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Abstract: The aim of this paper is to introduce an approach for obtaining spline Bézier curves of G1 class.  Our 
approach generalizes F-Mill interpolation method and depends on two parameters which influence the curve 
properties. The method allows modifications of the shape of the curves without changing the interpolation 
points and the direction of the tangents in this points. We implemented the proposed interpolation scheme 
using MATLAB and analyzed the shape modifications depending of the parameters values.  
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1.   Introduction  
    
 The development of Computer Aided Geometric 
Design (CAGD) is strongly related to parametric 
curves and surfaces and especially to Bézier ones. 
These are parametric curves and surfaces expressed 
in the Bernstein basis which preserves the shape of 
the curve or surface. There are many studies related 
to curve and surface design and control. Generally, 
we interpolate a curve or surface in given points 
using fixed interpolation, i.e. the interpolating curve 
or surface is fixed for the given interpolating data 
and control polygon. The modification of shape 
implies the modification of given control points. An 
important problem in CAGD is how to modify the 
shape of the curve without changing the given data. 
The rational Bézier model allows construction of 
free-form curves and surfaces. Rational spline with 
parameters (see [6]) allows the modification of the 
interpolating curve by changing the parameters. In 
[10] is introduces an approach in which the shape of 
the curves and surfaces is controlled by the control 
edges of the control polygon, not only by the control 
points.  
   In our paper we introduce a method for modifying 
the shape of a spline cubic Bézier curve without 
modifying the given points.  More, the tangents in 

the interpolation points remain the same in the shape 
modification process. The shape modification is 
realized by means of 2 parameters. We implemented 
this method and analyzed the influence of the 
parameters on the shape modification. 
    The article is organized as follows. In section 2 
we briefly present Bézier and spline Bézier curves. 
In section 3 we introduce our approach. In section 4 
we analyze the influence of the parameters from our 
scheme to shape modification. Conclusions and 
further directions of study are presented in section 5. 
 
2. Bézier curves 
  
Bézier curves had an important role in development 
of Computer Aided Geometric Design ([1], [4], [5]). 
They were introduced independently by P. de 
Casteljau at Citroen and and P. Bézier at Renault.  
   According to [7] they are numerically the most 
stable among all polynomial bases used since now in 
CAD systems. The idea of de Casteljau was to 
generate curves using a control polygon.  Bézier 
curves are parametric curves express in Bernstein 
basis using the control points as coefficients. The 
parametric equations of a Bézier curve are given in 
(1): 
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The control polygon is defined by the control 
points ( , , )i i i ib x y z= . 
The most important properties of Bézier curves 
derive from the Bernstein polynomials properties 
given below. 
Bernstein polynomials satisfy the recursion: 
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,i jδ  is the Kronecker function. 
Bernstein polynomials form a partition of unity: 
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Many details regarding Bernstein polynomials’ 
properties can be found in [4]. 
Bézier curves’ properties were derived first using 
geometric arguments and then, they were proved 
using algebraic arguments (the explicit form of 
Bernstein curves and Bernstein polynomials’ 
properties).  We enumerate briefly these properties: 
1. Convex hull property: the Bézier curve is 
contained in convex hull of control points. 
2. Endpoints interpolation: Bézier curve interpolates 
in the first and last control point (f(0)=b0, f(1)=bn). 
3. Linear precision: if the control points are situated 
on a straight line, the corresponding Bézier curve 
reproduces this line. 
4. Affine invariance: the control polygon obtained by 
a linear transformation of the control points defines 
a new Bézier curve which is obtained applying the 
same transformation to the original curve. 
5. Endpoint Hermite interpolation: Bézier curve is 
tangent to the control polygon in the first and last 
control point. 
6. Pseudo – local control: if we move only one of 
the control points, the curves is affected by this 
change only in the neighborhood of this point. This 
makes predictable the effect of this change. 
7. Symmetry:  the sequences of control points: 
 b0,..., bn and  bn,..., b0 generate the same Bézier 
curve. 
   The most used Bézier curves are cubic Bézier 
curves, obtained for n=3. Many advantages of cubic 

Bézier curves are given in [4]. The most complex 
curves can not be approximated using cubic Bézier 
curves. A solution is to use cubic spline Bézier 
curves (cubic B-spline), which are piecewise cubic 
Bézier curves satisfying continuity and smoothness 
conditions in the junction points ([4[). Cubic spline 
interpolation was introduced in CAGD by Ferguson 
([8]), but also developed inside approximation 
theory by many mathematicians (see [2], [11] and 
the references inside). 
   A B–spline, of degree n,  with m pieces is a 
piecewise polynomial, which j-th component is 
defined by: 
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{1,..., }j m∈ . 

