technologies Avancées

Lotissement 20 Août 1956, Baba Hassan, Alger

Email: fabid@cdta.dz, abidfaroudja@yahoo.fr

T

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 163 ISBN: 978-960-474-208-0

Xilinx approach that uses the Microblase processor, the Altera

approach which is based on the use of the Nios processor, the

IBM approach which uses the IBM processor and the

Opencores approach which uses the OpenRisc processor. Each

approach tries to promote its processor in the market. From

theses approaches we have chosen the Opencores approach.

 This choice is justified by the following points:

• Availability of the cores and tools at free cost.

• Register Transfer Level (RTL) descriptions are given for

all the cores or IPs (Intellectual property) components so

that the whole system can be mapped into FPGA or ASIC;

this allow flexibility and reusability of the cores.

• We can make an embedded system design reference from

scratch.

Fig.1 General view of an embedded system

Thus, Figure 2 gives an overview of our own platform
created for the design, implementation and test of the

embedded systems based on the OpenCores and Opensource

design approaches. The hardware part is related to synthesis,

place & roote, bitstream generation and downloading the

generated file into FPGA circuit.

The software part contains a set of tools such as the

Or1ksim simulator, a GCC compiler, a GNU debugger that

are used to debug and load the application into an on chip

FPGA memory or an external memory depending on the

application size.

For the hardware part, an HDL file describing all the cores

of the library is created. The cores communicate through the

wishbone bus interface.

Fig. 2 Overview of the hardware/software platform

III. HARDWARE PLATFORM

The designed embedded system is based on Xilinx ML501

development board with Virtex 5 FPGA [7].

Figure 3 shows the block diagram of the network SoC

architecture. From the hardware point of view the embedded

system on chip must be comprised of an embedded processor,

embedded memory and required peripherals like Ethernet

controller and input/output interface. In order to assure

flexibility for different possible applications the embedded

system was implemented on a FPGA platform. Soft-core

processors like the Openrisc processor, Xilinx Microblaze,

Altera Nios as well as any processor written in HDL languages

can be implemented in FPGA devices. This avoids the need of

a separate processor chip.

The soft-core processor configuration can be additionally

tailored for specific application. Required peripheral devices

are connected via wishbone bus. The embedded system must

have sufficient memory to contain an operating system with a

network application. In this work we have choosing µClinux

the open source operating system.

We have developed an OpenRISC-based SoC platform that

includes a 32bit Reduced Instruction Set Computer (RISC)

processor [8]. The embedded network SoC includes the

OR1200 core and a minimum set of elements needed to

provide network functionality. These elements are the debug

Application

Hardware

 OS

Application

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 164 ISBN: 978-960-474-208-0

unit for debugging purpose, a memory controller that controls

an external memory that carries µClinux and a network

application, an Universal Asynchronous Receiver Transmitter

(UART), the MAC/Ethernet that transmit voice packets over

the Internet. The Internet connection is established by this IP,

all the cores communicate through the wishbone bus. The most

difficult task in designing SoC hardware is how to write an HDL

code that integrates all the SoC components codes and how these

components communicate each with other. We have set the

OR1200 processor as MASTER for all components. The

MAC/Ethernet and Memory controller are configured as slaves

compared to the OR1200 and a MASTERs to the UART and

debug unit. For integration of all the cores we have created a

SoC Verilog description.

Fig. 3 Network SoC hardware architecture

III.1 PRESENTATION OF OPENRISC PROCESSOR AND THE

MAC/ETHERNET

The Openrisc processor and the MAC/Ethernet cores are the

basic IPs in our architecture, thus we give some details of

their architecture.

A. OpenRISC processor

The OpenRISC 1200 is a synthesizable processor developed

and managed by a team of developers at OpenCores [9].

OpenRISC 1200 is a 32-bit RISC processor implementing the

32-bit OpenRISC 1200 architecture. An overview of the

OpenRISC 1200 processor architecture can be seen in Figure

4. The processor uses big endian byte ordering. The processor

is intended for embedded, portable and network applications.

OpenRISC 1200 is an open source IP-core freely available

from the OpenCores website as a Verilog model, licensed

under the GNU LGPL license.

