Modeling Real-Time Tolapai Based Embedded System using MARTE

JAREER H. ABDEL-QADER
Department of Computer Science and Engineering
University of Texas at Arlington
416 Yates St. Nedderman Hall, Rm 300, Arlington Texas, USA
+1-817-272-3640
Jareer.abdelqader@mavs.uta.edu

ROGER S. WALKER
Department of Computer Science and Engineering
University of Texas at Arlington
416 Yates St. Nedderman Hall, Rm 300, Arlington Texas, USA
+1-817-272-3640
Roger.walker@uta.edu

Abstract: With the advances in integration of different units such as I/O controllers and network interfaces in a single chip, Intel introduced the low power Tolapai embedded processor. This processor is the first IA based system-on-chip (SoC) with an IA-32 processor core, North and South Bridges, and integrated Accelerator and network interface.

In this paper we will show a way to design and model a real-time embedded system that will perform several tasks regarding road surface conditions based on multiple sensor readings. The sensor data will be processed in real-time to reconstruct the road profile and provide an estimate for the texture contents of the road surface. The Tolapai embedded processor will be used in the design of such a system. Modeling will be done with the aid of UML profile for modeling and analysis of real-time and embedded (MARTE) systems.

Keywords: System-on-a-chip; Modeling Real-time systems; MARTE; Embedded Application; Road Profiler.

1 INTRODUCTION
Road profiler [1] is a system that is used to reconstruct the road profile from the data collected by laser and accelerometer sensors. With the aid of the latest SoC from Intel, the Tolapai embedded processor, we intend to design and implement a real-time road profiler system with capabilities of providing both road profile and road surface texture analysis. The final desired system to be implemented will be a Real-time road profiler/texture measurement system.

The first step in the design of a new system is to provide a model for the system that shows the main parts of the system and how to integrate them together to reach the desired design. For this reason modeling tools are used. The general-purpose modeling language UML (Unified Modeling Language) is a standard used mainly for software systems. UML provides extensions and profiles that can help modeling embedded systems. Many of these profiles such as UML-RT, SysML, SPT and MARTE [2-5] are now standardized and in use for modeling embedded systems and the real-time operations. Also the new UML profiles introduce the tools to model both hardware and software systems and provide a way of allocating the software to the desired hardware unit. Modeling real-time systems either as hardware, software, or a combination of both has been the subject if several research projects. For instance, [9] models a network constructed from network-on-chip (NoC) systems with the aid of MARTE. In [10] a hardware model is introduced for the IP-XACT feature which is a standard to normalize interface of intellectual property (IP) from different vendors of SoC systems. [11] Models a telecommunication system, GSM base transceiver station, using UML standard.

The following section discusses a number of UML profiles and extensions developed for embedded systems modeling. The third section of the paper describes briefly the road profiler/texture system. Section 4 introduces the Tolapai SoC. The modeling steps as well as the results obtained from the road
profiler system are shown and analyzed in section 5. Finally, the paper is concluded in section 6.

2 UML EXTENSIONS FOR MODELING REAL-TIME SYSTEMS

In this section we are discussing some of the modeling profiles adopted and standardized as part of UML.

2.1 UML-RT

Real-time Object Oriented Modeling (ROOM) [5] is a modeling language used for modeling real-time systems. It has its own graphical notation set to model structures of real-time systems. A capsule stereotype was introduced by ROOM to represent a reactive object. A capsule can communicate with other capsules through ports, which are boundary objects, and a protocol associated with the port. ROOM also defines a connector which connects ports to provide transmission facility for supporting a particular protocol. ROOM is more oriented towards the actual implementation and physical design [8]. ROOM was integrated as part of UML to form what is known as UML-RT. Lack of usage and support is considered one of the limitations of the UML-RT.

2.2 SysML

The Systems Modeling Language (SysML) is a UML profile that is domain-specific Modeling language for systems engineering. SysML supports the specification, analysis, design, verification and validation of a broad range of complex systems [3]. SysML defines two types of diagrams, the Block Definition Diagram (BDD) and the Internal Block Diagram (IBD). The BDD is based on UML Class Diagrams and UML Composite Structure Diagrams. The role of a BDD is to describe the relationships among blocks, which are basic structural elements focusing on specifying hierarchies and interconnections of the system to be modeled. The SysML IBD allows the designer to refine the structural aspect of the model. The IBD is the equivalent of the composite structure in UML. SysML lacks the constructs for modeling time.

2.3 UML Profile for MARTE

MARTE is UML profile adopted by OMG in order to extend the capacities of UML for real-time modeling in embedded systems. Not only for the modeling and analysis, MARTE also provides support for specification, design, and verification/validation stages. This new profile is intended to replace the existing UML Profile for Schedulability, Performance and Time. [4]

Because SPT’s constructs were considered too abstract and hard to apply, and for the requirement of aligning SPT profile UML2.0, there was a need for upgrading or creating new profile.