We denoted by j
ib  the control points of the j-th 

component. 
The continuity conditions are: 

1
0 , {2,..., }j j

nb b j m−= ∀ ∈  
A cubic B-spline is of class G1 if there is an unique 
tangent in the junction points, i.e. 

1
1 1, , , {1,..., 1}j j j

n nb b b are colinear j m+
− ∀ ∈ − . 

The cubic B-splines are obtained for n=3. 
 
3. Our approach for generating cubic  
     B-spline of G1 class 
 
   We consider the following problem: given n+1 
digitalized points Pi=(xi,yi,zi), {0,..., }i n∈  from a 
curve find a cubic B-spline of G1 class which 
interpolates this curve. More, find a form of B-
spline capable to allows shape modifications of 
curve without changing the control points. 
 Many solutions of generating B-spline can be found 
in literature ([1], [2], [4]-[6], [9], [12]). 
   In this article we propose a generalization of F-
Mill method. F-Mill method approximates the 
original curve using a cubic B-spline with n pieces. 
For the n+1 given points, the F-Mill relations 
provide 3n+1 control points bi. The G1 condition for 
the B-spline curve is obtained imposing that in the 
junction point Pi the tangent is parallel with the 
segment Pi-1Pi+1, the point  Pi `is the middle of the 
tangent segment b3i-1b3i+1 and  

3 1 3 1 1 1
1
3i i i ib b P P− + − += . The F-Mill relations give 

the control points except the second and the last but 
one. These two points define the direction of 
tangents to the original curve in the first and last 
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digitalized point.  The F-Mill relations are given in 
(8) – (10). 

3( 1) 1i ib P− −=                  (8) 

 3 1 1 1
1
6i i i ib P P P− − += −                     (9) 

3 1 1 1
1
6i i i ib P P P+ − += +                     (10) 

We generalize the F-Mill method, introducing two 
parameters k1, k2. For the n+1 given points we 
calculate 3n+1 control points bi of a G1 class cubic 
B – spline with n pieces, imposing the following 
conditions:  
1. In the junction point Pi the tangent is parallel with 
the segment Pi-1Pi+1  
2. 3 1 1 3 1 3 1 1, 0 1i i i ib P k b b k− − += < <  

3. 3 1 3 1 2 1 1 2, 0i i i ib b k P P k− + − += >  
    The control points are defines by the following 
relations: 

3( 1) 1i ib P− −=     (11) 

3 1 1 2 1 1i i i ib P k k P P− − += − ⋅ ⋅   (12) 

3 1 1 2 1 1(1 )i i i ib P k k P P+ − += + − ⋅ ⋅   (13) 

Classical F-Mill method is obtained for 1
1
2

k =  and 

2
1
3

k =  . 

 
4. Analysis of shape modifications 
 
We implemented the scheme introduced in section 3 
using MATLAB. MATLAB offers a easy 
manipulation of matrix structures, a high quality 
graphical capabilities and a powerful tools for 
Graphical User Interfaces design.  
We consider the case of planar curves and use the 
matrix form of a cubic Bézier curve: 

( ) ( )f t b B t= ⋅   (14) 

with  0 3
0 3

0 5

...
[ ,..., ]

...
x x

b b b
y y

⎛ ⎞
= = ⎜ ⎟

⎝ ⎠
, the matrix of 

control points and 
'3 2 2 3( ) (1 ) , 3(1 ) , 3(1 ) ,B t t t t t t t⎡ ⎤= − − −⎣ ⎦  

the column vector of cubic Bernstein polynomials. 
The computation of the control points and the 
graphical representation of the spline Bézier curve 
and of its control polygon is realized by the function  
[b] = kmill(p,a,e,c,d,k1,k2) which has as input data 
the  matrix p of digitalized points, the coordinates of 

the second and the last but one control points:  (a,e), 
(c,d).  
   The algorithm uses the relations (11) – (13) for 
computing the coordinates of the control points and 
the relation (14) for computing the points from the 
cubic Bézier spline.  
   For an easier manipulation we designed a user 
graphic interface Fig. 1 is illustrated a classical F-
Mill B-spline. 
 