Fig. 4 OR1200 Architecture

B. Ethernet/MAC

 The Ethernet core [10], [3] is a 10/100 Media Access

Controller. It consists of synthesizable Verilog RTL core that

provides all features necessary to implement the layer 2

protocol of the standard Ethernet. It is designed to run

according to the IEEE 802.3 specification that defines the

10 Mbps and 100Mbps for Ethernet and Fast Ethernet

applications respectively. In this work the Ethernet/MAC

allows Internet connection.

Fig. 5 MAC/Ethernet Architecture

 Figure 5 shows the general architecture of the IP. It consists

of several building blocks: a TX module an RX module, a

control module, a management block and a WISHBONE

interface.

 The TX and RX modules provide full transmission and

reception functionality respectively. Cyclic Redundancy Check

(CRC) generators are incorporated in both modules for error

detection purposes. The control module provides full duplex

flow control. The management module provides the standard

IEEE 802.3 Media Independent Interface (MII) that defines

the connection between the PHY and the link layer.

 Using this interface, the connected device can force PHY to

run at 10 Mbps with frequency of 2.5 MHz versus 100 Mbps

(25 MHz) or to configure it to run at full or half duplex mode.

The wishbone interface connects the Ethernet core to the RISC

peocessor and to external memory. To adapt this IP to our

application we have configured it then tested the transmit and

Ethernet IP core

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 165 ISBN: 978-960-474-208-0

receive process which are the two basic process in our

application [3].

III.2 SYNTHESIS AND SIMULTION RESULTS

A. Hardware simulation results

 The simulation is done with Mentor Graphics

simulator ModelSim. Figure 7 shows the MAC/Ethernet

simulation.

Fig. 7 MAC/Ethernet simulation results

 B. Synthesis results

We have chosen the virtex5 XC5VLX50-1FF676 FPGA

FPGA as target to implement this system using the ISE 9.2i

Xilinx [11] tool. As shown in table1 the network SoC

architecture occupies 27 % of logic resources and 35 % of

IOBs. We synthesized the architecture using the XST (Xilinx

Synthesis Tool) [11].

TABLE 1

SYNTHESIS RESULTS

The figure 6 shows the mapping of the architecture into a

virtex5 FPGA using FPGA Editor tool [11].

Fig.6 Mapping of the network SoC in Virtex5 FPGA

IV. SOFTWARE DESIGN

In the software part, the GNU toolchains [2] are used to

compile link programs and generate the binary file of the

application.

The first step consists on developing a C program

“application.c”. This file implements the main function

needed for VoIP application. In the next step, the GCC tool is

used to compile the program, in this phase the object file

“application.o” is generated, in order to be used by the linker

(ld linker). This file is linked with the linker file (ram.ld)

which is used to map all the instructions, variables, data and

stacks to the corresponding address in the memory.

The resulting binary file “application.or32” is used with

the configuration file “sim.cfg” for the debug on Or1ksim step.

In simulation step the “board.h” file which contains the

hardware platform configurations is also used.

The “sim.cfg” file contains the default configurations of

peripherals and a set of simulations environments which are

similar to the actual hardware situation. In this phase the

 Number of Slices

5705 out of 14336 27%

Number of bonded IOBs

155 out of 484 35%

 Number of BRAMs

11 out of 96 12%

 Number of DSP48Es

 5 out of 16 6%

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 166 ISBN: 978-960-474-208-0

Or1ksim simulator and the GDB tool are invoked. Finally the

binary file “application.or32” is converted to the memory

initialisation file and downloaded into the SDRAM memory.

We envisage to run the network application on µClinux

(microcontroller Linux version) operating system. The

µClinux (Linux Kernel v2.0.38) is a port of Linux to systems

without a Memory Management Unit (MMU) designed for

small systems like microcontrollers and small microprocessors

which are suitable for implementation in FPGA.

 The µClinux operating system and the network application

were stored in the RAM memory. The software development

of the embedded system includes two parts:

1. Configuration and compilation of µClinux operating

system.

In this part the µClinux kernel has adjusted to the target system

and compiled.

2. Programming the network application.

A. µClinux Configuration

Mainly we have configurated µClinux to use the
opencores MAC/Etehrnet core as network controller and
include de TCP/IP stack that provides the IP conection.

B. The network application

First we have chosen as application test a frame transfer

between FPGA board and PC under Linux. Figure 8 show the

test environment. The serial port is used to visualise the farme

transfer.