MARTE profile is an evolution of the SPT profile with the purpose of upgrading this profile to UML2.0. It is made of various packages: namely MARTE foundations, MARTE design model, MARTE analysis model and MARTE annexes. The profile is intended to be a fundamental tool in the design of real time systems. Both modeling and analyzing concerns are tackled leading to a complete instrument to improve the design phase. Within MARTE, the Software Resource modeling (SRM) framework provides modeling artifacts to describe software execution platform modeling. The UML profile for MARTE fills this lack with two sub-profiles: a generic resource modeling (GRM) profile and a hardware resource modeling profile (HRM). Both can be used to model hardware platform.

The HRM is composed of two views, a logical view that classifies hardware resources depending on their functional properties, and a physical view that concentrates on their physical nature. Both are specializations of the general model. The logical and physical views are complementary. They provide two different abstractions of hardware which could be simply merged.

3 ROAD PROFILER/TEXTURE SYSTEM

The system to be designed will collect and analyze data regarding road surface condition in order to specify road roughness and usability. The purpose of the system is to determine the road profile and texture measurements from the data collected by laser and accelerometer sensors installed in a vehicle which is driven over a specified road section.

3.1 Profiler

The profiler is an instrument that is used to produce values related in a well-defined way to a road surface [1]. Profiler combines reference elevation, height relative to the reference and longitudinal distance to produce the true road surface profile.

Most profilers measure profiles for wheel paths traveled. For each wheel path an accelerometer is used
to find inertial reference defining the height of the accelerometer at that moment after double integrating the acceleration measurements. A laser sensor is then used to obtain readings representing the height of the road surface to the reference, and a distance encoder provides the longitudinal distance.

The road profile is reconstructed from laser and accelerometer readings according to (1).

\[p(t) = \int \int a(t) dt - H(t) \]

Where

- \(a(t) \) is the acceleration,
- \(H(t) \) is the height measured by the laser sensor.

A high-pass filter is used to remove the effect of long wavelengths on the profile. These wavelengths represent the underlying grade and overall road curvature and are more difficult to measure with inertial profilers with the current configuration. There is also a distance sensor to measure the distance traveled. An opto sensor is often used to determine the start and end of some measured road sections.

3.2 Texture Analysis

ASTM E 1845 [6] standardizes the calculation of pavement texture from laser readings which represent the measured profile of the pavement macro-texture.

The pavement macro-texture is defined as the deviations of a pavement surface from a true planar surface with the characteristic dimensions of wavelength and amplitude from 5 mm and up.

In order to compute the mean profile depth (MPD), the measured profile is divided into segments each having a base-length of 100 mm. The slope, if any, of each segment is suppressed by subtracting a linear regression of the segment. The segment is further divided into two equal lengths of 50 mm. segments and the height of the highest peak in each half segment is determined. The difference between that height and the average level of the segment is calculated. The average value of these differences for all segments making up the measured profile is reported as the MPD. The texture will be computed from laser sensor readings for both left and right wheel paths from the road profiler system as discussed in the previous subsection.

3.3 Real-Time Implementation Requirements

In this section to the system requirements and the amount of data to be processed will be discussed.

The main requirement to operate the road profiler/texture system is to collect data for any road section with the minimal distraction to the traffic, which means that the profiler vehicle should run in a speed range of 40-60 mph (58-88 ft/sec). The data from all 6 sensors are to be collected simultaneously via data acquisition system in order to compute the road profile values correctly. The minimum sampling rate required to construct road profile from sensor readings is 4 kHz; while for accurate texture estimation, laser readings should be sampled with at least 24 kHz. So, in order to implement the road profiler/texture system sampling rate required is 24 kHz or more, since all sensor readings should be sampled with the same speed for consistency.

4 EP80579 EMBEDDED PROCESSOR

EP80579 (Tolapai) [12] is a system-on-a-chip (SoC) embedded processor which includes an Intel architecture complex based on the Intel Pentium M processor, integrated memory controller hub, integrated I/O controller hub and flexible integrated I/O support with three Ethernet connections, two Controller Area Network (CAN) interfaces and a local expansion bus interface. The design also includes PCI Express, High Speed Serial1 (HSS) ports for TDM or analog voice connectivity, security accelerators for bulk encryption, hashing and public/private key generation.

The Intel QuickAssist Technology initiative consists of a family of interrelated Intel and industry standard technologies that simplify the use and deployment of accelerators on Intel platforms. The integrated accelerators in this processor support Intel QuickAssist Technology through software packages provided by Intel. These software packages provide the library structures to integrate security and/or VoIP functionality into the application, completely adjunct to the Intel architecture complex, freeing up CPU cycles to support additional features and capabilities. This provides the efficiency of customized hardware with the flexibility to design diverse applications with one platform.