 
 

Fig. 1- Graphic interface for cubic B-spline 
 
   For a fix value of k2=1/3, the variation of the 
shape for k1=1/6 and k1=4/5 can be view in Fig. 2a 
and b. 

 
 

Fig. 2a- Influence of k1  to shape variation: k1=1/6 
 

 
 

Fig. 2b- Influence of k1  to shape variation: k1=4/5 
 

   For a fix value of k1=1/2, the shape variation for 
k2=1/8 and k2=4/5 can be view in Fig. 3a and 3b. 
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Fig. 3a- Influence of k2 to shape variation:k2=1/8 
 

 
 

Fig. 3b- Influence of k2 to shape variation: k2=4/5 
 
 We observe that variation of k1 and k2 does not 
modify the convexity properties of   Bézier curve 
pieces which compose the B-spline..    
 The results obtained suggest that k2 influences the 
variation of shape more than k1.  
   In the following we will give geometric reasons 
for this conclusion.  
Let consider the control polygon 
pk= 3( 1) 3 2 3 1 3k k k kb b b b− − − . 
The control points are given by: 

3( 1) 1k kb P− −=  

3 2 1 1 2 2(1 )k k k kb P k k P P− − −= + − ⋅  

3 1 1 2 1 1k k k kb P k k P P− − += − ⋅  

3k kb P=  
Let consider k2  fixed and 0<k1<1 variable. The 
points Pi are given points.  Be cause 1-k1>0, the 
convexity of the control polygon pk does not change. 
Also, the directions of the tangents on the control 
points 3( 1)kb −  and  3kb  do not change, therefore the 
convexity of the k –th B-spline piece does not 
change. The variation of  k1 for fixed value of k2 
produces a slip of the control points b3k-2, b3k-1 , in 
opposite sense (if '

3 3 3 2 3 3 3 2k k k kb b b b− − − −>  then 
'

3 3 1 3 3 1k k k kb b b b− −< ), on the control polygon edges   

b3k-3b3k-2 and b3k-1b3k such that 
'
3 2 3 2 2

'
3 1 3 1 1 1

k k k k

k k k k

b b P P

b b P P
− − −

− − − +

=  

We denoted by '
jb  the control point obtained for a 

modified value '
1k  of parameter k1. As big the 

difference |k1-1/2| as sharp the curve in the points Pi 
is. 
Let consider k1  fixed and k2>0 variable. The 
variation of  k2 for fixed value of k1 produces a slip 
of the control points b3k-2, b3k-1  on the control 
polygon edges b3k-3b3k-2 and b3k-1b3k, in the same 
sense (if '

3 3 3 2 3 3 3 2k k k kb b b b− − − −>  then 
'

3 3 1 3 3 1k k k kb b b b− −> ), such that 
'
3 2 3 2 1 2

'
3 1 3 1 1 1 1

(1 )k k k k

k k k k

b b k P P

b b k P P
− − −

− − − +

−
= .  In this case the control 

polygons for the Bézier cubic components can 
change unpredictable and the shape of the B-spline 
can be completely different for different values of k2 
when k2 increases, as shown in Fig. 4a (k2=1/3) and 
Fig. 4b (k2=1). Practically we observed than 
significant shape variations appear when k2 1 or 

2 1k ≥ . 
 

 
 

Fig. 4a – Shape for k2=1/3 
 

 
 

Fig. 4b – Modified shape for k2=1 
 
The influence of parameters k1, k2  is difficult to be 
express algebraic, in a general case be cause the k-th 
control polygon  depends on 4 digitalized points  
Pk-2, ..., Pk+1.  
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5   Conclusion  
In this article we introduce a method for obtaining a 
cubic Bézier spline of class G1. Our method depends 
on 2 parameters which allow the shape modification 
without changing the given points.  
Using a program which implements our method we 
made an analysis of the dependence of shape 
variation on the methods’ parameters. The 
explanation of our results is based on geometric 
reasons. As a further direction of study we want to 
see if that can be established limits for parameters k1 
and k2 such that other prescribed geometric 
condition to be respected. 
   We want to develop other graphic interface for 
interactive modification of the points b3i-2, 

{1,..., 1}i n∈ −  for k1 fixed or for k2 fixed. 
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