Fig. 9 Test environment

First we have adjusted the “board.h” file according to our

system platform. The “board.h” file contains the hardware

platform configurations and the network configuration

according to CDTA/LAN configuration. The result of this test

is shown in next section. We aim to test the file transfer

protocol in our SoC using the 10/100 MAC/Ethernet network

controller and µClinux operating system.

C. Software simulation results

At first we have run µClinux on Or1ksim simulateur [12]
we have configured Or1ksim to be used with µClinux via
the configuration file “sim.cfg”. This file contains the default

configurations of peripherals and a set of simulation

environments which are similar to the actual hardware

situation. Figure 9 shows the results of running µClinux on

Or1ksim and the Internet protocols needed for a network

application (ICMP (Internet Control Message Protocol) for

ping, TCP (Transmission Control Protocol) and UDP (User

Datagram Protocol) under µClinux. Figure 10 shows the

FPGA board-PC frame transfert test result.

Fig. 9 Trace of booting µClinux on Or1ksim

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 167 ISBN: 978-960-474-208-0

Fig. 10 FPGA board-PC Frame tansfer test result

V. CONCLUSION

In this work we have developed an embedded system on

chip based on the Openrisc soft processor. The system based

opencores/opensources approch constitues a solution for

various network devices. It incorporates software and

hardware parts. To bluilt the Hrdware part, we have created a

SoC Verilog description. The network SoC architecture is

mapped into an FPGA XC5VLX50-1FF676 FPGA

development board. Synthesis results show that the SoC

architecture occupies 27% of logic resources and 35% of IOBs

(In/Out Blocs). Concerning the software part the network

application based on the MAC/Ethernet and µClinux operating

system is the first test application. The latter constitutes the

main step in a VoIP application. Our next objective is to

finalise the VoIP gateway integration in order to connect to the

public phone system through a gateway and record and archive

calls on a computer system. Then test the VoIP gateway

performances in Internet Network Area.

REFERENCES

[1] S.Titri, N.Izeboudjen, L.Salhi, D.Lazib “OpenCores Based System on

chip Platform for Telecommunication Applications:

VOIP”.DTIS’07,International Conference on design & Technology of

Integrated Systems in Nanoscale Era, Sep. 2-5, 2007., Rabat (Morocco),

pp. 253-256.

[2] Abid Faroudja, Nouma. Izeboudjen, Sabrina. Titri, Leila.Salhi,

Fatiha.Louiz, Dalila.Lazib “Hardware /Software Development of System

on Chip Platform for VoIP Application “, ICM, International

Conference on Microelectronics, December 19-22, 2009, Marakech,

Morocco, pp 62-65.

[3] F.Abid, N.Izeboudjen, L.Sahli, S.Titri, D.Lazib, F.Louiz “Integration of

the Opencores’ MAC/Ethernet in a VOIP based system on chip

application“, ESC, Embedded System Conference, Mai 5-6, 2009. Alger

(Algeria).

[4] F.Abid, N.Izeboudjen, L.Sahli, S.Titri, D.Lazib, F.Louiz “Embedded

Network SoC Application Based on the OpenRISC Soft Processor “,

ICMOSS, Embedded System Conference, Mai 29-31, 2010. Tiaret

(Algeria), pp 161-166

[5] F. L. Herrmann, G. Perin and al. “An UDP/IP Network Stack in

FPGA”,http://gmicro1.ct.ufsm.br/batista/images/stories/Artigos/Sforum

_2009.pdf.

[6] K.Morita, K. Abe, “Implementation of UDP/IP Protocol on FPGA and

its performance evaluation”, IPSJ General Conference. Special5,

Pages157-158.

[7] Xilinx, ML501 Evaluation Platform User Guide, version 1.4, August

24, 2009.

[8] Mjan Lampret “OpenRISC 1200 IP Core Specification“, Rev. 0.7 Sep 6,

2001, http://www.opencores.org/projects/or1k/

[9] www.opencores.org

[10] Igor Mohor “Ethernet IP Core Specification “, Rev. 0.4 October 29,

2002.

[11] XILINX ISE 9.2 user manual. www.xilinx.com B. Smith, “An approach

to graphs of linear forms (Unpublished work style),” unpublished.

[12] Jeremy Bennett “Or1ksim User Guide”, Embecosm, 2008.

Latest Trends on Circuits, Systems and Signals

ISSN: 1792-4324 168 ISBN: 978-960-474-208-0