5 MODELING ROAD PROFILER WITH MARTE

In this section we will show and discuss the modeling process used to model the real-time road profiler/texture system based on UML profile for MARTE. Also we will show the results from running such a system.

5.1 ROAD PROFILER/TEXTURE SYSTEM MODELING

This subsection focuses on how to model real-time embedded systems, sensor hardware, and multi-core processors using real-time UML extensions, as a first step in the designing and building a fully integrated
real-time system that implements profiler/texture system. We used a combination of UML and MARTE to model the system, in which we use MARTE only when UML has limited support. The first step in modeling with UML is to provide a description of a system’s behavior which is done with the aid of a use case diagram. Figure 1 illustrates the use case that describes the profiler/texture system. The figure shows two actors. The road surface itself under test, and the system's operator that is responsible for driving and running the measurement vehicle. This use case is described by a series of events that occur regarding operating the profiler/texture system. The road surface will be measured to determine the reference elevation from accelerometer sensor and height relative to the reference from laser sensor of the road surface. A combination both data sets will be used to compute profile, while the texture will be estimated using the height readings alone.

The activity diagram is used to show workflows (flowchart) in a step by step manner for the activities and actions, with support for choice, iteration and concurrency. State (activity) diagram is another diagram of the UML standard that shows the step-by-step workflows of the activities and actions. The activity diagram of the system here is shown in Figure 2. The main activity this system carries is to continuously collect sensor data then distribute the readings between two computational tasks processed concurrently, profile construction and texture estimation. The concurrent operations are represented in the activity diagram with the aid of fork, join states. The fork pseudo-state is a connector that branches a single input transition into multiple outgoing transitions to different states that will be activated concurrently. The join pseudo-state joins together multiple incoming transitions into a single transition. Once the data collection is over, and the system is ready to stop working, all data points will be saved in output files for offline analysis and archiving processes.

Next, the state machine is introduced (Figure 3). There are two states. The idle/ pre-section state is where the system starts running but doesn't perform any computation and the real section state where the system collects and processes the data. UML models parallelism in two ways. First, all objects are considered to be parallel entities. Second, a single object exhibits itself a concurrent behavior. This means that the object's state-machine is specified as a set of concurrent components. The real section state is supposed to perform three operations separated by dotted lines. The first operation is to collect the sensor readings, while the second operation is to perform texture analysis once enough data is obtained (4 inch worth of data); the third and final operation is to compute profile for every 1 inch. Those three operations are intended to be performed concurrently as stated in the state machine.

In order to model the Tolapai embedded processor we created new stereotypes. One stereotype is for the QuickAssist technology and the other is for the Tolapai processor itself adding the capability of customizing them towards individual application domains. The new stereotypes will appear in diagrams as <<QuickAssist>> and <<Tolapai>> respectively. Figure 4 shows the <<Tolapai>> stereotype, which extends three of the MARTE meta-classes namely hw_processor to represent the IA-32 processor in the Tolapai, the hwI_O for the I/O controller part, the hwMMU for the memory management unit. It also extends the <<QuickAssist>> stereotype.
5.2 APPLICABILITY OF TOLAPAI FOR THE ROAD PROFILER/TEXTURE SYSTEM

The profiler program was next used with the Tolapai development system to simulate real-time data collection. A portable instrument package used for obtaining raw sensor data for a given wheel path, Figure 7, was used to obtain sensor data from a typical road section. The desired plan is to use the Tolapai inside the instrument module, processing and sending the computed profile, texture and other pavement performance characteristics via a network connection to a client computer. Using this data the multi-threaded profiler program was run on the Tolapai development system to compute profile for one wheel path, simulating the real-time data measurement process. The computed results matched with the real-time measurements using the current measurement system, Figure 8.
CONCLUSION

In this paper we discussed how to design and model a real-time embedded system that performs several tasks regarding road surface conditions based on multiple sensor readings which will be processed to reconstruct the road profile and to provide an estimate for the texture contents of the road surface. The Tolapai embedded processor will be used in the design of such a system. A comparison between different UML modeling profiles was introduced and accordingly we decided on a combination of UML and MARTE to model the system. We use MARTE only when UML has limited support. UML was used to show the general model of the system and MARTE was used specifically to model the hardware system with all of its details along with modeling the software methods which are part of the application.

ACKNOWLEDGMENT

This research has been funded in part by an Intel funded research project on “investigating the use of an EP80579 platform for real-time monitoring of pavement surface and bridge structure characteristics in a mobile measurement system” and a project with the Texas department of transportation and federal highway administration on development of a portable profiling system.

REFERENCES